![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Galaxies, clusters, intergalactic matter > General
Distant galaxies encapsulate the various stages of galaxy evolution and formation from over 95% of the development of the universe. As early as twenty-five years ago, little was known about them, however since the first systematic survey was completed in the 1990s, increasing amounts of resources have been devoted to their discovery and research. This book summarises for the first time the numerous techniques used for observing, analysing, and understanding the evolution and formation of these distant galaxies.In this rapidly expanding research field, this text is an every-day companion handbook for graduate students and active researchers. It provides guidelines in sample selection, imaging, integrated spectroscopy and 3D spectroscopy, which help to avoid the numerous pitfalls of observational and analysis techniques in use in extragalactic astronomy. It also paves the way for establishing relations between fundamental properties of distant galaxies. At each step, the reader is assisted with numerous practical examples and ready-to-use methodology to help understand and analyse research.Francois Hammer worked initially in general relativity and made the first modelling of gravitational lenses prior to their spectroscopic confirmation. Following this, he became co-leader of the first complete survey of distant galaxies, the Canada-France-Redshift Survey. This led to the discovery of the strong decrease of the cosmic star formation density measured from UV light as z=1, which, alongside Hector Flores, they confirmed as bolometric and dust independent. With Mathieu Puech, they then pioneered the 3D spectroscopy of distant galaxies, leading to a major increase of understanding of the dynamic state of distant galaxies evidenced by the scatter of the Tully-Fisher relation. This led them to propose, with the addition to the team of Myriam Rodrigues, that galactic disks may survive or be rebuilt in gas-rich mergers, a scenario that is consistent with contemporary cosmological simulations. Besides extensive observational experience, the authors have led, or are leading, several instruments implemented or to be implemented at the largest telescopes, including VLT/Giraffe, VLT/X-shooter, VLT/MOONS and E-ELT/MOSAIC. They have also developed several observational techniques in adaptive optics, and in sky subtraction for integral field units and fibre instruments.
Since their first detection 15 years ago, radio recombination lines from several elements have been observed in a wide variety of objects including HII regions, planetary nebulae, molecular clouds, the diffuse interstellar medium, and recently, other galaxies. The observations span almost the entire range from 0.1 to 100 GHz, and employ both single djsh and aperture synthesis techniques. The theory of radio recombination lines has also advanced strongly, to the point where it is perhaps one of the best-understood in astro physics. In a parallel development, it has become possible over the last decade to study these same highly-excited atoms in the laboratory; this work provides further confirmation of the theoretical framework. However there has been continuing controversy over the astrophysical interpre tation of radio recombination line observations, especially regarding the role of stimulated emission. A workshop was held in Ottawa on 24-25 August, 1979, bringing together many of the active scientists to review the field and discuss these questions of interpretation. A broad concensus has emerged: the subtleties of the line-formation process are understood, and the conditions under which reliable in formation can easily be extracted from the line measurements are known. It thus appears likely that the emphasis will shift increasingly from the study of the line phenomenon itself to further application in other areas of astrophysics, ranging from physical processes in plasmas (temperatures, densities, ionization structure), to the large-scale properties of our galaxy (abundances, kinematics, structure), and studies of extragalactic systems."
Interstellar dust grains catalyse chemical reactions, absorb, scatter, polarise and re-radiate starlight and constitute the building blocks for the formation of planets. Understanding this interstellar component is therefore of primary importance in many areas of astronomy & astrophysics. For example, observers need to understand how dust effects light passing through molecular clouds. Astrophysicists wish to comprehend how dust enables the collapse of clouds or how it determines the spectral behaviour of protostars, star forming regions or whole galaxies. This book gives a thorough theoretical description of the fundamental physics of interstellar dust: its composition, morphology, size distribution, dynamics, optical and thermal properties, alignment, polarisation, scattering, radiation and spectral features. This encyclopedic book provides the basic physics towards understanding the solid matter in interstellar space. It includes all the necessary physics, including solid state physics, radiative transport, optical properties, thermodynamics, statistical mechanics and quantum mechanics. It then uses all of this basic physics in the specific case of dust grains in the interstellar medium. Interstellar dust clouds catalyze simple chemical reactions, absorbs, scatters, polarizes and re-radiates starlight and forms the building blocks for planet and stellar formation. Understanding this interstellar medium is then of primary importance in many areas of astronomy & astrophysics. For example observers need to understand how it effects light passing through dust and molecular clouds, astrophysicists need to comprehend the formation and structure of dust clouds and how it collapses to form stars and planets. Written in an accessible and descriptive manner, this will be essential supplementary reading for advanced undergraduate and graduate students taking courses on the interstellar medium and active researchers in need of a single source of well illustrated and detailed information.
