![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Galaxies, clusters, intergalactic matter > General
Take a look through the lens and discover the beauty and science of the magnificent night sky - and beyond! This stunningly-illustrated space book is split into eight sections that cover every aspect of astronomy. Learn about the history of discoveries in the field and astronomical phenomena, from the earliest human civilizations to the present day, and then take a lavish visual tour of the Solar System, complete with the most spectacular photographs of the planets. A magnificent month-by-month guide to the night sky, with profiles of all 88 constellations, over 100 star charts covering both the Northern and Southern Hemispheres, and an almanac of astronomical events over the next decade, Astronomy: A Visual Guide will help you to navigate your way around the night sky, and locate stars, galaxies, and other objects. Soar into the pages of this spectacular space book to reveal:
Also featuring no-nonsense advice on how to observe the skies using the naked eye, binoculars, and telescopes, Astronomy: A Visual Guide is the perfect guide for keen amateur astronomers, as well as a great reference book for the whole family.
This book addresses the mechanism of enrichment of heavy elements in galaxies, a long standing problem in astronomy. It mainly focuses on explaining the origin of heavy elements by performing state-of-the-art, high-resolution hydrodynamic simulations of dwarf galaxies. In this book, the author successfully develops a model of galactic chemodynamical evolution by means of which the neutron star mergers can be used to explain the observed abundance pattern of the heavy elements synthesized by the rapid neutron capture process, such as europium, gold, and uranium in the Local Group dwarf galaxies. The book argues that heavy elements are significant indicators of the evolutionary history of the early galaxies, and presents theoretical findings that open new avenues to understanding the formation and evolution of galaxies based on the abundance of heavy elements in metal-poor stars.
This book uses new data from the very low radio frequency telescope LOFAR to analyse the magnetic structure in the giant radio galaxy NGC6251. This analysis reveals that the magnetic field strength in the locality of this giant radio galaxy is an order of magnitude lower than in other comparable systems. Due to the observational limitations associated with capturing such huge astrophysical structures, giant radio galaxies are historically a poorly sampled population of objects; however, their preferential placement in the more rarefied regions of the cosmic web makes them a uniquely important probe of large-scale structures. In particular, the polarisation of the radio emissions from giant radio galaxies is one of the few tools available to us that can be used to measure magnetic fields in regions where the strength of those fields is a key differentiator for competing models of the origin of cosmic magnetism. Low frequency polarisation data are crucial for detailed analyses of magnetic structure, but they are also the most challenging type of observational data to work with. This book presents a beautifully coupled description of the technical and scientific analysis required to extract valuable information from such data and, as the new generation of low frequency radio telescopes reveals the larger population of giant radio galaxies, it offers a significant resource for future analyses.
This thesis presents a pioneering method for gleaning the maximum information from the deepest images of the far-infrared universe obtained with the Herschel satellite, reaching galaxies fainter by an order of magnitude than in previous studies. Using these high-quality measurements, the author first demonstrates that the vast majority of galaxy star formation did not take place in merger-driven starbursts over 90% of the history of the universe, which suggests that galaxy growth is instead dominated by a steady infall of matter. The author further demonstrates that massive galaxies suffer a gradual decline in their star formation activity, providing an alternative path for galaxies to stop star formation. One of the key unsolved questions in astrophysics is how galaxies acquired their mass in the course of cosmic time. In the standard theory, the merging of galaxies plays a major role in forming new stars. Then, old galaxies abruptly stop forming stars through an unknown process. Investigating this theory requires an unbiased measure of the star formation intensity of galaxies, which has been unavailable due to the dust obscuration of stellar light.
