![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > General
The Ninth Course of the International School of Cosmology and Gravita tion of the Ettore Majorana Centre for Scientific Culture is concerned with "Topological Properties and Global Structure of Space-Time." We consider this topic to possess great importance. Our choice has also been influenced by the fact that there are many quest ions as yet unre solved. Standard general relativity describes space-time as a four-dimensional pseudo-Riemannian manifold, but it does not prescribe its large-scale structure. Inorderto attempt answers to some topological questions, such as whether our universe is open or closed, whether it is orientable, and whether it is complete or possesses singularities, various theoretical approaches to global aspects of gravitational physics are presented here. As topological questions playa role in non-standard theories as weIl, it will be found that some of the lectures and seminar talks in this volume adopt the point of view of standard relativity, whereas others are based on different theories, such as Kaluza-Klein theories, bimetric theories, and supergravity. We have found it difficult to organize these papers into classes, say standard and non-standard theory, or models with and without singularities. One paper, by R. Reasenberg, is experimental. Its purpose was to give the theorists present an inkling of the opportunities, as weIl as the pitfalls, of experimental research in gravitational physics. Accordingly, we have arranged all contributions alphabetically, by first-named) author."
After pioneering this technology and growing the market, COMSAT fell prey to changes in government policy and to its own lack of entrepreneurial talent. The author explores the factors which contributed to this rise and fall of COMSAT.
This volume provides an overview of our current understanding of the physics related to: coronal structures and coronal heating; large-scale coronal shock waves and coronal mass ejections; particle beams in the solar corona and in the interplanetary medium; and explosive energy-release phenomena and particle acceleration. The different articles give a well-balanced presentation of relevant observations based upon various techniques, models and theories, providing a global view of these phenomena and of the underlying physics. In-situ measurements of particles and waves with ULYSSES and WIND and spectral and imaging data from SOHO and YOHKOH provide an unprecedented richness of relevant data. For their better understanding, radio observations - also included in this book - play a key role.
This volume brings together theoretical ideas on the plasma physics of both hot and dense plasmas in the solar atmosphere and similar physics applied to the tenuous and cooler plasmas found in the heliosphere. It is complemented by recent observations. Helioseismology covers the solar interior and the neutrino problem. Solar and stellar activity cycles are addressed. The dynamics of magnetic flux tubes in the solar atmosphere and material flows through the chromosphere into the upper atmosphere are comprehensively reviewed. Energy release processes and the production of energetic particles are important to understanding events in the solar atmosphere and to the dynamics of the tenuous heliosphere. A glimpse of the future is offered by concluding chapters on new ground-based and space instrumentation.
This book contains the proceedings of a workshop held in Schloss Ringberg to assess developments in molecular cloud research over the last 25 years, and to discuss trends for future research in the field of molecular line astronomy. The topics include the morphology, formation, and lifetimes of molecular clouds, and their relation to star formation. Also, the chemical and isotopic content of these clouds is reviewed, and comparisons with molecular clouds in external galaxies are made. This rather complete survey of this important field of research addresses researchers in astronomy and students alike."
Space exploration and advanced astronomy have dramatically expanded our knowledge of outer space and made it possible to study the indepth mechanisms underlying various natural phenomena caused by complex interaction of physical-chemical and dynamical processes in the universe. Huge breakthroughs in astrophysics and the planetary s- ences have led to increasingly complicated models of such media as giant molecular clouds giving birth to stars, protoplanetary accretion disks associated with the solar system's formation, planetary atmospheres and circumplanetary space. The creation of these models was promoted by the development of basic approaches in modern - chanics and physics paralleled by the great advancement in the computer sciences. As a result, numerous multidimensional non-stationary problems involving the analysis of evolutionary processes can be investigated using wide-range numerical experiments. Turbulence belongs to the most widespread and, at the same time, the most complicated natural phenomena, related to the origin and development of organized structures (- dies of different scale) at a definite flow regime of fluids in essentially non-linear - drodynamic systems. This is also one of the most complex and intriguing sections of the mechanics of fluids. The direct numerical modeling of turbulent flows encounters large mathematical difficulties, while the development of a general turbulence theory is hardly possible because of the complexity of interacting coherent structures. Three-dimensional non-steady motions arise in such a system under loss of la- nar flow stability defined by the critical value of the Reynolds number.