This book serves as a good introduction to the physics of pulsars by explaining the subject matter in simple terms which are understandable to both undergraduate physics students and also the general public. On the Pulsar links together ideas about physics, informatics and biology, and contains many original examples, problems and solutions. It starts with simple examples about the regular structures that are possible in strong magnetic fields and the author then suggests that special conditions on the pulsar can result in some forms of self-organization. It will also make a valuable teaching guide.
Magnetic Fields play a key role in the physics of star formation on all scales: from the formation of the large complexes of molecular clouds to the formation of solar-like planetary systems. The plasma physics involved is non-linear and very complex, which requires the development of large numerical codes. An additional difficulty is that the detection and study of magnetic fields is not easy from an observational point of view, and therefore theoretical models cannot easily be constrained. In the week from April 21st to 25th in 2003, a meeting was held on the Campus of the Universidad Complutense de Madrid (Spain) to join theoretical and observational efforts to address these issues. The objective was to define a set of relevant problems for the physics of star formation that can be properly addressed with the current or near-future instruments. This book summarizes the results of this intensive week of work. The book is written in a comprehensive manner and reviews our current knowledge of the subject. It also represents an updated account of the ideas and thoughts of the scientists working in the field of Star Formation. The contributions are presented in six chapters which correspond to the six fundamental issues (sessions) on which the discussion was focused during the workshop: the physics of turbulence in the Interstellar Medium (ISM), the formation of structure in the ISM, the formation of stars within dense cores of molecular gas, the physics of accretion disks, the physics of outflows and their interaction with the ISM, and the interaction between the stellar magnetosphere and accretion disk. Each chapter starts with a comprehensive summary written by one of the editors, which includes input from the contributions as well as the editor's own thoughts on the subject. For all these reasons the book is well-suited as a primer to introduce graduate students in the richness of this field of research.
Distant galaxies encapsulate the various stages of galaxy evolution and formation from over 95% of the development of the universe. As early as twenty-five years ago, little was known about them, however since the first systematic survey was completed in the 1990s, increasing amounts of resources have been devoted to their discovery and research. This book summarises for the first time the numerous techniques used for observing, analysing, and understanding the evolution and formation of these distant galaxies.In this rapidly expanding research field, this text is an every-day companion handbook for graduate students and active researchers. It provides guidelines in sample selection, imaging, integrated spectroscopy and 3D spectroscopy, which help to avoid the numerous pitfalls of observational and analysis techniques in use in extragalactic astronomy. It also paves the way for establishing relations between fundamental properties of distant galaxies. At each step, the reader is assisted with numerous practical examples and ready-to-use methodology to help understand and analyse research.Francois Hammer worked initially in general relativity and made the first modelling of gravitational lenses prior to their spectroscopic confirmation. Following this, he became co-leader of the first complete survey of distant galaxies, the Canada-France-Redshift Survey. This led to the discovery of the strong decrease of the cosmic star formation density measured from UV light as z=1, which, alongside Hector Flores, they confirmed as bolometric and dust independent. With Mathieu Puech, they then pioneered the 3D spectroscopy of distant galaxies, leading to a major increase of understanding of the dynamic state of distant galaxies evidenced by the scatter of the Tully-Fisher relation. This led them to propose, with the addition to the team of Myriam Rodrigues, that galactic disks may survive or be rebuilt in gas-rich mergers, a scenario that is consistent with contemporary cosmological simulations. Besides extensive observational experience, the authors have led, or are leading, several instruments implemented or to be implemented at the largest telescopes, including VLT/Giraffe, VLT/X-shooter, VLT/MOONS and E-ELT/MOSAIC. They have also developed several observational techniques in adaptive optics, and in sky subtraction for integral field units and fibre instruments.
The idea for organizing an Advanced Study Institute devoted largely to neutron star timing arose independently in three places, at Istanbul, Garching and Amster dam; when we became aware of each other's ideas we decided to join forces. The choice of a place for the Institute, in Turkey, appealed much to us all, and it was then quickly decided that Qe me would be an excellent spot. When the preparations for the Institute started, early in 1987, we could not have guessed how timely the subject actually was. Of course, the recently dis covered QPO phenomena in accreting neutron stars and half a dozen binary and millisecond radio pulsars known at the time formed one of the basic motivations for organizing this Institute. But none of us could have guessed that later in 1987 we were to witness the wonderful discovery of the binary and millisecond radio pulsars in globular clusters and, -as if Nature wished to give us a special present for this the discovery in March 1988 of a millisecond pulsar in an eclipsing binary Institu- system, the first eclipsing radio pulsar ever found, and the second fastest in the sky The discussion of this pulsar, its formation and fate was one of the highlights of this meeting, especially since its discoverers were among the participants of the Institute and could provide us with first-hand information."
