![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > General
In their search for solutions to problems concerning the dynamics of the Earth as a self-gravitating body, the authors have applied the fundamentals found in their book "Jacobi Dynamics" (1987, Reidel). First, satellite observations have shown that the Earth does not remain in hydrostatic equilibrium, which forms the physical basis of modern geodynamics. Secondly, satellite data have established a relationship between the planet's polar moment of inertia and the potential of the Earth's outer force field, which proves the most basic point of Jacobi dynamics. This allowed the authors to revise their derivation of the classical virial theorem, introducing the concept of a volumetric force and volumetric moment, and so to obtain a generalized virial theorem in the form of Jacobi's equation. The main dynamical effects are: the kinetic energy of oscillation of the interacting particles, which explains the physical meaning and nature of gravitational forces; separation of shells of a self-gravitating body with respect to its mass density; differences in angular velocities of the shell's rotation; continuity in variance of the potential of the outer gravitational force field, together with reductions in the envelope of the interacting masses (volumetric center of gravity); the nature of Earth, Moon and satellite precession; the nature and generating mechanism of the planet's electromagnetic field; the common nature of gravitational and electromagnetic energy, and other related issues. The work is a logical continuation of the book "Jacobi Dynamics" and is intended for researchers, teachers and students engaged in theoretical and experimental research in various branches of astronomy, geophysics, planetology and cosmogony, and for students of celestial, statistical, quantum and relativistic mechanics and hydrodynamics.
It is the stars, The stars above us, govern our conditions. William Shakespeare, King Lear A Few Words about What, Why and How The structure of the stars in general, and the Sun in particular, has been the subject of extensivescienti?cresearchanddebateforoveracentury.Thediscoveryofquantum theoryduringthe?rsthalfofthenineteenthcenturyprovidedmuchofthetheoretical background needed to understand the making of the stars and how they live off their energysource. Progress in the theoryof stellar structurewasmade through extensive discussions and controversies between the giants of the ?elds, as well as brilliant discoveries by astronomers. In this book, we shall carefully expose the building of the theory of stellar structure and evolution, and explain how our understanding of the stars has emerged from this background of incessant debate. About hundred years were required for astrophysics to answer the crucial ques tions: What is the energy source of the stars? How are the stars made? How do they evolve and eventually die? The answers to these questions have profound im plications for astrophysics, physics, and biology, and the question of how we our selves come to be here. While we already possess many of the answers, the theory of stellar structure is far from being complete, and there are many open questions, for example, concerning the mechanisms which trigger giant supernova explosions. Many internal hydrodynamic processes remain a mystery. Yet some global pictures can indeed be outlined, and this is what we shall attempt to do here.
StarGuides Plus represents the most comprehensive and accurately validated collection of practical data on organizations involved in astronomy, related space sciences and other related fields. This invaluable reference source (and its companion volume, StarBriefs Plus) should be on the reference shelf of every library, organization or individual with any interest in these areas. The coverage includes relevant universities, scientific committees, institutions, associations, societies, agencies, companies, bibliographic services, data centers, museums, dealers, distributors, funding organizations, journals, manufacturers, meteorological services, national norms & standard institutes, parent associations & societies, publishers, software producers & distributors, and so on. Besides astronomy and associated space sciences, related fields such as aeronautics, aeronomy, astronautics, atmospheric sciences, chemistry, communications, computer sciences, data processing, education, electronics, engineering, energetics, environment, geodesy, geophysics, information handling, management, mathematics, meteorology, optics, physics, remote sensing, and so on, are also covered where appropriate. After some thirty years in continuous compilation, verification and updating, StarGuides Plus currently gathers together some 6,000 entries from 100 countries. The information is presented in a clear, uncluttered manner for direct and easy use.
Astronomy and Astrophysics Abstracts, which has appeared in semi-annual volumes since 1969, is de voted to the recording, summarizing and indexing of astronomical publications throughout the world. It is prepared under the auspices of the International Astronomical Union (according to a resolution adopted at the 14th General Assembly in 1970). Astronomy and Astrophysics Abstracts aims to present a comprehensive documentation of literature in all fields of astronomy and astrophysics. Every effort will be made to ensure that the average time interval between the date of receipt of the original literature and publication of the abstracts will not exceed eight months: This time interval is near to that achieved by monthly abstracting journals, com pared to which our system of accumulating abstracts for about six months offers the advantage of greater convenience for the user. I, 1980; some older Volume 27 contains literature published in 1980 and received before August literature which was received late and which is not recorded in earlier volumes is also included. We acknowledge with thanks contributions to this volume by Dr. J. Bouska, Prague, who surveyed journals and publications in Czech and supplied us with abstracts in English.