This book summarizes the research advances in star identification that the author's team has made over the past 10 years, systematically introducing the principles of star identification, general methods, key techniques and practicable algorithms. It also offers examples of hardware implementation and performance evaluation for the star identification algorithms. Star identification is the key step for celestial navigation and greatly improves the performance of star sensors, and as such the book include the fundamentals of star sensors and celestial navigation, the processing of the star catalog and star images, star identification using modified triangle algorithms, star identification using star patterns and using neural networks, rapid star tracking using star matching between adjacent frames, as well as implementation hardware and using performance tests for star identification. It is not only valuable as a reference book for star sensor designers and researchers working in pattern recognition and other related research fields, but also as teaching resource for senior postgraduate and graduate students majoring in information processing, computer science, artificial intelligence, aeronautics and astronautics, automation and instrumentation. Dr. Guangjun Zhang is a professor at the School of Instrumentation Science and Opto-electronics Engineering, Beihang University, China and also the Vice President of Beihang University, China
The zeta Aurigae stars are the rare but illustrious sub-group of binary stars that undergo the dramatic phenomenon of "chromospheric eclipse". This book provides detailed descriptions of the ten known systems, illustrates them richly with examples of new spectra, and places them in the context of stellar structure and evolution. Comprised of a large cool giant plus a small hot dwarf, these key eclipsing binaries reveal fascinating changes in their spectra very close to total eclipse, when the hot star shines through differing heights of the "chromosphere", or outer atmosphere, of the giant star. The phenomenon provides astrophysics with the means of analyzing the outer atmosphere of a giant star and how that material is shed into space. The physics of these critical events can be explained qualitatively, but it is more challenging to extract hard facts from the observations, and tough to model the chromosphere in any detail. The book offers current thinking on mechanisms for heating a star's chromosphere and on how a star loses mass, and relates this science synergistically to studies of other stars and binaries, and to the increasing relevance of contributions from new techniques in interferometry and asteroseismology. It also includes a detailed discussion of the enigmatic star epsilon Aurigae, which had recently undergone one of its very infrequent and very baffling eclipses. Though not a zeta Aurigae system, epsilon Aurigae is a true "Giant" among eclipsing stars. The 7 chapters of this book, written by a group of experts, have been carefully edited to form a coherent volume that offers a thorough overview of the subject to both professional and student.
With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as Uncertain . This book reports on how to use data mining, more specifically clustering, to identify galaxies that the public has shown some degree of uncertainty for as to whether they belong to one morphology type or another. The book shows the importance of transitions between different data mining techniques in an insightful workflow. It demonstrates that Clustering enables to identify discriminating features in the analysed data sets, adopting a novel feature selection algorithms called Incremental Feature Selection (IFS). The book shows the use of state-of-the-art classification techniques, Random Forests and Support Vector Machines to validate the acquired results. It is concluded that a vast majority of these galaxies are, in fact, of spiral morphology with a small subset potentially consisting of stars, elliptical galaxies or galaxies of other morphological variants."
Where do most stars (and the planetary systems that surround them) in the Milky Way form? What determines whether a young star cluster remains bound (such as an open or globular cluster), or disperses to join the field stars in the disc of the Galaxy? These questions not only impact understanding of the origins of stars and planetary systems like our own (and the potential for life to emerge that they represent), but also galaxy formation and evolution, and ultimately the story of star formation over cosmic time in the Universe. This volume will help readers understand our current views concerning the answers to these questions as well as frame new questions that will be answered by the European Space Agency's Gaia satellite that was launched in late 2013. The book contains the elaborated notes of lectures given at the 42nd Saas-Fee Advanced Course "Dynamics of Young Star Clusters & Associations" by Cathie Clarke (University of Cambridge) who presents the theory of star formation and dynamical evolution of stellar systems, Robert Mathieu (University of Wisconsin) who discusses the kinematics of star clusters and associations, and I. Neill Reid (S pace Telescope Science Institute) who provides an overview of the stellar populations in the Milky Way and speculates on from whence came the Sun. As part of the Saas-Fee Advanced Course Series, the book offers an in-depth introduction to the field serving as a starting point for Ph.D. research and as a reference work for professional astrophysicists.