Clusters and superclusters of galaxies are the largest objects in the Universe and are the subject of intense observational study at a variety of wavelengths, from radio to X-ray which has provoked much theoretical debate and advanced the understanding of the recent evolution of the large-scale structure the universe. The subject is reviewed in this volume by researchers who lectured at a NATO Advanced Study Institute held in Cambridge in July 1991. Much of the material is presented in a pedagogical manner and should be useful to scientists, astronomers and graduate students interested in extragalactic astronomy.
Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.
Shot with ultra-high definition cameras, this book of amazing photographs showcases a period of unusually high solar activity in the Northern Lights. The northern lights, also known as the aurora borealis, put on remarkable shows of light and motion in high latitudes - Alaska being the perfect place to see them. These new photos take full advantage of the latest advances in photographic technology and especially active solar storms of the past several years that cause the lights. With 160 images that have never been collected in book form, we are witnessing the interaction of charged particles in the earth's atmosphere clash with electrons and protons released by the sun. Photographers Calvin Hall and Daryl Pederson are dedicated aurora borealis hunters, enduring frigid nights in remote locations to get the best shots. The results are amazing.
This research monograph presents a new dynamical framework for the study of secular morphological evolution of galaxies along the Hubble sequence. Classical approaches based on Boltzmann's kinetic equation, as well as on its moment-equation descendants the Euler and Navier-Stokes fluid equations, are inadequate for treating the maintenance and long-term evolution of systems containing self-organized structures such as galactic density-wave modes. A global and synthetic approach, incorporating correlated fluctuations of the constituent particles during a nonequilibrium phase transition, is adopted to supplement the continuum treatment. The cutting-edge research combining analytical, N-body simulational, and observational aspects, as well as the fundamental-physics connections it provides, make this work a valuable reference for researchers and graduate students in astronomy, astrophysics, cosmology, many-body physics, complexity theory, and other related fields. Contents Dynamical Drivers of Galaxy Evolution N-Body Simulations of Galaxy Evolution Astrophysical Implications of the Dynamical Theory Putting It All Together Concluding Remarks Appendix: Relation to Kinetics and Fluid Mechanics
Most galaxies are in clusters, where tidal interactions are not uncommon. Tidal and dynamical interaction in galaxies are of importance in studying evolution. A large amount of data has been collected on dust-lane ellipticals, polar ring galaxies, spirals with extended warps, and galaxies with inclined HI rings or unusual 'tails'. This book is a record of a meeting which was held at the University of Pittsburgh. It provided an informal, yet focused environment for the interaction of astronomers who have addressed these questions with a wide variety of skills, techniques and points of view.
The successful launch on November 17, 1995 of ESA's Infrared Space Observatory (ISO) by means of an Ariane 4 carrier, has set in motion a true revolution in quantitative infrared astronomy. For the first time since the very successful IRAS mission in 1983, the astronomical community has uninterrupted access to the infrared part of the electromagnetic spectrum. The four focal plane instruments on board of ISO ( the camera ISOCAM, the photometerjcamera ISOPHOT, and the short and long wavelength spec trographs ISO-SWS and ISO-LWS), perform very well and live up to the high expectations all of us had at launch. In the spring of 1996, Thijs de Graauw (principal investigator of the SWS) first suggested the idea to organize a conference dedicated to ISO re sults in the area of stars and circumstellar matter, and coined the title ISO 's View on Stellar Evolution. At the first scientific meeting to highlight some of the early ISO results which was held in May of 1996 at ESA's laboratory ESTEC in Noordwijk, the Netherlands, the conference was announced and a preliminary science organizing committee was formed. The conference was held from July 1 to 4, 1997, in conference centre de Leeuwenhorst, Noord wijkerhout, the Netherlands. The conference was opened by the Director of ESA 's Science Programme, Professor R. Bonnet."