This book is devoted to the scientific legacy of Professor Victor Ambartsumian - one of the distinguished scientists of the last century. He obtained very essential results not only in astrophysics, but also in mathematics and theoretical physics. One can recall his fundamental results concerning the Sturm-Liouville inverse problem, quantum field theory, structure of atomic nuclei etc. Nevertheless, his revolutionary ideas in astrophysics and corresponding results are known more widely and have predetermined the further development of this science. The concept about the activity phenomena and objects' evolution, particularly, determination of the age of our Galaxy, ideas about the stars' formation nowadays in stellar associations, the activity of galactic nuclei appeared to be exceptionally fruitful. These directions are being elaborated at many astronomical centers all over the world.
Astronomy and Astrophysics Abstracts aims to present a comprehensive documen tation of the literature concerning all aspects of astronomy, astrophysics, and their border fields. It is devoted to the recording, summarizing, and indexing of the relevant publications throughout the world. Astronomy and Astrophysics Abstracts is prepared by a special department of the Astronomisches Rechen-Institut under the auspices of the International Astronomical Union. Volume 34 records literature published in 1983 and received before February 17, 1984. Some older documents which we received late and which are not surveyed in earlier volumes are included too. We acknowledge with thanks contributions of our colleagues all over the world. We also express our gratitude to all organiza tions, observatories, and publishers which provide us with complimentary copies of their publications. Starting with Volume 33, all the recording, correction, and data processing work was done by means of computers. The recording was done by our technical staff members Ms. Helga Ballmann, Ms. Mona El-Choura and Ms. Monika Kohl. Mr. Martin Schlotelburg and Mr. Ulrich Oberall supported our task by careful proofreading. It is a pleasure to thank them all for their encouragement. Heidelberg, March 1984 The Editors Contents Introduction . . . . . . . . . . . . Concordance Relation: ICSU-AB-AAA 3 Abbreviations 10 Periodicals, Proceedings, Books, Activities 001 Periodicals . . . . . . . . . . . 15 002 Bibliographical Publications, Documentation, Catalogues, Atlases 50 003 Books ...... . 58 004 History of Astronomy 67 005 Biography . . 71 006 Personal Notes 73 007 Obituaries . . .
Are we living in the "golden age" of cosmology? Are we close to understanding the nature of the unknown ingredients of the currently most accepted cosmological model and the physics of the early Universe? Or are we instead approaching a paradigm shift? What is dark matter and does it exist? How is it distributed around galaxies and clusters? Is the scientific community open to alternative ideas that may prompt a new scientific revolution - as the Copernican revolution did in Galileo's time? Do other types of supernovae exist that can be of interest for cosmology? Why have quasars never been effectively used as standard candles? Can you tell us about the scientific adventure of COBE? How does the extraction of the Cosmic Microwave Background anisotropy depend on the subtraction of the various astrophysical foregrounds? These, among many others, are the astrophysical, philosophical and sociological questions surrounding modern cosmology and the scientific community that Mauro D'Onofrio and Carlo Burigana pose to some of the most prominent cosmologists of our time. Triggered by these questions and in the spirit of Galileo's book "Dialogue Concerning the Two Chief World Systems" the roughly 40 interview partners reply in the form of essays, with a critical frankness not normally found in reviews, monographs or textbooks.
Since the use of high-precision/resolution spectroscopy is closely connected to the ability to collect a large number of photons, the scientific domains using this technique benefit tremendously from the use of 8-meter class telescopes and will fully exploit the tremendous gain provided by future Extremely Large Telescopes (ELTs). This volume comprehensively covers the astrophysical and technical aspects of high-precision spectroscopy with an outlook to future developments.
The Adriatic Meetings have traditionally been conferences on the most - vanced status of science. They are one of the very few conferences in physics aiming at a very broad participation of young and experienced researchers with di?erent backgrounds in particle physics. Particle physics has grown into a highly multi-faceted discipline over the sixty years of its existence, mainly because of two reasons: Particle physics as an experimental science is in need of large-scale laboratory set-ups, involving typically collaborations of several hundreds or even thousands of researchers and technicians with the most diverse expertise. This forces particle physics, being one of the most fundamental dis- plines of physics, to maintain a constant interchange and contact with other disciplines, notably solid-state physics and laser physics, cosmology and - trophysics, mathematical physics and mathematics. Since the expertise necessary in doing research in particle physics has become tremendously demanding in the last years, the ?eld tends to organize purely expert conferences, meetings and summer schools, such as for detector development, for astroparticle physics or for string theory. TheAdriaticMeetingthroughitsentirehistoryhasbeenaplaceforest- lishing exchange between theory and experiment. The 9th Adriatic Meeting successfully continued this tradition and even intensi?ed the cross-discipline communication by establishing new contacts between the community of c- mologists and of particle physicists. The exchange between theorists and - perimentalists was impressively intensive and will certainly have a lasting e?ect on several research projects of the European and world-wide physics community.