This book contains the elaborated and updated versions of the 24 lectures given at the 43rd Saas-Fee Advanced Course. Written by four eminent scientists in the field, the book reviews the physical processes related to star formation, starting from cosmological down to galactic scales. It presents a detailed description of the interstellar medium and its link with the star formation. And it describes the main numerical computational techniques designed to solve the equations governing self-gravitating fluids used for modelling of galactic and extra-galactic systems. This book provides a unique framework which is needed to develop and improve the simulation techniques designed for understanding the formation and evolution of galaxies. Presented in an accessible manner it contains the present day state of knowledge of the field. It serves as an entry point and key reference to students and researchers in astronomy, cosmology, and physics.
Understanding the stars is the bedrock of modern astrophysics. Stars are the source of life. The chemical enrichment of our Milky Way and of the Universe withallelementsheavierthanlithiumoriginatesintheinteriorsofstars.Stars arethe tracersofthe dynamics ofthe Universe,gravitationallyimplying much more than meets the eye. Stars ionize the interstellar medium and re-ionized the early intergalactic medium. Understanding stellar structure and evolution is fundamental. While stellar structure and evolution are understood in general terms, we lack important physical ingredients, despite extensive research during recent decades.Classicalspectroscopy,photometry,astrometryandinterferometryof stars have traditionally been used as observational constraints to deduce the internal stellar physics. Unfortunately, these types of observations only allow the tuning of the basic common physics laws under stellar conditions with relatively poor precision. The situation is even more worrisome for unknown aspects of the physics and dynamics in stars. These are usually dealt with by using parameterised descriptions of, e.g., the treatments of convection, rotation,angularmomentumtransport,theequationofstate,atomicdi?usion andsettlingofelements,magneto-hydrodynamicalprocesses,andmore.There is a dearth of observational constraints on these processes, thus solar values areoftenassignedtothem.Yetitishardtoimaginethatonesetofparameters is appropriate for the vast range of stars.
This book consists of invited reviews on Galactic Bulges written by experts in the field. A central point of the book is that, while in the standard picture of galaxy formation a significant amount of the baryonic mass is expected to reside in classical bulges, the question what is the fraction of galaxies with no classical bulges in the local Universe has remained open. The most spectacular example of a galaxy with no significant classical bulge is the Milky Way. The reviews of this book attempt to clarify the role of the various types of bulges during the mass build-up of galaxies, based on morphology, kinematics and stellar populations and connecting their properties at low and high redshifts. The observed properties are compared with the predictions of the theoretical models, accounting for the many physical processes leading to the central mass concentration and their destruction in galaxies. This book serves as an entry point for PhD students and non-specialists and as a reference work for researchers in the field.
It has been known for a long time that stars are similar to our Sun. But it was only in 1810 that they were shown to be made of an incandescent gas. The chemical composition of this gas began to be determined in 1860. In 1940, it was demonstrated that the energy radiated by the stars is of thermonuclear origin. How stars form from interstellar matter and how they evolve and die was understood only recently, with our knowledge still incomplete. It was also realized recently that close double stars present a wide variety of extraordinary phenomena, which are far from being completely explored.This book explains all these aspects, and also discusses how the evolution of stars determine that of galaxies. The most interesting observations are illustrated by spectacular images, while the theory is explained as simply as possible, without however avoiding some mathematical or physical developments when they are necessary for a good understanding of what happens in stars. Without being a textbook for specialists, this book can be profitably read by students or amateurs possessing some basic scientific knowledge, who would like to be initiated in-depth to the fascinating world of stars.The author, an emeritus astronomer of the Paris Observatory, worked in various domains of astronomy connected with the subject of this book: interstellar matter and evolution of stars and galaxies. He directed the Marseilles observatory from 1983 to 1988 and served for fifteen years as Chief Editor of the professional European journal Astronomy & Astrophysics. He has written many articles and books about physics and astronomy at different levels.