This is the first volume of a series on a regular up-to-date coverage of important developments in astronomy and astrophysics jointly published by ESO and Springer-Verlag. Here the reader finds a thorough review of the abundances of the elements up to Boron. Special emphasis is laid on primordial abundances of interest to cosmologists in particular, and on stellar production or destruction respectively. The articles written for researchers and graduate students cover theory and most recent data from telescope observations.
The most luminous compact objects are powered by accretion of mass. Accretion disks are the one common and fundamental element of these sources on widely different scales, ranging from close stellar binaries, galactic black holes and X-ray pulsars to active galactic nuclei (AGN). Key new developments in theory and observations, reviewed by experts in the field, are presented in this book. The contributions to the workshop cover the puzzles presented by the X-UV spectra of AGN and their variability, the recent numerical simulations of magnetic fields in disks, the remarkable behavior of the superluminal source 1915+105 and the "bursting pulsar" 1744-28, to mention a few of the topics.
When Isaac Newton died at 85 without a will on March 20, 1727, he left a mass of disorganized papers-upwards of 8 million words-that presented an immediate challenge to his heirs. Most of these writings, on subjects ranging from secret alchemical formulas to impassioned rejections of the Holy Trinity to notes and calculations on his core discoveries in calculus, universal gravitation, and optics, were summarily dismissed by his heirs as "not fit to be printed." Rabidly heretical, alchemically obsessed, and possibly even mad, the Newton presented in these papers threatened to undermine not just his personal reputation but the status of science itself. As a result, the private papers of the world's greatest scientist remained hidden to all but a select few for over two hundred years. In The Newton Papers, Sarah Dry divulges the story of how this secret archive finally came to light-and the complex and contradictory man it revealed. Covering a broad swath of history, Dry explores who controlled Newton's legacy, who helped uncover him, and what, finally, we know about him today, nearly three hundred years after his death. The Newton Papers presents the eclectic group of collectors, scholars, and scientists who were motivated to track down and collect Newton's private thoughts and obsessions, many of whom led extraordinary lives themselves-from economist John Maynard Keynes to Abraham Yahuda, a friend of Albert Einstein and key figure in the founding of Israel. The 300-year history of the disappearance, dispersal and eventual rediscovery of Newton's papers exposes how Newton has been made, and re-made, at the hands of unique and idiosyncratic individuals, reflecting the changing status of science over the centuries. A riveting and untold story, The Newton Papers reveals a man altogether stranger and more complicated than the genius of legend.
by Pedro Waloschek The following autobiographical account of Rolf Wideroee's life and work is based on manuscripts and letters written by hirnself, most ofthem especially for this report. Data from audio and video recordings with his illustrations and from my notes taken during aseries ofmeetings between the two ofus were also included. Rolf Wideroee gave me access to many of his publications and to other documents from which I have extracted further information. I have compiled, edited and, where necessary, put the texts in chronological order. These were then corrected and supplemented by Rolf Wideroee during the course of several readings. The English translation was also checked by Wideroee and we were able to add some improvements and corrections. This account there fore stands as an authorised biography and is written in the first person. Mrs. Wideroee's accurate memory was of great assistance. The emphasis has been on RolfWideroee's life story and the first developments which led to modem particle accelerators. Techni cal and scientific comments have been kept as comprehensive and concise as possible.
IAU Symposium 269 celebrates the 400th anniversary of Galileo Galilei's discovery of the Medicean Moons, Jupiter's four largest satellites, exploring the impact his findings have had on science and the humanities. Galileo's instrumental discovery and his belief that the planets and moons in our Solar System could be habitable worlds encouraged a deeper understanding of our place in the Universe. Today, ongoing space missions to Jupiter's moons, our own Moon, Mars, Saturn, and Enceladus, reveal our continued fascination with the possibilities of alien life, but this time with a focus on potential host sites for primitive life forms. These critical reviews examine our present knowledge of the Jupiter system, and consider how future space missions and improvements in telescopes will bolster the contemporary vision of our Solar System, of the many known extrasolar planetary systems, and of life forms beyond the Solar System.
Helio- and asteroseismology are fast- developing new fields of research that probe the internal structure of stars. The complicated multi-periodic oscillations are studied from both theoretical and observational points of view. Nine articles review the state of the art, including modeling the sun, excitations of oscillations, inverse problems, and the observations of seismic phenomena. One section is devoted to the seismology of stars, a field of research still in its very early development. In addition the reader will find about forty research papers on these subjects.