Spacecraft have explored the interplanetary medium between the orbits of Mercury and Pluto, revealing the exotic and beautiful nature of the environment of our planet and sun. This book summarizes the principle results of these historic expeditions. Magnetohydrodynamics provides the framework for interpreting the observations, and the observations have greatly enriched the subject of magnetohydrodynamics. Numerous figures in the book illustrate the essential observations and fundamental concepts. Simple equations summarize basic physical and phenomenological relations observed in the interplanetary medium. Fundamental objects observed in the interplanetary medium include various types of MHD shocks, tangenital and rotational discontinuities, and force-free field configurations. Fundamental processes observed in the interplanetary medium include the interaction among shocks (which can be classified using catastrophic theory), the formation of merged interaction region regions associated with various types of flows, the destruction of flows, the growth of the Kelvin-Helmholtz instability and formation of a heliospheric vortex street, the development of multifractal fluctuations on various scales, and the evolution of multifractal intermittent turbulence. These physical objects and processes are of fundamental interest in themselves. The knowledge about them derived from interplanetary investigations has applications to magnetospheric physics, solar physics, cosmic ray physics and astrophysics. The book contains an extensive set of reference that gives the readers access to the detailed results in the literature.
Black holes are one of the most remarkable predictions of Einstein's general relativity. In recent years, ideas in brane-world cosmology, string theory and gauge/gravity duality have motivated studies of black holes in more than four dimensions, with surprising results. In higher dimensions, black holes exist with exotic shapes and unusual dynamics. Edited by leading expert Gary Horowitz, this exciting book is the first devoted to this new field. The major discoveries are explained by the people who made them: Rob Myers describes the Myers-Perry solutions that represent rotating black holes in higher dimensions; Ruth Gregory describes the Gregory-Laflamme instability of black strings; and Juan Maldacena introduces gauge/gravity duality, the remarkable correspondence that relates a gravitational theory to nongravitational physics. Accessible to anyone with a standard course in general relativity, this is an important resource for graduate students and researchers in general relativity, string theory and high energy physics.
Expert science writer Giles Sparrow guides you through 21 stars you can see in the night sky and what they can teach us about our universe. On a clear evening, if you look up you can see thousands of stars shining in the dark sky, each with a story of their own. Taking 21 stars (and three imposters, that cheekily aren't technically stars), expert science writer Giles Sparrow offers a complete introduction to what is happening up in the night sky. Sparrow draws 'star maps' to help you easily identify the celestial bodies and then explains (for anyone not an astronomer themselves) what this particular pinprick of light can tell us about the birth, life and death of our universe. From red giants, quasars and supernovae to black holes, multiple stars and even our own Sun, this fascinating book tells the intriguing, inspiring and sometimes incredible story of how we came to unravel the mysteries of the cosmos, and what we learnt along the way. So look up at the sky and marvel at its wonders with this exciting new book.
Following the 'Big Bang', it took the universe billions of years to evolve into the unique system of stars and planets that we know of today. Scientists have studied the planets of our solar system for centuries, and are beginning to understand the billions of stars and other bodies that make up the Universe. Stars and Planets is an ideal reference book for anyone interested in astronomy, featuring 300 of the most well known stars, planets, moons, constellations and other cosmological phenomena, such as black holes and quasars. Each entry includes an image - either a photograph or an artist's impression or diagram - and a key information table including specifications such as the mass, radius, surface temperature, distance from sun, gravity and major elements of each object. Presented in a handy, pocket-size format, full of facts and engaging text, Stars and Planets is a valuable reference source as well as a fascinating read, revealing the spectacular world of the Cosmos.
This book presents the status of research on very massive stars in the Universe. While it has been claimed that stars with over 100 solar masses existed in the very early Universe, recent studies have also discussed the existence and deaths of stars up to 300 solar masses in the local Universe. This represents a paradigm shift for the stellar upper-mass limit, which may have major implications far beyond the field of stellar physics. The book comprises 7 chapters, which describe this discipline and provide sufficient background and introductory content for graduate (PhD) students and researchers from different branches of astronomy to be able to enter this exciting new field of very massive stars.
This book presents in a simple style the success story of modern astrophysics - how the application of known physics to models of stars can, together with the observational data, help us understand what stars are made of, how they live and how they die. The account is non-technical but scientifically accurate. It is interspersed with anecdotes and analogies to make the subject matter readable and understandable even to a lay reader with some basic scientific background.
Proceedings of IAU Symposium No. 44 held in Uppsala, Sweden, August 10-14, 1970
More than two-thirds of stars belong to multiple stellar systems. Binary stars are considered now as one of the best constraints on stellar formation models. Not only do binaries keep memory of their birth conditions but their orbit will also be subjected to changes by tidal effects, wind accretion and encounters in clusters. Certainly the correlation between orbital eccentricity and period is a clue to our understanding of double star history. These proceedings aim to disentangle evidence of stellar formation from later physical evolution. Each article in this 1992 volume is a paper that was read at a meeting organized to honour Dr Roger Griffin of the University of Cambridge for his pioneer work in galactic astronomy, dynamics of clusters and study on binary stars due to his cross-correlation technique to determine stellar radial velocities.
