![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > General
The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing planetary problems and creating a context for mathematicians and applied scientists to foster mathematical and interdisciplinary developments that will be necessary to tackle a myriad of issues and meet future global challenges. Earth is a planet with dynamic processes in its mantle, oceans and atmosphere creating climate, causing natural disasters and influencing fundamental aspects of life and life-supporting systems. In addition to these natural processes, human activity has increased to the point where it influences the global climate, impacts the ability of the planet to feed itself and threatens the stability of these systems. Issues such as climate change, sustainability, man-made disasters, control of diseases and epidemics, management of resources, risk analysis and global integration have come to the fore. Written by specialists in several fields of mathematics and applied sciences, this book presents the proceedings of the International Conference and Advanced School Planet Earth, Mathematics of Energy and Climate Change held in Lisbon, Portugal, in March 2013, which was organized by the International Center of Mathematics (CIM) as a partner institution of the international program Mathematics of Planet Earth 2013. The book presents the state of the art in advanced research and ultimate techniques in modeling natural, economical and social phenomena. It constitutes a tool and a framework for researchers and graduate students, both in mathematics and applied sciences.
Pulsar timing is a promising method for detecting gravitational waves in the nano-Hertz band. In his prize winning Ph.D. thesis Rutger van Haasteren deals with how one takes thousands of seemingly random timing residuals which are measured by pulsar observers, and extracts information about the presence and character of the gravitational waves in the nano-Hertz band that are washing over our Galaxy. The author presents a sophisticated mathematical algorithm that deals with this issue. His algorithm is probably the most well-developed of those that are currently in use in the Pulsar Timing Array community. In chapter 3, the gravitational-wave memory effect is described. This is one of the first descriptions of this interesting effect in relation with pulsar timing, which may become observable in future Pulsar Timing Array projects. The last part of the work is dedicated to an effort to combine the European pulsar timing data sets in order to search for gravitational waves. This study has placed the most stringent limit to date on the intensity of gravitational waves that are produced by pairs of supermassive black holes dancing around each other in distant galaxies, as well as those that may be produced by vibrating cosmic strings. Rutger van Haasteren has won the 2011 GWIC Thesis Prize of the Gravitational Wave International Community for his innovative work in various directions of the search for gravitational waves by pulsar timing. The work is presented in this Ph.D. thesis.
In this PhD thesis, which was nominated for publication in this series by the Astronomical Institute at Charles University, Prague, the author investigates the orbital evolution of an initially thin stellar disc around a supermassive black hole, considering various perturbative sources of gravity. His findings, obtained by both direct numerical N-body modelling and using standard perturbation methods, offer a viable theoretical explanation for the observed configuration of young stars in the Galactic Centre. This marks a significant contribution to a topic of great interest in contemporary astrophysics. The author also shows in his thesis that a secular instability (m = 1 mode) may occur in the embedding spherical cluster of old stars. This increases the richness of possible evolution scenarios of the embedding cluster and may lead to effective feeding of supermassive black holes through tidal disruption of stars on extremely eccentric orbits.
In this book the applicability and the utility of two statistical approaches for understanding dark energy and dark matter with gravitational lensing measurement are introduced. For cosmological constraints on the nature of dark energy, morphological statistics called Minkowski functionals (MFs) to extract the non-Gaussian information of gravitational lensing are studied. Measuring lensing MFs from the Canada-France-Hawaii Telescope Lensing survey (CFHTLenS), the author clearly shows that MFs can be powerful statistics beyond the conventional approach with the two-point correlation function. Combined with the two-point correlation function, MFs can constrain the equation of state of dark energy with a precision level of approximately 3-4 % in upcoming surveys with sky coverage of 20,000 square degrees. On the topic of dark matter, the author studied the cross-correlation of gravitational lensing and the extragalactic gamma-ray background (EGB). Dark matter annihilation is among the potential contributors to the EGB. The cross-correlation is a powerful probe of signatures of dark matter annihilation, because both cosmic shear and gamma-ray emission originate directly from the same dark matter distribution in the universe. The first measurement of the cross-correlation using a real data set obtained from CFHTLenS and the Fermi Large Area Telescope was performed. Comparing the result with theoretical predictions, an independent constraint was placed on dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter annihilation. Future lensing surveys will be useful to constrain on the canonical value of annihilation cross section for a wide range of mass of dark matter.
