Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Astronomy, space & time > General
This book will certainly be considered an important reference for astronomers and astrophysicists handling large amounts of data in observational and theoretical approaches to the large scale structures in the universe. The contributions are written with an emphasis on methods. The volume contains among many other topics recent observational results on redshift surveys of clusters and distributions of galaxies and quasars, together with articles on the importance of these findings for future standards and for theoretical predictions. A long historical chapter serves as an introduction. This mixture of textbook and review is aimed at the newcomer to the field as well as at the specialist. Graduate students will find it useful for additional reading.
In seven lectures of a pedagogical nature aimed at both researchers and graduate students the authors review important aspects of hadronic physics. The book contains a comprehensive review of recent experimental results obtained at the GSI collider. In particular, it covers chiral symmetry at finite temperature and statistical methods applied to relativistic heavy ion collisions and gives a detailed presentation of the astrophysics of strange quark matter.
This symposium was dedicated to science opportunities with the VLT. All major areas of astronomical research were discussed in the plenary sessions, ranging from where we stand in cosmology to the new frontiers in the solar system. The workshops published in this volume focussed on different ways of finding clusters of galaxies at high redshift, on gravitational lensing by distant compact clusters, on the use of stellar populations as distance, age or abundance indicators, and on the extraordinary progress made in the discovery of extrasolar planets. This book affords a glimpse of what will be at the center of astrophysical research in the forthcoming decade. It is addressed to researchers and graduate students.
The same kind of physics is frequently common to very different fields of Astrophysics, so experts in each of these fields have often much to learn from each others. It was therefore logical that the International Astronomical Union should sponsor a colloquium about an ion which pro duces many spectral lines that can be used as a diagnostic for many sorts of objects, and which may sometimes have a major influence on physical processes occurring in astro physical sources. The lines of singly ionized iron (FeII) are present in absorption and emission in the spectra of objects such as the Sun, cool stars, circumstellar envelopes of hot stars, novae, diffuse nebulae including the supernova remnants, and active galactic nuclei. These lines are very often formed far from LTE, and their interpretation is not easy in view of the complex Grotrian diagram for FeII, and the gaps in the knowledge of various physical parameters. In addition, the density of very strong FeII lines becomes very large in the ultraviolet, and the lines can play a major role in the line blanketing. They need therefore to be taken into account in any energy balance argument.
This is a definitive reference of 2,100 fundamental formulae used in astronomy and astrophysics. It not only makes accessible all the indispensable equations employed in the field, but also carefully explains the physical assumptions and constants underlying them. The bibliography contains more than 1,900 citations of original papers. Accounting for nearly 20 years since the previous edition, this volume is significantly revised and expanded.
Complete compendium on the physics and applications of telescope optics, underlying the original and oldest of astronomical instruments. Thoroughly scholarly work that provides both the historical perspective and the state-of-the-art technology, such as the 4-lens corrector of Delabre and the LADS corrector. Newly updated edition brings this authoritative work completely up to date.. From the reviews "... an unequalled reference for those who have interest in the field ... a unique reference in a superb presentation." ESO Messenger
The 14 papers in this collection discuss recent progress in areas such as mixing in stellar interiors, redistribution and loss of angular momentum, emphasizing in particular the effects of turbulence. An introductory review by E. Schatzman, to whom this volume is dedicated, is followed by three sections: observational facts (surface abundances, stellar rotation, loss of mass and angular momentum, etc.), physical knowledge (mass transport and mixing by waves, turbulent transport, fast dynamo action, etc.), and the interpretation of observations.
There is abundant evidence that essentially all luminous hot-star winds contain time-dependent and anisotropic structures. IAU Colloquium 169 was convened to review the observations of variability and asphericity, to discuss the physical processes that might cause such behavior and to look for evolutionary consequences. The topics included OBA stars, Be stars, Wolf-Rayet stars, Be stars, and luminous blue variables (LBVs). The role played by rotation in shaping the stellar wind was a recurrent theme. Photospheric pulsations and/or magnetic fields are particularly appealing mechanisms for triggering the formation of recurrent wind structures.
Observations with X-ray satellite ROSAT over the past 5 years have established supersoft X-ray sources as a new class of objects in our Galaxy and beyond. Optical follow-up observations have revealed the binary nature of several of them. Recent population synthesis calculations have shown that the number of such binaries is expected to be considerably larger than those of the common low- and high-mass X-ray binaries. This book provides the first comprehensive overview of the many recent observational discoveries and theoretical investigations. It describes relations between supersoft sources and other areas in astrophysics. This volume also comprises a complete catalog of presently known supersoft sources including a comprehensive bibliography of observational results.