This thesis brings together the various techniques of X-ray spectral analysis in order to examine the properties of black holes that vary in mass by several orders of magnitude. In all these systems it is widely accepted that the X-ray emission is produced by Compton up-scattering of lower energy seed photons in a hot corona or accretion flow, and here these processes are examined through a study of the X-ray spectral variability of each source. A new technique is introduced, in which models are fitted to over 2 million X-ray spectra on time-scales as short as 16 ms, and subsequently it is shown that the nature of the correlation between intensity and spectral index is strongly dependent upon the spectral state of the black hole. Finally, the results of an extensive survey of nearby galactic nuclei using the Chandra X-ray telescope are presented in the form of images and spectra, and these results are used along with data from the literature to search for Compton-thick nuclei.
This book, which is a reworked and updated version of Steven Bloemen's original PhD thesis, reports on several high-precision studies of compact variable stars. Its strength lies in the large variety of observational, theoretical and instrumentation techniques that are presented and used and paves the way towards new and detailed asteroseismic applications of single and binary subdwarf stars. Close binary stars are studied using high cadence spectroscopic datasets collected with state of the art electron multiplying CCDs and analysed using Doppler tomography visualization techniques. The work touches upon instrumentation, presenting the calibration of a new fast, multi-colour camera installed at the Mercator Telescope on La Palma. The thesis also includes theoretical work on the computation of the temperature range in which stellar oscillations can be driven in subdwarf B-stars. Finally, the highlight of the thesis is the measurement of velocities of stars using only photometric data from NASA's Kepler satellite. Doppler beaming causes stars to appear slightly brighter when they move towards us in their orbits, and this subtle effect can be seen in Kepler's brightness measurements. The thesis presents the first validation of such velocity measurements using independent spectroscopic measurements. Since the detection and validation of this Doppler beaming effect, it has been used in tens of studies to detect and characterize binary star systems, which are key calibrators in stellar astronomy.
This book provides a general introduction to the rapidly developing astrophysical frontier of stellar tidal disruption, but also details original thesis research on the subject. This work has shown that recoiling black holes can disrupt stars far outside a galactic nucleus, errors in the traditional literature have strongly overestimated the maximum luminosity of "deeply plunging" tidal disruptions, the precession of transient accretion disks can encode the spins of supermassive black holes, and much more. This work is based on but differs from the original thesis that was formally defended at Harvard, which received both the Roger Doxsey Award and the Chambliss Astronomy Achievement Student Award from the American Astronomical Society.
This book focuses on the stellar disk evolution and gas disk turbulence of the most numerous galaxies in the local Universe - the dwarf galaxies. The "outside-in" disk shrinking mode was established for a relatively large sample of dwarf galaxies for the first time, and this is in contrast to the "inside-out" disk growth mode found for spiral galaxies. Double exponential brightness profiles also correspond to double exponential stellar mass profiles for dwarf galaxies, which is again different from most spiral galaxies. The cool gas distribution in dwarf galaxies was probed with the spatial power spectra of hydrogen iodide (HI) gas emission, and provided indirect evidence that inner disks of dwarf galaxies have proportionally more cool gas than outer disks. The finding that no correlation exists between gas power spectral indices and star formation gave important constraints on the relation between turbulence and star formation in dwarf galaxies.