Francois Arago, the first to show in 1810 that the surface of the Sun and stars is made of incandescent gas and not solid or liquid, was a prominent physicist of the 19th century. He used his considerable influence to help Fresnel, Ampere and others develop their ideas and make themselves known. This book covers his personal contributions to physics, astronomy, geodesy and oceanography, which are far from negligible, but insufficiently known. Arago was also an important and influential political man who, for example, abolished slavery in the French colonies. One of the last humanists, he had a very broad culture and range of interests. In parallel to his biography, this title also covers the spectacular progresses of science at the time of Arago, especially in France: the birth of physical optics, electromagnetism and thermodynamics. Francois Arago's life is a fascinating epic tale that reads as a novel.
Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun's violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the appendices facilitate a more thorough command of the physics involved.
The thesis describes the development of receiver technologies for sub-millimetre astronomy instruments, focusing on high performance coherent cryogenic detectors operating close to the superconductor gap frequency. The mixer chip which comprises the SIS devices, fed by a unilateral finline and matching planar circuits was fabricated on 15 micron silicon substrate using the recently developed Silicon-On-Insulator (SOI) technology. This offered broadband IF and RF performance, with fully integrated on-chip planar circuits resulting in an easily reproducible mixer chip and a simple mixer block. An important consequence of this design is that it can be extended to the supra-THz region and making the fabrication of multi-pixel heterodyne arrays feasible. The extension of the operation of major telescopes such as ALMA, APEX and the GLT from single pixel to large format arrays is the subject of extensive research at present time since it will allow fast mapping combined with high resolution of the submillimetre sky. The technology described in this thesis makes a major contribution to this effort.
In order to analyze the light of cosmic objects, particularly at extremely great distances, spectroscopy is the workhorse of astronomy. In the era of very large telescopes, long-term investigations are mainly performed with small professional instruments. Today they can be done using self-designed spectrographs and highly efficient CCD cameras, without the need for large financial investments. This book explains the basic principles of spectroscopy, including the fundamental optical constraints and all mathematical aspects needed to understand the working principles in detail. It covers the complete theoretical and practical design of standard and Echelle spectrographs. Readers are guided through all necessary calculations, enabling them to engage in spectrograph design. The book also examines data acquisition with CCD cameras and fiber optics, as well as the constraints of specific data reduction and possible sources of error. In closing it briefly highlights some main aspects of the research on massive stars and spectropolarimetry as an extension of spectroscopy. The book offers a comprehensive introduction to spectroscopy for students of physics and astronomy, as well as a valuable resource for amateur astronomers interested in learning the principles of spectroscopy and spectrograph design.
Where do most stars (and the planetary systems that surround them) in the Milky Way form? What determines whether a young star cluster remains bound (such as an open or globular cluster), or disperses to join the field stars in the disc of the Galaxy? These questions not only impact understanding of the origins of stars and planetary systems like our own (and the potential for life to emerge that they represent), but also galaxy formation and evolution, and ultimately the story of star formation over cosmic time in the Universe. This volume will help readers understand our current views concerning the answers to these questions as well as frame new questions that will be answered by the European Space Agency's Gaia satellite that was launched in late 2013. The book contains the elaborated notes of lectures given at the 42nd Saas-Fee Advanced Course "Dynamics of Young Star Clusters & Associations" by Cathie Clarke (University of Cambridge) who presents the theory of star formation and dynamical evolution of stellar systems, Robert Mathieu (University of Wisconsin) who discusses the kinematics of star clusters and associations, and I. Neill Reid (S pace Telescope Science Institute) who provides an overview of the stellar populations in the Milky Way and speculates on from whence came the Sun. As part of the Saas-Fee Advanced Course Series, the book offers an in-depth introduction to the field serving as a starting point for Ph.D. research and as a reference work for professional astrophysicists.
These pages present a collection of recent papers primarily documenting the nascent science of neutrino geophysics. Most of the papers followed from talks given at Neutrino Sciences 2005: Neutrino Geophysics held at the University of Hawaii in December 2005. Several papers were solicited later in an effort to make the collection as comprehensive as possible. Every paper was scrutinized by an external reviewer to assure the quality of scientific content.
