Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Astronomy, space & time > Solar system > General
This book investigates Venus and Mercury prospective energy and material resources. It is a collection of topics related to exploration and utilization of these bodies. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists interested in current and impending Venus and Mercury related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in Venus and Mercury exploration and exploitation.
The inner magnetosphere plasma is a very unique composition of different plasma particles and waves. It covers a huge energy plasma range with spatial and time variations of many orders of magnitude. In such a situation, the kinetic approach is the key element, and the starting point of the theoretical description of this plasma phenomena which requires a dedicated book to this particular area of research.
Four hundred years after Kepler discovered his third law of planetary motion, disproving the Pythagorean notion of 'the music of the spheres', music was discovered in the Sun. With this discovery the science of helioseismology was born. Just as we can see the face of a foetus in the womb via ultrasound, and as bats can 'see' their way around using sonar, helioseismologists can now see inside the depths of the sun simply by listening to it. In The Music of the Sun, renowned helioseismologist William Chaplin tells the story of this discipline's origins and gives us invaluable insight into its implications - not only for better understanding the distant sun and stars - but for cosmology, particle physics, and the very relationship between the Sun and the Earth.
The book introduces the solar coronal mass ejection phenomena. This includes both those observed in the corona and those further from the Sun, known as interplanetary coronal mass ejections. We discuss the history and physics behind these phenomena, theories describing their launch and evolution, association with other solar eruptive phenomena, and methods employed for their detection and scientific data extraction. Instruments used for their study (past, present and future) are also discussed, along with their resulting space weather effects on Earth and other planets. The latter requires a description of the Earth 's magnetosphere, which is also included. Coronal Mass Ejections brings together solar physics, heliospheric physics, and magnetospheric physics, three traditionally separate fields of study. The content is accessible to beginning graduate students who are trying to master difficult fundamental concepts.
This book investigates the mineralogy and shock effects of Yanzhuang chondrite, using modern micro-mineralogical experimental techniques, including SEM, TEM, EPMA, Raman microprobe spectroscopy, instrumental neutron activation analysis, X-ray micro-diffraction analysis, micro-PIXE analysis and laser ablation ICP-MS. The micro-structural and micro-morphological characteristics as well as chemical composition of minerals were studied in details. Based on the studies in the shock effects of rocks and minerals, and the detailed study in the shock-produced melt, the book concludes that Yanzhuang chondrite is the most heavily shocked ordinary H group chondrite ever found and that it contains the most abundant shock induced melt among all known shock-melt-bearing chondritic meteorites.
The millimeter and sub-millimeter wavebands are unique in astronomy in containing several thousands of spectral lines of molecules as well as the thermal continuum spectrum of cold dust. They are the only bands in the electromagnetic spectrum in which we can detect the molecular gas reservoir for star formation and cold dust far away in high-redshift galaxies, and nearby in low-temperature cocoons of protostars and protoplanets. This book is based on and extensively updated from the lectures given during the Saas-Fee Advanced Course 38 on millimeter astronomy. It presents both the observing techniques and the scientific perspectives of observations at millimeter wavelengths, here in particular the star and planet formation. The chapters by Thomas L. Wilson and Stephane Guilloteau have been edited by Miroslava Dessauges-Zavadsky and Daniel Pfenniger. The book is part of the series of Saas-Fee Advanced Courses published since 1971. The targeted audience are graduate PhD and advanced undergraduate students, but the book also serves as reference for post-doctoral researchers or newcomers to the field.
Comet and Asteroid Impact Hazards explores the anticipated
consequences of comet and asteroid impact. It presents the first
computer simulations of the hazards of comet and asteroid
bombardment of a populated Earth. Previous estimates of fatality
and damage rates on the 100 to 10,000 year time scale are shown to
be too low because they neglect rare, highly lethal outriders of
the populations of bombarding objects, those with exceptional
strength, unusually low entry velocity, and near-horizontal entry
angles. This is the first realistic assessment of both the mean
casualty rate and the expected statistical fluctuations in that
rate. A breakdown of fatality and damage rates by impactor energy
and compositional class suggests lessons for both asteroid search
strategies and interdiction techniques. * Quantatively rigorous treatment of the state of impact hazard
prediction, including stuctural blast damage, firestorm ignition,
tsunami generation
This PhD thesis details the development of a new 1D ionospheric model to describe the upper atmospheres of extrasolar giant plants. The upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in rapid atmospheric escape. The composition and structure of these planets' upper atmospheres are affected by high-energy emissions from the host star. The nature of these emissions depends on the stellar type and age, making them important factors in understanding the behaviour of exoplanetary atmospheres.