This book gives a synthesis of the state of the art in artificial intelligence in astronomy and astrophysics, presents its current applications and points out directions of future work. The individual chapters report on the application of artificial intelligence techniques for large astronomical surveys, for processing cosmic ray data, for facilitating data reduction using image processing systems, for telescope scheduling, for observatory ground support operations, for observation proposal preparation assistance, and for scientific applications such as stellar spectral and galaxy morphology classification. The new field of connectionism (neural networks) is also surveyed. The book is designed to be self-contained: a glossary of terms used in this area is provided and an index of terms, acronyms and proper names completes the book.
Leading experts give an overview of very low frequency radio astronomy. They present for the first time in a single conference the astrophysical need for and possible instrumentation for implementing ground-based, ground-to-space, space-based, and lunar-based observations. The papers cover a wide range of topics such as solar astronomy, planetary science, supernova remnants, pulsars, interstellar thermal material, interstellar plasma refraction and diffraction, cosmic rays, extragalactic radio galaxies and quasars, ancient "fossil" radio sources, and new, coherent emission mechanisms.
Satellite observations in various previously unexplored spectral regions have provided a host of data on novae over the last decade. This carefully refereed conference volume is devoted to classical novae and related objects. Around 30 papers discuss observations (basic properties of novae, outbursts, and nebular ejecta), theoretical considerations, and models of observations. In addition the reader will find an introductory review on binary stars by R.P. Kraft and a summary by P. Eggleton of the papers and posters presented at the conference. To help the reader in finding any specific subject or stellar object the volume concludes with a detailed index.
On March 28 and 29, 1969, at the occasion of the dedication of the European Southern Observatory, some 90 astronomers from all over the world gathered at the ESO headquarters at Santiago de Chile for discussing problems of the Magellanic Clouds. They came from Argentina, Australia, Chile, Mexico, South Mrica and the United States as well as from Europe; these latter, naturally, mostly from the member states ofESO. The choice of the subject was an obvious one. When erecting the European Southern Observatory as a joint effort in European astronomy, it was agreed from the beginning that the field of research should be the southern sky, so far hardly explored with large telescopes. Among the objects to be investigated, the Magellanic Clouds rank highest, together with the galactic centre region and the southern spiral structure. Being located ten times closer than the nearest large stellar systems accessible to northern observers, and containing a stellar population ranging in age from the oldest down of star formation, the Clouds provide an ideal laboratory for research on to the stage current problems in astrophysics. Yet, most of the northern observational astronomers were hardly acquainted with the Magellanic Clouds; naturally, they are used to think in terms of research projects that can be conducted at their observatories. A survey of the status of knowledge and research on the Clouds therefore appeared in order now that the first- medium size- telescopes of ESO came into operation.
Understanding the formation and evolution of early galaxies is one of the most challenging problems in modern astronomy. In this volume leading specialists describe observations of high and intermediate redshift galaxies as well as the deep survey activities. Further topics include cosmology, and modelling and computer simulations of galaxy formation. Thus the reader will find here a fairly complete picture of the state of the art in this active field of astrophysics research.
With the new era of 8-10 m telescopes the power to spectroscopically examine the light of fainter and more distant targets has taken a 'photon' leap. It is now becoming routinely possible to obtain high signal-to-noise spectra of very distant objects and to attempt the determination of their abundances. The motivation for a workshop on this topic could be summarized thus: Do we understand enough about chemical abundances at zero redshift to trust any conclusions on chem- ical evolution at high redshift? Given our observational background in gaseous nebulae, we thought at first in terms of a workshop largcly devoted to the inter- stellar medium. However, we were encouraged by Jacqueline Bergeron and Alvio Renzini to pitch the theme much wider. The members of the Scientific Organiz- ing Committee (Francoise Combes, Don Garnett, Guinevere Kauffmann, Claus Leitherer, Danny Lennon, Max Pettini, Peter Shaver, Elena Terlevich and David Tytler), under the chair of John Mathis, made sure that we kept the conference broad in scope. We thank them for their encouragement and advice. Informally the working title for the conference thus became "High and low Z from low to high z" (or Z@O
It is well known that stellar winds are variable, and the fluctuations are often cyclical in nature. This property seems to be shared by the winds of cool and hot stars, even though their outflows are driven by fundamentally different physical mechanisms. Since very similar models have been proposed to explain the cyclical wind variations observed in a wide variety of stars, the time was ripe for astrophysicists from many different sub-disciplines to present the state of the art in a concise form. The proceedings will provide a useful, up-to-date overview of the observations, interpretation, and modelling of the time-dependent mass outflows from all sorts of stars.
