![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > General
After pioneering this technology and growing the market, COMSAT fell prey to changes in government policy and to its own lack of entrepreneurial talent. The author explores the factors which contributed to this rise and fall of COMSAT.
The controversial question of whether the majority of the narrow absorption lines observed in QSO spectra represent cosmological intervening systems or ejecta from the QSO themselves is settled. QSO absorption line spectroscopy, initially a mere technique, has matured into an essential extragalactic research tool for understanding the content of the Universe at redshifts between 0 and 4, and beyond. The only previous important meeting devoted to "QSO Absorption Lines" was held in May 1987 at the Space Telescope Science Institute in Baltimore, Maryland, U.S.A. Since that time, nearly a decade ago, research has been ex tremely active in this now well-established field of astrophysics. Theoretical stud ies and simulations have taken advantage of the constant progress in computer technology, and during these last few years, the observational results have bene fited largely from the new facillities offered by the Hubble Space Telescope in the UV wavelength range and the Keck Telescope for high-resolution spectroscopy.
The quest for high resolution has preoccupied radio astronomers ever since radio waves were first detected from space fifty years ago. This venture was par ticularly stimulated by the discovery of quasars, and led to the development of interferometer techniques using baselines of transglobal dimensions. These meth ods have become known as Very Long Baseline Interferometry (VLBI). Arrays of radio telescopes situated all over the Earth (or even in space) are regularly used for researches in radio astronomy, reaching resolutions as small as a fraction of a milli arcsecond. The technique also allows the measurement of the positions of the radio telescopes to a few millimeters and so VLBI has become a major tool in geodesy and the study of the rotation of the Earth. VLBI has now passed the pioneer stage and is becoming a standard facility available to astronomers and geodesists, requiring the coordination of the operations of indpendently owned radio telescopes around the world. In Europe observatories from England, Federal Republic of Germany, France, Italy, Poland, Sweden and The Netherlands are coordinated in their VLBI activity by the European VLBI Network Consortium (EVN). The Programme Committee of the EVN allocates time to scientific projects on a routine basis three times a year. The Unites States has a similar arrangement of a network of independent radio observatories, and joint experiments using 'Global Network' are often made."
This book explains why scientists believe that life may be more common in the Universe than previously considered possible. It presents the tools and strategies astronomers and astrobiologists are using in their formal search for habitable exoplanets as well as more advanced forms of life in other parts of our galaxy. The author then summarizes what is currently known about how and where organic molecules critical to our form of carbon-based life are manufactured. The core of the book explains (and presents educated guesses) how nervous systems evolved on Earth, how they work, and how they might work on other worlds. Combining his knowledge of neuroscience, computers, and astrobiology the author jumps into the discussion whether biological nervous systems are just the first step in the rise of intelligence in the Universe. The book ends with a description from both the psychologist's and the neuroscientist's viewpoints, exactly what it is about the fields of astrobiology and astronomy that "boggles the minds" of many amateur astronomers and interested non-scientists. This book stands out from other popular science books on astrobiology by making the point that "astro-neurobiologists" need to begin thinking about how alien nervous systems might work.
This book is aimed at theoretical and mathematical physicists and mathematicians interested in modern gravitational physics. I have thus tried to use language familiar to readers working on classical and quantum gravity, paying attention both to difficult calculations and to existence theorems, and discussing in detail the current literature. The first aim of the book is to describe recent work on the problem of boundary conditions in one-loop quantum cosmology. The motivation of this research was to under stand whether supersymmetric theories are one-loop finite in the presence of boundaries, with application to the boundary-value problemsoccurring in quantum cosmology. Indeed, higher-loop calculations in the absence of boundaries are already available in the litera ture, showing that supergravity is not finite. I believe, however, that one-loop calculations in the presence of boundaries are more fundamental, in that they provide a more direct check of the inconsistency of supersymmetric quantum cosmology from the perturbative point of view. It therefore appears that higher-order calculations are not strictly needed, if the one-loop test already yields negative results. Even though the question is not yet settled, this research has led to many interesting, new applications of areas of theoretical and mathematical physics such as twistor theory in flat space, self-adjointness theory, the generalized Riemann zeta-function, and the theory of boundary counterterms in super gravity. I have also compared in detail my work with results by other authors, explaining, whenever possible, the origin of different results, the limits of my work and the unsolved problems."
Understanding the formation and evolution of early galaxies is one of the most challenging problems in modern astronomy. In this volume leading specialists describe observations of high and intermediate redshift galaxies as well as the deep survey activities. Further topics include cosmology, and modelling and computer simulations of galaxy formation. Thus the reader will find here a fairly complete picture of the state of the art in this active field of astrophysics research.