This book contains the contributed papers and reviews from IAU Colloquium Number 114 on White Dwarfs held at Dartmouth College in August 1988. All the current fields of research in this area are covered including the evolution of white dwarfs, links to progenitors, luminosity functions of white dwarfs, evolution of white dwarfs in binaries, spectroscopy and atmospheric abundances, diffusion, accretion and convective mixing, the mass-radius relation, gravitational redshifts, masses of white dwarfs, and magnetic white dwarfs. Special emphasis has been placed on the intrinsic properties of single white dwarfs. All the articles are by internationally known authorities and contain the most up-to-date information available at the time of writing.
From June 7-9, 1995, the European Southern Observatory (ESO) and the Max Plank Institut fiir Astrophysik (MPA) jointly held the Workshop on Spiral Galaxies in the Near-IR. This meeting took place at the ESO headquarters in Garching bei Miinchen, Germany. The weather waschanging, with the biergarten closed, but that did not stop 85 people from allover the world from attending the meeting. The three days were intensive, with talks and coffee and posters from 9 am to 6 pm, and very productive indeed for everyone. The topics covered the stellar populations of the Milky Way and other more distant spirals, the role of dust, the dynamics of spiral galaxies, and the nuclear activity seen at near-IR wavelengths. This volume presents the original contributions from the participants, including several papers that review the state-of-the-art knowledge in these various subjects. The editors would like to thank first and foremost Christina Stoffer, for she took care of everything. The meeting would not have been so successful without her expertise and efficiency. We are deeply indebted to the directors of MPA and ESO Science, Simon White and Jacqueline Bergeron, for their support and encouragement. We would also like to thank the other members of the scientific organizing committee: R. Genzel, K. Freeman, A. Moorwood, S. White, M. Rieke and E. Athannasoula, for their advice with the organization of the program. We also thank G. Rieke, R. Genzel, L. Athannasoula, A. Renzini and R.
The proceedings of this workshop should probably be prefaced with a few words on some of the more confusing jargon. The phrases "Very Low-Mass star" , "VLM star", or simply "VLM" are now used fairly uniformly by as tronomers studying the stars at the bottom of the hydrogen-burning stellar main sequence - unfortunately, however, there is no clear definition as to what constitutes a VLM star. The reader should be warned that VLM stars are variously considered to be stars with; masses less than 0.3M ; masses 0 less than 0.1M ; spectra later than about M6-7; luminosities fainter than 0 Mv = 15; or luminosities fainter than Mbol = 12. The important features of a VLM star, however, would seem to be (1) that it is about as faint as a star can be, and (2) that it still remains a star (ie. it still burns hydrogen) . All of the above criteria, therefore, would seem to qualify an object as a VLM star, and requiring a more stringent definition is probably quibbling.
This volume summarizes recent developments in our understanding of active galactic nuclei, including quasars, seyfert galaxies and radio galaxies. The predominant emphasis is put on observational results with information from essentially all wave bands, but important theoretical results are also presented. Among the contributions are discussions of the different types of active galaxies, the nature of the central engine, the wiggly structure of radio jets, the dynamics of the gas in jets, the study of millimeter and extreme ultraviolet regions, and a discussion of the observed continuum of the entire electromagnetic spectrum. The intended readers are professional astronomers and astrophysicists as well as graduate students in this field of research.
This book is a study of the astronomical culture of sixteenth-century Europe. It examines, in particular, the ways in which members of the nascent international astronomical community shared information, attracted patronage and respect for their work, and conducted their disputes. Particular attention is paid to the Danish astronomer Tycho Brahe (1546-1601), known for his observatory Uraniborg on the island of Hven, his operation of a printing press, and his development of a third world-system to rival those of Ptolemy and Copernicus. Adam Mosley examines the ways in which Tycho interacted with a Europe-wide network of scholars, looking not only at how he constructed his reputation through print, but also at his use of correspondence and the role that instruments played as vehicles for data and theories. The book will be of interest to historians of science, historians of the book, and historians of early modern culture in general.