Over the last fifteen years, space-based exploration of the solar system has increased dramatically, with more and more sophisticated orbiters and landers being sent to Mars. This intense period, rich in unprecedented scientific results, has led to immense progress in our perception of Mars and of its evolution over geological time. In parallel, advances in numerical simulations and laboratory experiments also shed new light on the geochemical evolution of the planet Mars. The ISSI-Europlanet Workshop entitled "Quantifying the Martian Geochemical Reservoirs" was held in Bern in April 2011 with the objective to create a diverse interdisciplinary forum composed of scientists directly involved in space-based exploration of the Martian surface, meteoriticists studying SNC meteorites, and planetary and/or Earth scientists simulating, numerically or experimentally, the physical and chemical processes occurring on or within Mars. The chapters of this book provide an overview of current knowledge of the past and present Martian geochemical reservoirs, from the accretionary history to the secondary alteration processes at the surface. In addition to the detailed description of data from Mars and the methods used to obtain them, the contributions also emphasize comparison with features on Earth, providing a perspective on the extent to which our knowledge of terrestrial systems influences interpretation of data from Mars. Areas that would benefit from future work and measurements are also identified, providing a view of the short-term and long-term future of the study of Mars. This collection of chapters constitutes a timely perspective on current knowledge and thinking concerning the geochemical evolution of Mars, providing context and a valuable reference point for even more exciting future discoveries. It is aimed at graduate students and researchers active in geochemistry and space science. Previously published in Space Science Reviews, Vol. 174/1-4, 2013.
The Earth has limited resources while the resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial bodies and their resources. This book investigates Outer Solar Systems and their prospective energy and material resources. It presents past missions and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great resource of condensed information for specialists interested in current and impending Outer Solar Systems related activities and a good starting point for space researchers, inventors, technologists and potential investors.
The origin and evolution of interplanetary dust have been extensively discussed ever since the 1960s when a series of meetings began which brought together the interplanetary dust community. More recently, during the 1980s, new knowledge has emerged from comprehensive studies of cometary flybys and from infrared space observations. At present new, in-situ explorations of interplanetary dust are providing some promising results. This work begins with investigations of interplanetary dust by space and Earth environment studies, by physics and chemical analysis, and by zodiacal light and optical studies. Topics related to cometary dust, meteoroids and meteor streams, and circumplanetary dust, which are indeed linked to the evolution of interplanetary dust, are then presented. Finally, the origin of interplanetary dust is tracked back to comets or asteroids and to interstellar or circumstellar dust. A summary demonstrates that interplanetary dust studies are thriving and may provide a clearer understadnign of the formation of the solar system.
Due to its specific chemical and physical properties, water is essential for life on Earth. And it is assumed that this would be the case for extraterrestrial life as well. Therefore it is important to investigate where water can be found in the Universe. Although there are places that are completely dry, places where the last rainfall happened probably several 100 million years ago, surprisingly this substance is quite omnipresent. In the outer solar system the large satellites of Jupiter and Saturn are covered by a thick layer of ice that could be hiding a liquid ocean below. This of course brings up the question of whether the recently detected extrasolar planets could have some water on their surfaces and how we can detect this. Water molecules are also found in interstellar gas and dust clouds. This book begins with an introductory chapter reviewing the physical and chemical properties of water. Then it illuminates the apparent connection between water and life. This is followed by chapters dealing with our current knowledge of water in the solar system, followed by a discussion concerning the potential presence and possible detection of water on exoplanets. The signature of water in interstellar space and stars are reviewed before the origin of water in the Universe is finally discussed. The book ends with an appendix on detection methods, satellite missions and astrophysical concepts touched upon in the main parts of the book. The search for water in the Universe is related to the search for extraterrestrial life and is of fundamental importance for astrophysics, astrobiology and other related topics. This book therefore addresses students and researchers in these fields.
The Sun is nowadays observed using di?erent techniques that provide an almost instantaneous 3-D map of its structure. Of particular interest is the studyofthevariabilityinthesolaroutputproducedbythedissipationofm- netic energy on di?erent spatial and temporal scales - the so-called magnetic activity. The 11-year cycle is the main feature describing this phenomenon. Apart from its intrinsic scienti?c interest, this topic is worth studying because of the interaction of such processes with the terrestrial environment. A ?eet of space and ground-based observatories are currently monitoring the behaviour of our star on a daily basis. However, solar activity varies not only on this decadal time-scale, as has been attested mainly through two methods: (a) records of the number of sunspots observed on the solar surface from 1610, and (b) the records of 14 10 cosmogenic isotopes, such as Cand Be, measured in tree-rings and i- cores, respectively. The study of the long-term behaviour of solar activity may be comp- mented by the study of historical accounts describing phenomena directly or indirectly related to solar activity. Numerous scienti?c and non-scienti?c d- uments have reported these events and we can make use of them as a proxy of solar activity in past times.