This book is based on the Proceedings of the 9th European Workshop on White Dwarfs, the most recent in a series of meetings which have become the most important events in this field. Many of the contributions, however, have been expanded considerably by the authors to include introductory material. This makes this volume a useful, up-to-date introduction into the present status of observations and theory of white dwarf stars.
At close inspection every galaxy appears to have its own individuality.A galaxy can be warped, lop-sided, doubly-nucleated, boxy or disky, ... in its own specific, peculiar way. Hence, for a complete description, galaxy taxonomy may ask for finer and finer classification schemes. However, for some applications it may be more fruitful to let details aside and focus on some global properties of galaxies. One is then seeking to measure just a few quantities for each galaxy, a minimum set of globalobservables that yet captures some essential aspect of these objects. One very successful example of this approach is offered by the scaling rela tions of galaxies, the subject of the international workshop held at ESO head quarters in Garching on November 19-21, 1996. Discovered in the late 1970's, the Tully-Fisher relation for the spirals and the Faber-Jackson relation, or its more recent version the Fundamental Plane, for ellipticals have now become flourishing fields of astronomical research in their own right, as well as being widely used tools for a broad range of astronomical investigations. The work shop was designed to address three key issues on galaxy scaling relations, i.e., their Origins, Evolution, and Applications in astronomy. The Origins of galaxy scaling relations still escape our full understanding."
This is a fair overview of the basic problems in Solar Physics. The authors address not only the physics that is well understood but also discuss many open questions. The lecturers' involvement in the SOHO mission guarantees a modern and up-to-date analysis of observational data and makes this volume an extremely valuable source for further research.
Leading experts give an overview of very low frequency radio astronomy. They present for the first time in a single conference the astrophysical need for and possible instrumentation for implementing ground-based, ground-to-space, space-based, and lunar-based observations. The papers cover a wide range of topics such as solar astronomy, planetary science, supernova remnants, pulsars, interstellar thermal material, interstellar plasma refraction and diffraction, cosmic rays, extragalactic radio galaxies and quasars, ancient "fossil" radio sources, and new, coherent emission mechanisms.
This book gives a synthesis of the state of the art in artificial intelligence in astronomy and astrophysics, presents its current applications and points out directions of future work. The individual chapters report on the application of artificial intelligence techniques for large astronomical surveys, for processing cosmic ray data, for facilitating data reduction using image processing systems, for telescope scheduling, for observatory ground support operations, for observation proposal preparation assistance, and for scientific applications such as stellar spectral and galaxy morphology classification. The new field of connectionism (neural networks) is also surveyed. The book is designed to be self-contained: a glossary of terms used in this area is provided and an index of terms, acronyms and proper names completes the book.
Satellite observations in various previously unexplored spectral regions have provided a host of data on novae over the last decade. This carefully refereed conference volume is devoted to classical novae and related objects. Around 30 papers discuss observations (basic properties of novae, outbursts, and nebular ejecta), theoretical considerations, and models of observations. In addition the reader will find an introductory review on binary stars by R.P. Kraft and a summary by P. Eggleton of the papers and posters presented at the conference. To help the reader in finding any specific subject or stellar object the volume concludes with a detailed index.
On March 28 and 29, 1969, at the occasion of the dedication of the European Southern Observatory, some 90 astronomers from all over the world gathered at the ESO headquarters at Santiago de Chile for discussing problems of the Magellanic Clouds. They came from Argentina, Australia, Chile, Mexico, South Mrica and the United States as well as from Europe; these latter, naturally, mostly from the member states ofESO. The choice of the subject was an obvious one. When erecting the European Southern Observatory as a joint effort in European astronomy, it was agreed from the beginning that the field of research should be the southern sky, so far hardly explored with large telescopes. Among the objects to be investigated, the Magellanic Clouds rank highest, together with the galactic centre region and the southern spiral structure. Being located ten times closer than the nearest large stellar systems accessible to northern observers, and containing a stellar population ranging in age from the oldest down of star formation, the Clouds provide an ideal laboratory for research on to the stage current problems in astrophysics. Yet, most of the northern observational astronomers were hardly acquainted with the Magellanic Clouds; naturally, they are used to think in terms of research projects that can be conducted at their observatories. A survey of the status of knowledge and research on the Clouds therefore appeared in order now that the first- medium size- telescopes of ESO came into operation.