Analyses of photometric time series obtained from the MOST, CoRoT and Kepler space missions were presented at the 20th conference on Stellar Pulsations (Granada, September 2011). These results are leading to a re-appraisal of our views on stellar pulsation in some stars and posing some new and unexpected challenges. The very important and exciting role played by innovative ground-based observational techniques, such as interferometric measurements of giant pulsating stars and high-resolution spectroscopy in the near infrared, is also discussed. These Proceedings are distinguished by the format of the conference, which brings together a variety of related but different topics not found in other meetings of this nature.
William Gascoigne (c.1612-44) was the inventor of the telescopic sight and micrometer (instruments crucial to the advance of astronomy). His name is now known to historians of science around the world. For some considerable time after his tragic death at the age of 32 in the English Civil War, however, it seemed as if his achievements would be consigned to oblivion. Most of his papers were lost and even the few that survived have largely disappeared. This is the story of how his work was rescued. Into this story is woven an account of the state of astronomy and optics during Gascoigne's lifetime, so that the reader can appreciate the significance of his discoveries.
A very attractive feature of the theory of general relativity is that it is a perfectexampleofa"falsi?able"theory:notunableparameterispresentinthe theory and therefore even a single experiment incompatible with a prediction of the theory would immediately lead to its inevitable rejection, at least in the physical regime of application of the aforementioned experiment. This fact provides additional scienti?c value to one of the boldest and most fascinating achievements of the human intellect ever, and motivates a wealth of e?orts in designing and implementing tests aimed at the falsi?cation of the theory. The ?rst historical test on the theory has been the de?ection of light gr- ing the solar surface (Eddington 1919): the compatibility of the theory with this ?rst experiment together with its ability to explain the magnitude of the perihelion advance of Mercury contributed strongly to boost acceptance and worldwideknowledge.However,technologicallimitations preventedphysicists from setting up more constraining tests for several decades after the formu- tion of the theory. In fact, a relevant problem with experimental general r- ativity is that the predicted deviations from the Newtonian theory of gravity areverysmallwhentheexperimentsarecarriedoutinterrestriallaboratories.
The Solar-B satellite was launched in the morning of 23 September 2006 (06:36 Japan time) by the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), and was renamed to Hinode ('sunrise' in Japanese). Hinode carries three - struments; the X-ray telescope (XRT), the EUV imaging spectrometer (EIS), and the solar optical telescope (SOT). These instruments were developed by ISAS/JAXA in cooperation with the National Astronomical Observatory of Japan as domestic partner, and NASA and the Science and Technology Facilities Council (UK) as international partners. ESA and N- wegian Space Center have been providing a downlink station. All the data taken with Hinode are open to everyone since May 2007. This volume combines the ?rst set of instrumental papers of the Hinode mission (the mission overview, EIS, XRT, and the database system) published in volume 243, Number 1 (June 2007), and the second set of papers (four papers on SOT and one paper on XRT) published in Volume 249, Number 2 (June 2008). Another SOT paper cited as Tarbell et al. (2008) in these papers will appear later in Solar Physics.
These workshop proceedings aim to provide a broad overview of recent developments in the study of hot stars, both from the observational and the theoretical point of view. Included are first results from the Hubble Space Telescope and ROSAT, the effects of non-radial pulsations, mass loss, magnetic fields, and diffusion, as well as modern theoretical methods to treat radiative transfer and compute model atmospheres. Many new results are described, including the discovery of a B star in the halo of M31. Together the reviews provide a general overview of hot-star spectroscopy suitable for preparing advanced lecture courses and as an introductory text for graduate students.
The book is the first thorough overview of the first important steps to develop a worldwide virtual observatory so that, in the future, it could be easier to "dial-up" a part of the sky than wait many months to access a telescope. The articles in this book present details on the status of the first efforts to develop a standardized framework for the virtual observatory, including steps towards completion and deployment of technical infrastructure, uptake by data providers worldwide, and utilization by the scientific community.
The subject of the book, the ubiquitous circumstellar disks around very young stars and the corresponding jets of outflowing matter, has recently become one of the hottest areas in astrophysics. The disks are thought to be precursors to planetary systems, and the outflows are thought to be a necessary phase in the formation of a young star, helping the star to get rid of angular momentum and energy as it makes its way onto the main sequence. The possible connections to planetary systems and stellar astrophysics makes these topics especially broad, appealing to generalists and specialists alike. The CD not only contains papers that could not be printed in the book but allows the authors to include a fair amount of data, often displayed as color images.