This book explains why scientists believe that life may be more common in the Universe than previously considered possible. It presents the tools and strategies astronomers and astrobiologists are using in their formal search for habitable exoplanets as well as more advanced forms of life in other parts of our galaxy. The author then summarizes what is currently known about how and where organic molecules critical to our form of carbon-based life are manufactured. The core of the book explains (and presents educated guesses) how nervous systems evolved on Earth, how they work, and how they might work on other worlds. Combining his knowledge of neuroscience, computers, and astrobiology the author jumps into the discussion whether biological nervous systems are just the first step in the rise of intelligence in the Universe. The book ends with a description from both the psychologist's and the neuroscientist's viewpoints, exactly what it is about the fields of astrobiology and astronomy that "boggles the minds" of many amateur astronomers and interested non-scientists. This book stands out from other popular science books on astrobiology by making the point that "astro-neurobiologists" need to begin thinking about how alien nervous systems might work.
"A fitting biography of one of the most brilliant, acerbic, and under-appreciated astrophysicists of the twentieth century. John Johnson has delved deeply into a rich and eventful life, and produced a rollicking account of how Fritz Zwicky split his time between picking fights with his colleagues and discovering amazing things about our universe."-Sean Carroll, author of The Big Picture Fritz Zwicky was one of the most inventive and iconoclastic scientists of his time. He predicted the existence of neutron stars, and his research pointed the way toward the discovery of pulsars and black holes. He was the first to conceive of the existence of dark matter, the first to make a detailed catalog of thousands of galaxies, and the first to correctly suggest that cosmic rays originate from supernovas. Not content to confine his discoveries to the heavens, Zwicky contributed to the United States war against Japan with inventions in jet propulsion that enabled aircraft to launch from carriers in the Pacific. After the war, he was the first Western scientist to interview Wernher von Braun, the Nazi engineer who developed the V-2 rocket. Later he became an outspoken advocate for space exploration, but also tangled with almost every leading scientist of the time, from Edwin Hubble and Richard Feynman to J. Robert Oppenheimer and Subrahmanyan Chandrasekhar. In Zwicky, John Johnson, Jr., brings this tempestuous maverick to life. Zwicky not only made groundbreaking contributions to science and engineering; he rose to fame as one of the most imaginative science popularizers of his day. Yet he became a pariah in the scientific community, denouncing his enemies, real and imagined, as "spherical bastards" and "horses' asses." Largely forgotten today, Zwicky deserves rediscovery for introducing some of the most destructive forces in the universe, and as a reminder that genius obeys no rules and has no friends.
Fred Hoyle was a remarkable scientist, and made an immense contribution to solving many important problems in astronomy. Several of his obituaries commented that he had made more influence on the course of astrophysics and cosmology in the second half of the twentieth century than any other person. This book found its basis in a meeting that was held in recognition of his work, and contains chapters by many of Hoyle's scientific collaborators. Each chapter reviews an aspect of Fred Hoyle's work; many of the subjects remain of key relevance. The chapters are not confined to the discoveries of Hoyle's own time, but also discuss research areas that were formed out of his pioneering work, particularly on the interstellar medium and star formation, the structure of stars, nucleosynthesis, gravitational dynamics, and cosmology. This wide-ranging overview will be valuable to established researchers in astrophysics and cosmology, and also to professional historians of science.
"Proceedings of the 3rd China Satellite Navigation Conference (CSNC2012)" presents selected research papers from CSNC2012, held on 15-19 May in Guanzhou, China. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou system especially. They are divided into 9 topics to match the corresponding sessions in CSNC2012, which broadly covered key topics in GNSS. Readers can learn about the BeiDou system and keep abreast of the latest advances in GNSS techniques and applications. SUN Jiadong is the Chief Designer of the Compass/BeiDou system, and the Academician of Chinese Academy of Sciences; LIU Jingnan is a professor at Wuhan University, and the Academician of Chinese Academy of Engineering; YANG Yuanxi is a professor at China National Administration of GNSS and Applications, and the Academician of Chinese Academy of Sciences; FAN Shiwei is a researcher on satellite navigation.
"Proceedings of the 3rd China Satellite Navigation Conference (CSNC2012)" presents selected research papers from CSNC2012, held on 15-19 May in Guanzhou, China. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou system especially. They are divided into 9 topics to match the corresponding sessions in CSNC2012, which broadly covered key topics in GNSS. Readers can learn about the BeiDou system and keep abreast of the latest advances in GNSS techniques and applications. SUN Jiadong is the Chief Designer of the Compass/BeiDou system, and the Academician of Chinese Academy of Sciences; LIU Jingnan is a professor at Wuhan University, and the Academician of Chinese Academy of Engineering; YANG Yuanxi is a professor at China National Administration of GNSS and Applications, and the Academician of Chinese Academy of Sciences; FAN Shiwei is a researcher on satellite navigation.