Helio- and asteroseismology are fast- developing new fields of research that probe the internal structure of stars. The complicated multi-periodic oscillations are studied from both theoretical and observational points of view. Nine articles review the state of the art, including modeling the sun, excitations of oscillations, inverse problems, and the observations of seismic phenomena. One section is devoted to the seismology of stars, a field of research still in its very early development. In addition the reader will find about forty research papers on these subjects.
Jets are ubiquitous in the Universe, but ill-understood. Conservative books base their interpretations on focused stellar winds, ejected "bullets," black-hole central engines, and in-situ upgrading of electron energies via shocks. This volume, however, attempts a uniform interpretation of the bipolar-flow family, involving extremely relativistic pair plasma as the jet substance, and rotating magnets (possibly burning disks) as the central engines. Among the discussed sources are SS 433, YSO jets, planetary nebulae, our galactic center, and the class of extragalactic QSOs, both radio-loud and radio-quiet.
A physicist and an inventor, Jules Janssen (1824-1907) devoted his life to astronomical research. He spent many years traveling around the world to observe total Solar eclipses, demonstrating that a new era of science had just come thanks to the use of both spectroscopy and photography, and persuading the French Government of the necessity of founding a new observatory near Paris. He became its director in 1875. There, at Meudon, he began routine photographic recordings of the Sun surface and had a big refractor and a big reflector built. Meanwhile, he also succeeded in building an Observatory at the summit of Mont-Blanc. The story of this untiring and stubborn globe-trotter is enriched by extracts of the unpublished correspondence with his wife. One can thus understand why Henriette often complained of the solitude in which she was left by her peripatetic husband: There are men who leave their wives for mistresses; you do it for journeys ... Basking in the glow of his success, Janssen was able to undertake the construction of the great astrophysical observatory of which he had dreamed. It was at Meudon that he had it built."
Complete compendium on the physics and applications of telescope optics, underlying the original and oldest of astronomical instruments. Thoroughly scholarly work that provides both the historical perspective and the state-of-the-art technology, such as the 4-lens corrector of Delabre and the LADS corrector. Newly updated edition brings this authoritative work completely up to date.. From the reviews "... an unequalled reference for those who have interest in the field ... a unique reference in a superb presentation." ESO Messenger
For a better understanding of supernova explosions the contributors to this volume provide researchers and graduate students in astrophysics with a broad spectrum of alternatives. The confrontation of different theories in one volume should prompt further exploration of the driving piston for the explosions and deeper understanding of the experimental data. Properties of supernova shells are discussed, such as their kinematics, ages, sizes, temperatures, spectra, polarizations, energetics and morphologies. Special attention is given to a few shells of extreme age, viz. G 70.68+1.20, Kepler's SN, and CTB 80, as well as to their statistics.
Investigations in space have led to fundamental discoveries of the human body to the space environment. Gilles Clement has conducted extensive research in this field. This readable text presents the findings from the life science experiments conducted during and after space missions. About 1200 human space flights have been completed to date, including more than 500 astronauts from various countries, for a combined total presence in space of about 90 years. The first edition of this title was published in 2005 (written in 2003 - 2004), and new data is now available from crewmembers participating in long-duration flights on board the International Space Station (ISS). The number of astronauts who have spent six months in orbit has doubled since 2004. On board the ISS, the astronauts use newly developed pharmaceutical countermeasure for bone loss (such as biophosphonates) and state-of-the-art exercise resistive devices against muscle atrophy and cardiovascular deterioration. The ISS life support systems now use advanced closed-loop systems for meeting the needs of a 6-person crew, including recycling urine to water. Some of these new technologies have potential spin-offs for medical (i.e., sedentary life style, obesity) and environmental issues here on Earth. And finally, there are new space research opportunities with the Orion space vehicle that will soon replace the Space Shuttle, the Moon, and Mars space exploration program that is slowly but surely taking shape, and the space tourism sector that has become a reality. The focus on this edition is the ISS, Orion and planetary exploration, and space tourism. This edition also includes more than 20% new material, along with photographs, data, and video clips for Springer Extras!
Today many scientists recognize plasma as the key element to understanding new observations in near-Earth, interplanetary, interstellar, and intergalactic space; in stars, galaxies, and clusters of galaxies, and throughout the observable universe. Physics of the Plasma Universe, 2nd Edition is an update of observations made across the entire cosmic electromagnetic spectrum over the two decades since the publication of the first edition. It addresses paradigm changing discoveries made by telescopes, planetary probes, satellites, and radio and space telescopes. The contents are the result of the author's 37 years research at Livermore and Los Alamos National Laboratories, and the U.S. Department of Energy. This book covers topics such as the large-scale structure and the filamentary universe; the formation of magnetic fields and galaxies, active galactic nuclei and quasars, the origin and abundance of light elements, star formation and the evolution of solar systems, and cosmic rays. Chapters 8 and 9 are based on the research of Professor Gerrit Verschuur, and reinvestigation of the manifestation of interstellar neutral hydrogen filaments from radio astronomical observations are given. Using data from the Green Bank 100-m telescope (GBT) of the National Radio Astronomy Observatory (NRAO), detailed information is presented for a non-cosmological origin for the cosmic microwave background quadruple moment. This volume is aimed at graduate students and researchers active in the areas of cosmic plasmas and space science. The supercomputer and experimental work was carried out within university, National laboratory, Department of Energy, and supporting NASA facilities.