In The Earth as a Distant Planet, the authors become external observers of our solar system from a distance and try to determine how one can understand how Earth, the third in distance to the central star, is essentially unique and capable of sustaining life. The knowledge gained from this original perspective is then applied to the search for other planets outside the solar system, or exoplanets. Since the discovery in 1992 of the first exoplanet, the number of planet detections has increased exponentially and ambitious missions are already being planned for the future. The exploration of Earth and the rest of the rocky planets are Rosetta stones in classifying and understanding the multiplicity of planetary systems that exist in our galaxy. In time, statistics on the formation and evolution of exoplanets will be available and will provide vital information for solving some of the unanswered questions about the formation, as well as evolution of our own world and solar system. Special attention is paid to the biosignatures (signs of life) detectable in the Earth's reflected spectra and the search for life in the universe. The authors are experts on the subject of extrasolar planets. They provide an introductory but also very much up-to-date text, making this book suitable for researchers and for advanced students in astronomy and astrophysics.
Humans evolved when the Sun was in the great void of the Local Bubble. The Sun entered the present environment of interstellar clouds only during the late Quaternary. Astronomical data reveal these long and short term changes in our galactic environment. Theoretical models then tell us how these changes affect interplanetary particles, planetary magnetospheres, and the Earth itself. Cosmic rays leave an isotopic signature in the paleoclimate record that helps trace the solar journey through space. This volume lays the foundation for an interdisciplinary study of the influence of interstellar material on the solar system and Earth as we travel through the Milky Way Galaxy.
The central aim of the "Sunrise "project is to understand the structure and dynamics of the magnetic field in the solar atmosphere. The magnetic field is the source of solar activity, controls the space environment of the Earth and causes the variability of solar irradiance, which may be a significant driver of long-term changes of the terrestrial climate. Interacting with the convective plasma flow, the magnetic field in the solar photosphere develops intense field concentrations on scales below 100 km, which are crucial for the dynamics and energetics of the whole solar atmosphere. These spatial scales cannot be studied systematically from the ground because of image distortions due to atmospheric turbulence. The balloon-borne "Sunrise" telescope has, for the first time, provided measurements of the magnetic structure of the solar atmosphere on its intrinsic spatial and temporal scales. The book gives an overview about the instrumentation and the successful flight in 2009.
Based on extensive primary sources, many never previously translated into English, this is the definitive account of the discovery of Pallas as it went from being classified as a new planet to reclassification as the second of a previously unknown group of celestial objects. Cunningham, a dedicated scholar of asteroids, includes a large set of newly translated correspondence as well as the many scientific papers about Pallas in addition to sections of Schroeter's 1805 book on the subject. It was Olbers who discovered Pallas, in 1802, the second of many asteroids that would be officially identified as such. From the Gold Medal offered by the Paris Academy to solve the mystery of Pallas' gravitational perturbations to Gauss' Pallas Anagram, the asteroid remained a lingering mystery to leading thinkers of the time. Representing an intersection of science, mathematics, and philosophy, the puzzle of Pallas occupied the thoughts of an amazing panorama of intellectual giants in Europe in the early 1800s.
ESA's Venus Express Mission has monitored Venus since April 2006, and scientists worldwide have used mathematical models to investigate its atmosphere and model its circulation. This book summarizes recent work to explore and understand the climate of the planet through a research program under the auspices of the International Space Science Institute (ISSI) in Bern, Switzerland. Some of the unique elements that are discussed are the anomalies with Venus' surface temperature (the huge greenhouse effect causes the surface to rise to 460 DegreesC, without which would plummet as low as -40 DegreesC), its unusual lack of solar radiation (despite being closer to the Sun, Venus receives less solar radiation than Earth due to its dense cloud cover reflecting 76% back) and the juxtaposition of its atmosphere and planetary rotation (wind speeds can climb up to 200 m/s, much faster than Venus' sidereal day of 243 Earth-days).
This volume offers a comprehensive and integrated overview of our present knowledge and understanding of Coronal Mass Ejections (CMEs) and their descendants, Interplanetary CMEs (ICMEs). It results from a series of workshops held between 2000 and 2004. An international team of about sixty experimenters involved e.g. in the SOHO, ULYSSES, VOYAGER, PIONEER, HELIOS, WIND, IMP, and ACE missions, ground observers, and theoreticians worked jointly on interpreting the observations and developing new models for CME initiations, development, and interplanetary propagation. with an up-to-date status of the current understanding of CMEs and ICMEs and their effects in the heliosphere, and also to serve the advanced graduate student with introductory material on this active field of research.