This book reviews the phenomenology displayed by relativistic jets as well as the most recent theoretical efforts to understand the physical mechanisms at their origin. Relativistic jets have been observed and studied in Active Galactic Nuclei (AGN) for about half a century and are believed to be fueled by accretion onto a supermassive black hole at the center of the host galaxy. Since the first discovery of relativistic jets associated with so-called "micro-quasars" much more recently, it has seemed clear that much of the physics governing the relativistic outflows in stellar X-ray binaries harboring black holes and in AGN must be common, but acting on very different spatial and temporal scales. With new observational and theoretical results piling up every day, this book attempts to synthesize a consistent, unified physical picture of the formation and disruption of jets in accreting black-hole systems. The chapters in this book offer overviews accessible not only to specialists but also to graduate students and astrophysicists working in other areas. Covered topics comprise Relativistic jets in stellar systems Launching of AGN jets Parsec-scale AGN jets Kiloparsec-scale AGN jets Black hole magnetospheres Theory of relativistic jets The structure and dynamics of the inner accretion disk The origin of the jet magnetic field X-ray observations, phenomenology, and connection with theory
This thesis discusses the evolution of galaxies through the study of the morphology, kinematics, and star formation properties of a sample of nearby galaxies. The main body of the thesis describes the kinematic observations with the GHaFAS Fabry-Perot instrument on the William Herschel Telescope of a sample of 29 spiral galaxies. The work is closely related to the Spitzer Survey of Stellar Structure in Galaxies, and uses the mid-infrared data of that survey to determine key parameters of the galaxies studied. From these data, important results are obtained on streaming and other non-circular motions in galaxies, on the distribution and rates of star formation, and on how correlations of these parameters and of the rotation curve shape with basic galaxy parameters yield clues on the evolutionary processes taking place in disk galaxies.
With contributions from leading scientists in the field, and edited by two of the most prominent astronomers of our time, this is a totally authoritative volume on X-ray astronomy that will be essential reading for everyone interested - from students to astrophysicists and physicists. All the aspects of this exciting area of study are covered, from astronomical instrumentation to extragalactic X-ray astronomy.
Stars are Small Dark-Coloured Things That Live in Holes in the Ground.- Shrouds of the Night - Galaxies and Rene Magritte.- Twin Masks of Spiral Structure? A Local Perspective.- The Mask of Complexity in Disk Galaxies.- Cosmic Magnetic Fields - An Overview.- The Gaseous Halo Mask.- Molecular Gas Properties of Galaxies: The SMA CO(2-1) B0DEGA Legacy Project.- The DiVA's Mask: Iconifying Galaxies and Revealing HI Anomalies.- Enigmatic Masks of Cosmic Dust: Lessons from Nearby Galaxies Through the Eyes of the Spitzer Space Telescope.- The Large Magellanic Cloud: A Power Spectral Analysis of Spitzer Images.- Light Cores Behind Dark Masks.- Globalization, Open Access Publishing, and the Disappearance of Print: Threat or Opportunity?.- Super Star Clusters and Supernovae in Interacting LIRGs Unmasked by NIR Adaptive Optics.- Structure, Mass, and Stability of Galactic Disks.- What Can the Radial Surface Brightness Profiles of Galaxy Discs Tell Us About Their Evolution?.- The Complex Interplay of Dust and Star Light in Spiral Galaxy Discs.- Galaxy Morphology Revealed By SDSS: Blue Elliptical Galaxies.- Rings and Bars: Unmasking Secular Evolution of Galaxies.- Bars and Bulges Through Masks of Time.- Tidal Trails and Mass-Segregated Isothermal Clusters.- Stellar Debris Streams: New Probes of Galactic Structure and Formation.- Chemical Enrichment in Galaxies: Constraints on Nucleogenesis and Galaxy Evolution.- Chemodynamical Simulations of Galaxies.- Elemental Abundance Patterns of Disk Substructure.- Searching for Structures and Streams in the Extended Solar Neighbourhood with RAVE.- On the Age-Metallicity-Velocity Relation in the Nearby Disk Using the RAVE Survey.- The HERMES Project: Reconstructing Galaxy Formation.- Stellar Halos: Unmasking a Galaxy's History.- The Outer Halos of Elliptical Galaxies.- Galaxies: Lighthouses in the Shoals of Dark Halos.- Dark Haloes as Seen with Gravitational Lensing.- Behind the Mask: Resolving the Core-Cusp Problem in Spiral Galaxies.- A GALAXY BASELINE: Multiwavelength Study of a Sample of the Most Isolated Galaxies in the Local Universe.- Diffuse Light and Galaxy Interactions in the Core of Nearby Clusters.- Feedback in Star and Galaxy Formation.- When Bad Masks Turn Good.- Spitzer's View of Galaxies in the High-Redshift Universe.- Bandshifting and Other Masks of the Clumpy Populations in High-Redshift Galaxies.- Supernovae, Dust, and Cosmology.