The term chemical evolution of galaxies refers to the evolution
of abundances of chemical species in galaxies, which is due to
nuclear processes occurring in stars and to gas flows into and out
of galaxies. This book deals with the chemical evolution of galaxies of all
morphological types (ellipticals, spirals and irregulars) and
stresses the importance of the star formation histories in
determining the properties of stellar populations in different
galaxies. The topic is approached in adidactical and logical manner
via galaxy evolution models which are compared with observational
results obtained in the last two decades: The reader is given an
introduction to the concept of chemical abundances and learns about
the main stellar populations in our Galaxy as well as about the
classification of galaxy types and their main observables. In the
core of the book, the construction and solution of chemical
evolution modelsare discussed in detail, followed by descriptions
and interpretations of observations of the chemical evolution of
the Milky Way, spheroidal galaxies, irregular galaxies and of
cosmic chemical evolution. The aim of this book is to provide an introduction to students as well as toamend our present ideas in research; the book also summarizes the efforts made by authors in the past several years in order tofurther future research in the field. "
Most stars appear to show some degree of magnetic activity. Varying magnetic fields show up in the familiar sun-spot cycle and in similar activity in other cool stars. Many hot stars carry steady magnetic fields stronger than the average solar field and are well described as oblique rotators. A similar model is applicable to the rapidly rotating, enormously dense neutron stars with their far stronger fields, observed as radio and X-ray pulsars. Galactic magnetic fields may play a crucial role in star formation, and in the spectacular behaviour in galactic nuclei. Cosmical magnetism in general is a rapidly developing field, and this book has grown out of the lifelong work of an outstanding researcher in the area. An authoritative account with broad astronomical scope, its thorough, careful and well-argued approach makes it a fine addition to the professional literature. Most of the important topics are treated in mathematical depth with references to other relevant literature. Some of the studies, especially those on accretion discs, dynamos, and winds, are applicable to galaxies and galactic nuclei. This book is sure to become an invaluable professional reference and guide to current thinking in the field. It will be of particular interest to graduate students, for whom it shows how the area has developed and indicates the many challenging research problems, some of which may soon yield their secrets to the emerging supercomputers.
Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book's emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpretations of such data, and an overview of the evolution of stars that brings them to an explosive endpoint. Part 2 goes into more detail on core-collapse and superluminous events: which kinds of stars produce them, and how do they do it? Part 3 is concerned with the stellar progenitors and explosion mechanisms of thermonuclear (Type Ia) supernovae. Part 4 is about consequences of supernovae and some applications to astrophysics and cosmology. References are provided in sufficient number to help the reader enter the literature.
This volume documents the contributions presented at the Seventh Scientific Meeting of the Spanish Astronomical Society (Sociedad Espanola de Astronomia, SEA). The event bought together 301 participants who presented 161 contributed talks and 120 posters, the greatest numbers up to now. The fact that most exciting items of the current astronomical research were addressed in the meeting proofs the good health of the SEA, a consolidated organization founded fifteen years ago in Barcelona. Two plenary sessions of the meeting were devoted to the approved entrance of Spain as a full member of the European Southern Observatory (ESO) and to the imminent first light of the greatest telescope in the world, the GTC (Gran Telescopio de Canarias), milestones that will certainly lead the Spanish Astronomy in the next future."
This book provides an introduction to the physics of interstellar gas in the Galaxy. It deals with the diffuse interstellar medium which supplies a complex environment for exploring the neutral gas content of a galaxy like the Milky Way and the techniques necessary for studying this non-stellar component. After an initial exposition of the phases of the interstellar medium and the role of gas in a spiral galaxy, the authors discuss the transition from atomic to molecular gas. They then consider basic radiative transfer and molecular spectroscopy with particular emphasis on the molecules useful for studying low-density molecular gas. Observational techniques for investigating the gas and the dust component of the diffuse interstellar medium throughout the electromagnetic spectrum are explored emphasizing results from the recent Herschel and Planck missions. A brief exposition on dust in the diffuse interstellar medium is followed by a discussion of molecular clouds in general and high-latitude molecular clouds in particular. Ways of calibrating CO observations with the molecular hydrogen content of a cloud are examined along with the dark molecular gas controversy. High-latitude molecular clouds are considered in detail as vehicles for applying the techniques developed in the book. Given the transient nature of diffuse and translucent molecular clouds, the role of turbulence in the origin and dynamics of these objects is examined in some detail. The book is targeted at graduate students or postdocs who are entering the field of interstellar medium studies.