Can we detect the moons of extrasolar planets? For two decades, astronomers have made enormous progress in the detection and characterisation of exoplanetary systems but the identification of an "exomoon" is notably absent. In this thesis, David Kipping shows how transiting planets may be used to infer the presence of exomoons through deviations in the time and duration of the planetary eclipses. A detailed account of the transit model, potential distortions, and timing techniques is covered before the analytic forms for the timing variations are derived. It is shown that habitable-zone exomoons above 0.2 Earth-masses are detectable with the Kepler space telescope using these new timing techniques.
Impact cratering is an important geological process on all solid planetary bodies, and, in the case of Earth, may have had major climatic and biological effects. Most terrestrial impact craters have been erased or modified beyond recognition. However, major impacts throw ejecta over large areas of the Earth's surface. Recognition of these impact ejecta layers can help fill in the gaps in the terrestrial cratering record and at the same time provide direct correlation between major impacts and other geological events, such as climatic changes and mass extinctions. This book provides the first summary of known distal impact ejecta layers
The joint NASA-ESA Cassini-Huygens mission to Saturn is the most ambitious planetary mission since the VEGA mission to Venus and Halley in 1985/86 and the Viking arbiters and landers to Mars in 1976. This volume describes the mission, the orbiter spacecraft, the Titan atmospheric probe and the mission design in articles written by its project scientists and engineering team. These are followed by five articles from each of the discipline working groups discussing the existing knowledge of the Saturnian system and their goals for the mission. Finally, each of the Huygens entry probe instrument teams describes their instruments and measurement objectives. These instruments include an atmospheric structure instrument, an aerosol pyrolyser, an imager/radiometer, a gas chromatograph, a surface science package and a radio science investigation. This book is of interest to all potential users of the Cassini-Huygens data, to those who wish to learn about the planned scientific return from the Cassini-Huygens mission and those curious about the processes occurring on this most fascinating planet.
This volume explores the cross-linkages between the kinetic processes and macroscopic phenomena in the solar atmosphere, which are at the heart of our current understanding of the heating of the closed and open corona and the acceleration of the solar wind. The focus lies on novel data, on theoretical models that have observable consequences through remote sensing, and on near-solar and inner-heliosphere observations, such as anticipated by the upcoming Solar Orbiter and Solar Probe missions, which are currently developed by the international community. This volume is aimed at students and researchers active in solar physics and space science. Previously published in Space Science Reviews journal, Vol. 172, Nos. 1-4, 2012.
The topics covered in this book include: Theory of Scattering and Scintillation, Distribution of Scattering Material, Intra-day Variability, Pulsars and their Magnetospheric Structure, Polarization of AGN, Interplanetary Scintillation, and Future Highly-Sensitive Radio Telescopes. The introductory papers emphasize the essential properties of diffractive and refractive scattering, how they differ in temporal and frequency structure, and what they reveal about irregularities in the ISM. Pulsars can be examined in a number of different ways as a function of frequency: time variability (both short and long term), DM changes, pulse broadening, angular extent, and Faraday rotation. Intra-day variable sources (IDVs) are another major topic of the book. Although many variable sources clearly exhibit intrinsic changes, IDVs are generally believed to result from scintillation effects. They require source sizes on the ten micro-arcsec scale, the most extreme cases having profound implications for source lifetimes and emission mechanisms. Finally, a dozen contributions describe future large radio telescope projects, especially the Chinese FAST effort to build a 500 m spherical reflector of innovative design.
This volume considers the role comets may have played in the origins and evolution of life. This is the only book dealing in depth with this subject. It is particularly relevant in light of recent investigations of Halley's comet, of new insights into organic synthesis in meteorites and comets, and of new results of numerical simulations of cometary orbits and impacts on Earth. The book is intended as a comprehensive review of current research. |
You may like...
Advanced Topics on Astrophysical and…
E. M. De Gouveia Dal Pino, Etc
Hardcover
R2,404
Discovery Miles 24 040
A Brief History Of Black Holes - And Why…
Dr. Becky Smethurst
Paperback
The Sun - Beginner's Guide To Our Local…
Dr. Ryan French, Royal Observatory Greenwich, …
Paperback
R194
Discovery Miles 1 940
Meteorites - The story of our solar…
Caroline Smith, Sara Russell, …
Paperback
Phase Diagrams for Geoscientists - An…
Tibor Gasparik
Hardcover
|