Jets are ubiquitous in the Universe, but ill-understood. Conservative books base their interpretations on focused stellar winds, ejected "bullets," black-hole central engines, and in-situ upgrading of electron energies via shocks. This volume, however, attempts a uniform interpretation of the bipolar-flow family, involving extremely relativistic pair plasma as the jet substance, and rotating magnets (possibly burning disks) as the central engines. Among the discussed sources are SS 433, YSO jets, planetary nebulae, our galactic center, and the class of extragalactic QSOs, both radio-loud and radio-quiet.
This book is based on the Proceedings of the 9th European Workshop on White Dwarfs, the most recent in a series of meetings which have become the most important events in this field. Many of the contributions, however, have been expanded considerably by the authors to include introductory material. This makes this volume a useful, up-to-date introduction into the present status of observations and theory of white dwarf stars.
The Hidden Hypotheses Behind the Big Bang It is quite unavoidable that many philosophical a priori assumptions lurk behind the debate between supporters of the Big Bang and the anti-BB camp. The same battle has been waged in physics between the determinists and the opposing viewpoint. Therefore, by way of introduction to this symposium, I would like to discuss, albeit briefly, the many "hypotheses", essentially of a metaphysical nature, which are often used without being clearly stated. The first hypothesis is the idea that the Universe has some origin, or origins. Opposing this is the idea that the Universe is eternal, essentially without beginning, no matter how it might change-the old Platonic system, opposed by an Aristote lian view! Or Pope Pius XII or Abbe Lemaitre or Friedmann versus Einstein or Hoyle or Segal, etc. The second hypothesis is the need for a "minimum of hypotheses" -the sim plicity argument. One is expected to account for all the observations with a mini mum number of hypotheses or assumptions. In other words, the idea is to "save the phenomena", and this has been an imperative since the time of Plato and Aristotle. But numerous contradictions have arisen between the hypotheses and the facts. This has led some scientists to introduce additional entities, such as the cosmologi cal constant, dark matter, galaxy mergers, complicated geometries, and even a rest mass for the photon. Some of the proponents of the latter idea were Einstein, de Broglie, Findlay-Freundlich, and later Vigier and myself.
This book gives both a comprehensive and detailed account of the
current theoretical and observational investigations of the radio
galaxy M87 in the Virgo cluster. A number of introductory chapters
provide a general overview, which makes the book accessible also to
non-specialists in the field.
The enormous advances in observational techniques over the last two decades has produced a wealth of data and unexpected discoveries which have helped to reshape astrophysics as a field with well-formulated theories and sophisticated numerical calculations. In nuclear particle physics, plasma physics, as well as in general relativity, the Universe has become a laboratory for cutting-edge research. The courses collected in the book are intended to provide students with this insight, giving a general background on each topic such as cosmic rays, nuclear and neutrino astrophysics, solar physics and strong fields, as well as a presentation of the current research and open problems. The book is aimed at graduate students in physics and astrophysics, as well as researchers, bridging a gap between the specialized reviews and the comprehensive books.
and In the IAU Symposium of 1979 devoted to interstellar molecules [8]. Excellent relevant monographs [ 9. 10] . related timely proceedings [ 11] . and recently published elementary textbooks [12. 13] further help to define the pedagogical scope of molecular astrophysics. A significant financial investment has been made in the establishment of ground- and satellite-based observationai facilities for molecuiar astrophysical studies. In the coming years. a wealth of experimental data is bound to accumulate. in which connection close interactions between observers. astrophysical modeliers. and molecular physicists and chemists can play a helpful role in analysis and interpretation. In view of the increasing pace of activity in the field of molecular astrophysics. and in the apparent absence of relevant international meetings since the Liege 1977 and IAU 1979 Symposia. it was deemed appropriate and timely by the organizers to hold a workshop in 1984. Consequently. the NATO Advanced Research Workshop. "Molecular Astrophysics State of the Art and Future Directions". was organized and held at Bad Wlndshelm. West Germany. from 8 to 14 July 1984. The choice of speakers and subject matter of the Workshop was largely subjective. but designed to include most of the generally accepted areas of molecular astrophysical study. Workers from the fields of radio. infrared. and uv-optlcal observations. astrophysical modelling. laboratory spectroscopy. reaction chemistry. collision physics. and theoretical molecular physics and chemistry. were Invited to present survey lectures In their areas of speciality. In addition. |
You may like...
|