These proceedings collect the selected contributions of participants of the First Karl Schwarzschild Meeting on Gravitational Physics, held in Frankfurt, Germany to celebrate the 140th anniversary of Schwarzschild's birth. They are grouped into 4 main themes: I. The Life and Work of Karl Schwarzschild; II. Black Holes in Classical General Relativity, Numerical Relativity, Astrophysics, Cosmology, and Alternative Theories of Gravity; III. Black Holes in Quantum Gravity and String Theory; IV. Other Topics in Contemporary Gravitation. Inspired by the foundational principle ``By acknowledging the past, we open a route to the future", the week-long meeting, envisioned as a forum for exchange between scientists from all locations and levels of education, drew participants from 15 countries across 4 continents. In addition to plenary talks from leading researchers, a special focus on young talent was provided, a feature underlined by the Springer Prize for the best student and junior presentations.
The discovery of a gradual acceleration in the moon's mean motion by Edmond Halley in the last decade of the seventeenth century led to a revival of interest in reports of astronomical observations from antiquity. These observations provided the only means to study the moon's 'secular acceleration', as this newly-discovered acceleration became known. This book contains the first detailed study of the use of ancient and medieval astronomical observations in order to investigate the moon's secular acceleration from its discovery by Halley to the establishment of the magnitude of the acceleration by Richard Dunthorne, Tobias Mayer and Jerome Lalande in the 1740s and 1750s. Making extensive use of previously unstudied manuscripts, this work shows how different astronomers used the same small body of preserved ancient observations in different ways in their work on the secular acceleration. In addition, this work looks at the wider context of the study of the moon's secular acceleration, including its use in debates of biblical chronology, whether the heavens were made up of aether, and the use of astronomy in determining geographical longitude. It also discusses wider issues of the perceptions and knowledge of ancient and medieval astronomy in the early-modern period. This book will be of interest to historians of astronomy, astronomers and historians of the ancient world.
This book is the result of a working group sponsored by ISSI in Bern, which was initially created to study possible ways to calibrate a Far Ultraviolet (FUV) instrument after launch. In most cases, ultraviolet instruments are well calibrated on the ground, but unfortunately, optics and detectors in the FUV are very sensitive to contaminants and it is very challenging to prevent contamination before and during the test and launch sequences of a space mission. Therefore, ground calibrations need to be confirmed after launch and it is necessary to keep track of the temporal evolution of the sensitivity of the instrument during the mission. The studies presented here cover various fields of FUV spectroscopy, including a catalog of stellar spectra, datasets of Moon Irradiance, observations of comets and measurements of the interplanetary background. Detailed modelling of the interplanetary background is presented as well. This work also includes comparisons of older datasets with current ones. This raises the question of the consistency of the existing datasets. Previous experiments have been calibrated independently and comparison of the datasets may lead to inconsistencies. The authors have tried to check that possibility in the datasets and when relevant suggest a correction factor for the corresponding data.
In this updated second edition renowned amateur comet-searcher David H. Levy expands on his work about the intricate relationship between the night sky and the works of English Literature. This revised and expanded text includes new sections on Alfred Lord Tennyson and Gerald Manley Hopkins (both amateur astronomers), extending the time period analyzed in the first edition from early modern literature to encompass the Victorian age. Although the sky enters into much of literature through the ages, British authors offer an especially fertile connection to the heavens, and Levy links the works of seminal authors from Shakespeare on to specific celestial events and scientific advances. From the impact of comets and supernovae to eclipses, Levy's ultimate goal in this book is to inspire his readers to do the same thing as their ancestors did so long ago-look up and appreciate the stars. His insights in this revised book spread farther and wider than ever before in this learned and enchanting tour of the skies.