The book reviews methods for the analysis of astronomical datasets, particularly emphasizing very large databases arising from both existing and forthcoming projects, as well as current large-scale computer simulation studies. Leading experts give overviews of cutting-edge methods applicable in the area of astronomical data mining.
The book reviews the knowledge obtained from ground-based and space-borne solar flare research thus at the same time preparing for the forthcoming mission of the satellite Solar A which will be launched in 1991. Accordinglyone section is devoted to experiments on Solar A. The rest review both theory and observational facts to give a physically realistic picture of flares, including problems of magnetic flux emergence, high energy particles in flares, heating and flows in flares, and further problems of solar activity.
Today the methods of applied statistics have penetrated very different fields of knowledge, including the investigation oftexts ofvarious origins. These "texts" may be considered as signal sequences of different kinds, long genetic codes, graphic representations (which may be coded and represented by a "text"), as well as actual narrative texts (for example, historical chronicles, originals, documents, etc. ). One ofthe most important problems arising here is to recognize dependent text, i. e. , texts which have a measure of "resemblance", arising from some kind of "common origin". For instance, in pattern-recognition problems, it is essential to identify from a large set of "patterns" a pattern that is "closest" to a given one; in studying long signal sequences, it is important to recognize "homogeneous subsequences" and the places of their junction. This includes, in particular, the well-known change-point prob lern, which is given considerable attention in mathematical statistics and the theory of stochastic processes. As applied to the study of narrative texts, the problern of recognizing depen dent and independent texts ( e . g. , chronicles) Ieads to the problern offinding texts having a common source, i. e. , the sameoriginal (such texts are naturally called dependent), or, on the contrary, having different sources (such texts are natu rally called independent). Clearly, such problems are exceedingly complicated, and therefore the appearance of new empirico-statistical recognition methods which, along with the classical approaches, may prove useful in concrete studies (e. g. , source determination) is welcome.
Neither the formation process of "The First Stars" nor their existence in the present universe is known with any certainty. The authors of this volume address all open questions presenting an abundance of interesting data at the same time as giving a relatively exhaustive overview of our present-day knowledge. This covers research from spectroscopic observations, stellar evolutions, nucleosynthesis, structure and galaxy formation. The contributions shed new light on past views, often questioning traditional interpretations. Dealing with problems at the crossroads of cosmology, star formation and chemical evolution in stars, the book addresses astrophysicists and researchers, as well as graduate students. However, it should also be of interest to nuclear physicists and astrochemists.
Supernovae, their bearing on cosmology and their connection to gamma-ray bursts are now at the center of astrophysical research programs. This volume deals with astronomical observations of supernovae and their relation to nuclear and particle astrophysics. All known aspects of supernovae explosions are investigated in articles specifically written for researchers and advanced graduate students. It also includes recent numerical "experiments" related to the question of hydrodynamical instability in two and three dimensions and to problems concerning the complexity of radiation transport in the models. Other contributions discuss the possible energy sources needed to drive these powerful stellar explosions.
Proceedings of IAU Symposium No. 96 held in Kona, Hawaii, June 23-27, 1980
The contributions in this volume discuss the magnetic structures in the outer atmospheres of active late-type stars, and in particular the various methods available for imaging surface features on these objects. Emphasis has been laid upon multiwavelength studies of the phenomena and the application of solar astrophysics to stellar objects. The book is recommended to research workers or postgraduate students in stellar astrophysics.
Climate models show that climate change is not a uniform process. Areas of increased temperature are situated near areas of decreased temperature, areas with increased precipitation adjoin areas of drought. This is one of the reasons why climate change is so difficult to detect. Any parameter must be considered and tested locally or regionally and not on an average globally. This book gives an overview of current research methods and results in the different fields of climate research including modelling. In addition, it contains a hemisphere-wide stratigraphic data base with about 80000 species. All paleoclimatic data as well as a state-of-the-art atmospheric circulation model in a PC version are included. So both research and graduate teaching are supported with high-end software running on affordable computers, also in those countries that have no access to Cray super computers. Thus, this book will be of interest to all researchers and scientists in the field of climatology. |
You may like...
Best Books se gegradeerde leesreeks…
Mart Meij, Beatrix de Villiers
Paperback
R108
Discovery Miles 1 080
Skooluitgawe: Pad Na Jou Hart - 'n…
Ivan Botha, Donnalee Roberts
Paperback
R185
Discovery Miles 1 850
The American Ephemeris and Nautical…
United States Naval Observatory
Paperback
R753
Discovery Miles 7 530
Medical Understandings of Emotions in…
George Kazantzidis, Dimos Spatharas
Hardcover
R4,122
Discovery Miles 41 220
|