Ongoing studies in mathematical depth, and inferences from
helioseismological' observations of the internal solar rotation
have shown up the limitations in our knowledge of the solar
interior and of our understanding of the solar dynamo, manifested
in particular by the sunspot cycle, the Maunder minimum, and solar
flares. This second edition retains the identical overall structure
as the first edition, but is designed so as to be self-contained
with the early chapters presenting the basic physics and
mathematics underlying cosmical magnetohydrodynamics, followed by
studies of the specific applications appropriate for a book devoted
to a central area in astrophysics.
Foundations of Astrophysics provides a contemporary and complete introduction to astrophysics for astronomy and physics majors. With a logical presentation and conceptual and quantitative end-of-chapter problems, the material is accessible to introductory astrophysics students taking a two-semester survey course. Starting with the motions of the solar system and a discussion of the interaction of matter and light, the authors explore the physical nature of objects in the solar system, and the exciting new field of exoplanets. The second half of their text covers stellar, galactic, and extragalactic astronomy, followed by a brief discussion of cosmology. This is a reissue of the original 2010 edition, which has established itself as one of the market-leading astrophysics texts, well known for its clarity and simplicity. It has introduced thousands of physical science students to the breadth of astronomy, and helped prepare them for more advanced studies.
Evolution of Stars and Stellar Populations is a comprehensive
presentation of the theory of stellar evolution and its application
to the study of stellar populations in galaxies. Taking a unique
approach to the subject, this self-contained text introduces first
the theory of stellar evolution in a clear and accessible manner,
with particular emphasis placed on explaining the evolution with
time of observable stellar properties, such as luminosities and
surface chemical abundances. This is followed by a detailed
presentation and discussion of a broad range of related techniques,
that are widely applied by researchers in the field to investigate
the formation and evolution of galaxies.
Embark on an awe-inspiring and informative journey through our Solar System and beyond in this illuminating astronomy book! Discover how big the Universe is, why our view of the sky is constantly changing, what came before the Big Bang, and so much more. 3, 2, 1, blast off! Inside the pages of this comprehensive guide to astronomy for beginners, you'll discover: - Simple text and step-by-step graphics make astronomy easy to understand - Fun facts and tip-of-the-tongue questions are presented through bite-sized factoids and question-and-answer features - Clear explanations demystifying more advanced topics such as cosmic rays, dark matter, and black hole collisions An out-of-this-world reference book about space that introduces you to the weird and wonderful world of astronomy and space exploration. From the structure of the Milky Way to the Earth's nearest celestial body, the Moon, How Space Works takes you on an unforgettable tour through the stars and galaxies, and to the furthest reaches of space! Answering all your burning questions about space, from ancient white dwarf stars to the Mars Rover, this visual guide explains the basics of astronomy through bold graphics and step-by-step artworks. It's the ultimate book for armchair astronomers and space-technology enthusiasts looking for reliable and up-to-date facts and explanations. DK's How Things Work series uses dynamic graphics and jargon-free text to explain the modern world simply and clearly. Packed with fascinating facts and stats, these visual guides cover everything from science to philosophy, making complex topics more accessible than ever before! |
![]() ![]() You may like...
Computational Intelligence, Optimization…
Gustavo Mendes Platt, Xin-She Yang, …
Hardcover
R3,059
Discovery Miles 30 590
Modeling, Dynamics, Optimization and…
Alberto A. Pinto, David Zilberman
Hardcover
R5,374
Discovery Miles 53 740
The Verilog (R) Hardware Description…
Donald E. Thomas, Philip R. Moorby
Hardcover
R3,710
Discovery Miles 37 100
Autophagy and Senescence in Cancer…
Paul B. Fisher, David A. Gewirtz
Hardcover
R4,825
Discovery Miles 48 250
Applied Scientific Computing - With…
Peter R. Turner, Thomas Arildsen, …
Hardcover
R1,626
Discovery Miles 16 260
Electronic Experiences in a Virtual Lab
Roberto Gastaldi, Giovanni Campardo
Hardcover
R3,035
Discovery Miles 30 350
Tree-based Heterogeneous FPGA…
Umer Farooq, Zied Marrakchi, …
Hardcover
R3,025
Discovery Miles 30 250
Introduction to Microlithography
Larry F. Thompson, C. Grant Willson, …
Hardcover
R5,171
Discovery Miles 51 710
Circadian Rhythms for Future Resilient…
Xinfei Guo, Mircea R Stan
Hardcover
R3,032
Discovery Miles 30 320
|