In this fascinating journey to the edge of science, Vidal takes on big philosophical questions: Does our universe have a beginning and an end or is it cyclic? Are we alone in the universe? What is the role of intelligent life, if any, in cosmic evolution? Grounded in science and committed to philosophical rigor, this book presents an evolutionary worldview where the rise of intelligent life is not an accident, but may well be the key to unlocking the universe's deepest mysteries. Vidal shows how the fine-tuning controversy can be advanced with computer simulations. He also explores whether natural or artificial selection could hold on a cosmic scale. In perhaps his boldest hypothesis, he argues that signs of advanced extraterrestrial civilizations are already present in our astrophysical data. His conclusions invite us to see the meaning of life, evolution and intelligence from a novel cosmological framework that should stir debate for years to come.
Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the graduate level and will further serve as a valuable reference work for professional astrophysicists.
This book offers review chapters written by invited speakers of the 3rd Session of the Sant Cugat Forum on Astrophysics - Gravitational Waves Astrophysics. All chapters have been peer reviewed. The book goes beyond normal conference proceedings in that it provides a wide panorama of the astrophysics of gravitational waves and serves as a reference work for researchers in the field.
We humans are collectively driven by a powerful - yet not fully explained - instinct to understand. We would like to see everything established, proven, laid bare. The more important an issue, the more we desire to see it clarified, stripped of all secrets, all shades of gray. What could be more important than to understand the Universe and ourselves as a part of it? To find a window onto our origin and our destiny? This book examines how far our modern cosmological theories - with their sometimes audacious models, such as inflation, cyclic histories, quantum creation, parallel universes - can take us towards answering these questions. Can such theories lead us to ultimate truths, leaving nothing unexplained? Last, but not least, Heller addresses the thorny problem of why and whether we should expect to find theories with all-encompassing explicative power.
This thesis presents an in-depth, high-resolution observational study on the very beginning of the formation process: the fragmentation of dense molecular clouds known as infrared dark clouds (IRDCs). Using the Submillimeter Array (SMA) and Very Large Array (VLA) radio interferometers, the author has discovered a common picture of hierarchical fragmentation that challenges some of the leading theoretical models and suggests a new, observation-driven understanding of how massive star formation in clustered environments may begin: it is initiated by the hierarchical fragmentation of a dense filament from 10 pc down to 0.01 pc, and the stellar mass buildup is simultaneously fed by hierarchical accretion at similar scales. The new scenario points out the importance of turbulence and filamentary structure, which are now receiving increasing attention and further tests from both observers and theorists.
This book, which is a reworked and updated version of Steven Bloemen’s original PhD thesis, reports on several high-precision studies of compact variable stars. Its strength lies in the large variety of observational, theoretical and instrumentation techniques that are presented and used and paves the way towards new and detailed asteroseismic applications of single and binary subdwarf stars. Close binary stars are studied using high cadence spectroscopic datasets collected with state of the art electron multiplying CCDs and analysed using Doppler tomography visualization techniques. The work touches upon instrumentation, presenting the calibration of a new fast, multi-colour camera installed at the Mercator Telescope on La Palma. The thesis also includes theoretical work on the computation of the temperature range in which stellar oscillations can be driven in subdwarf B-stars. Finally, the highlight of the thesis is the measurement of velocities of stars using only photometric data from NASA's Kepler satellite. Doppler beaming causes stars to appear slightly brighter when they move towards us in their orbits, and this subtle effect can be seen in Kepler's brightness measurements. The thesis presents the first validation of such velocity measurements using independent spectroscopic measurements. Since the detection and validation of this Doppler beaming effect, it has been used in tens of studies to detect and characterize binary star systems, which are key calibrators in stellar astronomy.
This book on astronomical measurement takes a fresh approach to teaching the subject. After discussing some general principles, it follows the chain of measurement through atmosphere, imaging, detection, spectroscopy, timing, and hypothesis testing. The various wavelength regimes are covered in each section, emphasising what is the same, and what is different. The author concentrates on the physics of detection and the principles of measurement, aiming to make this logically coherent. The book is based on a short self contained lecture course for advanced undergraduate students developed and taught by the author over several years. |
![]() ![]() You may like...
Proceedings of the American Association…
Assoc for the Advancement of Science
Hardcover
The American Ephemeris and Nautical…
United States Naval Observatory
Paperback
R646
Discovery Miles 6 460
Stargazing from Game Reserves in…
Anthony Fairall, Elizabeth Fairall
Paperback
|