Maintaining its appealing style and presentation, the Yearbook of Astronomy 2020 contains comprehensive jargon-free monthly sky notes and an authoritative set of sky charts to enable backyard astronomers and sky gazers everywhere to plan their viewing of the year's eclipses, comets, meteor showers and minor planets as well as detailing the phases of the Moon and visibility and locations of the planets throughout the year. To supplement all this is a variety of entertaining and informative articles, a feature for which the Yearbook of Astronomy is known. Presenting the reader with information on a wide range of topics, the articles for the 2020 edition include, among others, 200 Years of the Royal Astronomical Society; The Naming of Stars; Astronomical Sketching; Dark Matter and Galaxies; Eclipsing Binaries; The First Known Black Hole; and A Perspective on the Aboriginal View of the World. The Yearbook of Astronomy made its first appearance way back in 1962, shortly after the dawning of the Space Age. Now well into its sixth decade of production, the Yearbook is rapidly heading for its Diamond Jubilee edition in 2022. It continues to be essential reading for anyone lured and fascinated by the magic of astronomy and who has a desire to extend their knowledge of the Universe and the wonders it plays host to. The Yearbook of Astronomy is indeed an inspiration to amateur and professional astronomers alike, and warrants a place on the bookshelf of all sky watchers and stargazers.
The book is an up-to-date, concise presentation of the development of submillimeter-wave and far-infrared astrophysics. The topics range from the large-scale atomic and molecular distribution in the Galaxy and in external galaxies to the frontal properties of molecular clouds and the details of the star-formation process. A chapter on the most recent technical advances in the field illustrates the intimate connection and interplay between scientific advancement and technological capability. The book not only summarizes the advances in the field but also presents important background information, addressing experts and graduate students alike.
Cosmology has dramatically evolved during the last decade and there has been vast development of, e.g., theories of galaxy formation in connection with the early universe or gravitational lensing. These new developments motivated the editors to organize a school covering all of these ideas and observations in a pedagogical way. The topics covered in the 26 lectures of this summer school include: QSO absorption systems, identification of objects at high redshift, radiogalaxies, galaxy formation and evolution, galaxy number counts, clustering, theories of structure formation, large-scale structure and streaming motions, gravitational lensing, and spectrum and anisotropies of the cosmic microwave background radiation. Observational developments, data analysis, and theoretical aspects are equally treated.
In this book, the author leads the reader, step by step and without any advanced mathematics, to a clear understanding of the foundations of modern elementary particle physics and cosmology. He also addresses current and controversial questions on topics such as string theory. The book contains gentle introductions to the theories of special and general relativity, and also classical and quantum field theory. The essential aspects of these concepts are understood with the help of simple calculations; for example, the force of gravity as a consequence of the curvature of the space-time. Also treated are the Big Bang, dark matter and dark energy, as well as the presently known interactions of elementary particles: electrodynamics, the strong and the weak interactions including the Higgs boson. Finally, the book sketches as yet speculative theories: Grand Unification theories, supersymmetry, string theory and the idea of additional dimensions of space-time. Since no higher mathematical or physics expertise is required, the book is also suitable for college and university students at the beginning of their studies. Hobby astronomers and other science enthusiasts seeking a deeper insight than can be found in popular treatments will also appreciate this unique book.
Through examining the work of W. B. Yeats, James Joyce, and Samuel Beckett, Katherine Ebury shows cosmology had a considerable impact on modernist creative strategies, developing alternative reading models of difficult texts such as Finnegans Wake and 'The Trilogy'. |
![]() ![]() You may like...
Proceedings of the American Association…
Assoc for the Advancement of Science
Hardcover
R669
Discovery Miles 6 690
The American Ephemeris and Nautical…
United States Naval Observatory
Paperback
R585
Discovery Miles 5 850
Cosmic Perspective, The - Pearson New…
Jeffrey Bennett, Megan Donahue, …
Paperback
R2,518
Discovery Miles 25 180
|