It is well known that stellar winds are variable, and the fluctuations are often cyclical in nature. This property seems to be shared by the winds of cool and hot stars, even though their outflows are driven by fundamentally different physical mechanisms. Since very similar models have been proposed to explain the cyclical wind variations observed in a wide variety of stars, the time was ripe for astrophysicists from many different sub-disciplines to present the state of the art in a concise form. The proceedings will provide a useful, up-to-date overview of the observations, interpretation, and modelling of the time-dependent mass outflows from all sorts of stars.
The next major step in millimetre astronomy, and one of the highest-priority items in radio astronomy today, is a large millimetre array with a collecting area 2 of up to 10 000 m . A project of this scale will almost certainly require inter national collaboration, at least within Europe, and possibly with other major partners elsewhere. In order to establish a focal point for this project within Europe, a study has been undertaken by the Institut de Radio Astronomie Mil Ii met rique (IRAM), the European Southern Observatory (ESO), The Onsala Space Observatory (OSO), and The Netherlands Foundation for Research in Astronomy (NFRA). In the context of this project, a workshop attended by some 100 participants was held at ESO Garching on December 11-13, 1995 to discuss the scientific advances such an array will make possible. Throughout the three days of the workshop the strong enthusiasm for the concept of a large millimetre array in the southern hemisphere (the Large South ern Array, or LSA) was obvious, and it became clear that such a facility would have a profound impact on almost all areas of observational astrophysics. It was particularly clear that, since their main science drivers (cosmology, and the origins of galaxies, stars and planets) are the same, and their angular resolutions and sensitivities similar, the LSA and the VLT would strongly complement each other.
With the new era of 8-10 m telescopes the power to spectroscopically examine the light of fainter and more distant targets has taken a 'photon' leap. It is now becoming routinely possible to obtain high signal-to-noise spectra of very distant objects and to attempt the determination of their abundances. The motivation for a workshop on this topic could be summarized thus: Do we understand enough about chemical abundances at zero redshift to trust any conclusions on chem- ical evolution at high redshift? Given our observational background in gaseous nebulae, we thought at first in terms of a workshop largcly devoted to the inter- stellar medium. However, we were encouraged by Jacqueline Bergeron and Alvio Renzini to pitch the theme much wider. The members of the Scientific Organiz- ing Committee (Francoise Combes, Don Garnett, Guinevere Kauffmann, Claus Leitherer, Danny Lennon, Max Pettini, Peter Shaver, Elena Terlevich and David Tytler), under the chair of John Mathis, made sure that we kept the conference broad in scope. We thank them for their encouragement and advice. Informally the working title for the conference thus became "High and low Z from low to high z" (or Z@O
'Fractal geometry addressesitselfto questions that many people have been asking themselves. It con cerns an aspect of Nature that almost everybody had been conscious of, but could not address in a formal fashion. ' 'Fractal geometry seems to be the proper language to describe the complezity of many very compli cated shapes around us. ' (Mandelbrot, 1990a) 'I believe that fractals respond to a profound un easiness in man. ' (Mandelbrot, 1990b) The catchword fractal, ever since it was coined by Mandelbrot (1975) to refer to a class of abstract mathematical objects that were already known at the turn ofthe 19th century, has found an unprecedented resonance both inside and outside the scientific community. Fractal concepts, far more than the concepts of catastrophe theory introduced a few years earlier, are currently being applied not only in the physical sciences, but also in biology and medicine (Goldberger and West 1987). In the mid-eighties, Kadanoff (1986) asked the question: 'Why all the fuss about /ractals' '. He offered a twofold answer: in the first place, it is 'because of the practical, technological importance of fractal objects'. Indeed he emphasised the relevance of these structures for materials scientists and oil drilling engineers, in search of structures with novel properties, or models for the flow of oil through the soil. His second answer was: 'Because of the intellectual interest of fractals '."
After pioneering this technology and growing the market, COMSAT fell prey to changes in government policy and to its own lack of entrepreneurial talent. The author explores the factors which contributed to this rise and fall of COMSAT. |
You may like...
Proceedings of the American Association…
Assoc for the Advancement of Science
Hardcover
R639
Discovery Miles 6 390
Cosmic Perspective, The - Pearson New…
Jeffrey Bennett, Megan Donahue, …
Paperback
R2,406
Discovery Miles 24 060
|