This prize-winning Ph.D. thesis by Chris Harrison adopts a multi-faceted approach to address the lack of decisive observational evidence, utilising large observational data sets from several world-leading telescopes. Developing several novel observational techniques, Harrison demonstrated that energetic winds driven by Active Galactic Nuclei (AGN) are found in a large number of galaxies, with properties in agreement with model predictions. One of the key unsolved problems in astrophysics is understanding the influence of AGN, the sites of growing supermassive black holes, on the evolution of galaxies. Leading theoretical models predict that AGN drive energetic winds into galaxies, regulating the formation of stars. However, until now, we have lacked the decisive observational evidence to confirm or refute these key predictions. Careful selection of targets allowed Harrison, to reliably place these detailed observations into the context of the overall galaxy population. However, in disagreement with the model predictions, Harrison showed that AGN have little global effect on star formation in galaxies. Theoretical models are now left with the challenge of explaining these results.
Awarded the American Astronomical Society (AAS) Rodger Doxsey Travel Prize, and with a foreword by thesis supervisor Professor Shardha Jogee at the University of Texas at Austin, this thesis discusses one of the primary outstanding problems in extragalactic astronomy: how galaxies form and evolve. Galaxies consist of two fundamental kinds of structure: rotationally supported disks and spheroidal/triaxial structures supported by random stellar motions. Understanding the balance between these galaxy components is vital to comprehending the relative importance of the different mechanisms (galaxy collisions, gas accretion and internal secular processes) that assemble and shape galaxies. Using panchromatic imaging from some of the largest and deepest space-based galaxy surveys, an empirical census of galaxy structure is made for galaxies at different cosmic epochs and in environments spanning low to extremely high galaxy number densities. An important result of this work is that disk structures are far more prevalent in massive galaxies than previously thought. The associated challenges raised for contemporary theoretical models of galaxy formation are discussed. The method of galaxy structural decomposition is treated thoroughly since it is relevant for future studies of galaxy structure using next-generation facilities, like the James Webb Space Telescope and the ground-based Giant Magellan Telescope with adaptive optics.
This book deals with the astrophysics and spectroscopy of the interstellar molecules. In the introduction, overview and history of interstellar observations are described in order to help understanding how the modern astrophysics and molecular spectroscopy have been developed interactively. The recent progress in the study of this field is briefly summarized. Furthermore, the basic knowledge of molecular spectroscopy, which is essential to correctly comprehend the astrophysical observations, is presented in a compact form.
This volume contains the Proceedings of the Fifth Scientific Meeting of the Spanish Astronomical Society (Sociedad Espanola de Astronomfa, SEA). The meeting was held at the Universidad de Castilla La Mancha in Toledo, from September 9 to 13, 2002. The event brought together 219 participants who pre sented their latest results in many different subjects. In comparison with the previous scientific meetings of the Society, the numbers of oral talks and poster contributions (122 and 64, respectively) are rapidly increasing, confirming that the SEA conferences are becoming a point of reference to assess the interests and achievements of astrophysical research in Spain. During the meeting, the SEA made public the granting of the Prize to the Best Spanish Ph. D. Thesis in As tronomy and Astrophysics for the period 2000-2001 ex aequo to Dr. A. Zurita and Dr. E. Villaver. This is the second time that the SEA is awarding this prize, which aim is to encourage young spanish astrophysicists to pursue a high level scientific career. The Society is indebted to the Universidad de Castilla La Mancha, and, in particular, to the San Pedro Martir staff, for its hospitality. It is also indebted to the Local Organizing Committee for its dedication and the good atmosphere that prevailed at any moment, and to the Scientific Organizing Committee for its excel lent work." |
You may like...
HPLC Method Development for…
Satinder Ahuja, Henrik Rasmussen
Hardcover
R5,941
Discovery Miles 59 410
Analysis of Substances in the Gaseous…
E.Smolkova- Keulemansova, L. Feltl
Hardcover
R10,305
Discovery Miles 103 050
LC-MS/MS in Proteomics - Methods and…
Pedro R Cutillas, John F Timms
Hardcover
R4,270
Discovery Miles 42 700
Thin Layer Chromatography in…
Monika Waksmundzka-Hajnos, Joseph Sherma, …
Paperback
R1,556
Discovery Miles 15 560
High Resolution Separation and Analysis…
John N. Abelson, Melvin I. Simon
Hardcover
R3,809
Discovery Miles 38 090
|