Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Astronomy, space & time > Solar system > General
The Physics of Solar and Stellar Coronae provides the first comprehensive summary of the physical processes and phenomena occurring in solar and stellar coronae as observed at X-ray and other wavelengths. The book provides an early summary of the spectacular new solar X-ray observations being obtained with the Yohkoh satellite that are dramatically changing our understanding of the dynamics of the solar corona. With the perspective of two years' observations at X-ray and extreme ultraviolet wavelengths by the ROSAT satellite, many authors present new insights into the basic physical processes occurring in the coronae of stars across the Hertzsprung--Russell Diagram including both pre-main sequence and post-main sequence stars. Detailed models for the hot plasmas typically contained in magnetic loops in both stellar and solar coronae are presented to explain X-ray data obtained with the earlier X-ray instruments on Skylab, SMM, Einstein, and EXOSAT. The book includes papers on coronal observations obtained at other wavelengths and papers of the history of Palermo Astronomical Observatory. The Physics of Solar and Stellar Coronae is intended for researchers in the fields of solar physics and stellar astrophysics and will be a useful resource book for graduate level astrophysics courses. (ABSTRACT) This is the first comprehensive summary of the physical processes and phenomena occurring in solar and stellar coronae. Spectacular new solar X-ray observations by the Yohkoh satellite and stellar observations by ROSAT are highlighted, together with theoretical papers and detailed analyses of earlier data from Skylab, SMM, Einstein, and EXOSAT. Included are papers on coronal observations at other wavelengths and on the history of Palermo Astronomical Observatory.
The conversion of energy generated in the Sun's interior creates its hot corona and a wealth of dynamical phenomena such as flares and mass ejections. Based on recent significant progress in understanding magnetic reconnection and a wealth of new observations of energetic particle signatures from the Sun, the present volume reviews the current theoretical and experimental status in the field. Paying attention to both the details and the broader picture, this book addresses both the experienced researcher as well as nonspecialist researchers from related areas and postgraduate students in astrophsics.
Planetary Aeronomy is a modern and concise introduction to the underlying physical and chemical processes that govern the formation and evolution of the upper atmospheres of planets. The general approach employed permits consideration of the growing number of extrasolar planets, the detailed observation of which will become possible over the next decades. The book explains the physics behind many atmospheric processes, which are relevant for the evolution of planetary atmospheres and their water inventories, and also contains useful scaling laws and analytical expressions that can be applied to any planet. Readers thus gain insight into the evolution of terrestrial planets and their long-time habitability, atmospheric stability, etc. This volume can be used both as graduate textbook for students wishing to specialize in the field as well as succinct compendium for researchers in the field.
Camille Flammarion (1842-1925) began his career at 16 as a human computer under the great mathematician U. J. J. Le Verrier at the Paris Observatory. He soon tired of the drudgery; he was drawn to more romantic vistas, and at 19 wrote a book on an idea that he was to make his own-the habitability of other worlds. There followed a career as France's greatest popularizer of astronomy, with over 60 titles to his credit. An admirer granted him a chateau at Juvisy-sur-l'Orge, and he set up a first-rate observatory dedicated to the study of the planet Mars. Finally, in 1892, he published his masterpiece, La Planete Mars et ses conditions d'habitabilite, a comprehensive summary of three centuries' worth of literature on Mars, much of it based on his own personal research into rare memoirs and archives. As a history of that era, it has never been surpassed, and remains one of a handful of indispensable books on the red planet. Sir Patrick Moore (1923-2012) needs no introduction; his record of popularizing astronomy in Britain in the 20th century equaled Flammarion's in France in the 19th century. Moore pounded out hundreds of books as well as served as presenter of the BBC's TV program "Sky at Night" program for 55 years (a world record). Though Moore always insisted that the Moon was his chef-d'oeuvre, Mars came a close second, and in 1980 he produced a typescript of Flammarion's classic. Unfortunately, even he found the project too daunting for his publish ers and passed the torch of keeping the project alive to a friend, the amateur astronomer and author William Sheehan, in 1993. Widely regarded as a leading historian of the planet Mars, Sheehan has not only meticulously compared and corrected Moore's manuscript against Flammarion's original so as to produce an authoritative text, he has added an important introduction showing the book's significance in the history of Mars studies. Here results a book that remains an invaluable resource and is also a literary tour-de-force, in which the inimitable style of Flammarion has been rendered in the equally unique style of Moore.
The 157th IAU Symposium "The Cosmic Dynamo" was entirely dedicated to dynamo processes, which are fundamental to all cosmic scales. Dynamo theory concerns one of the few truly key questions of recent cosmic physics. A complicated interplay of rotation, magnetism and turbulence determines stellar and galactic activity for almost all the short and medium time scales. Behind these multiform phenomena, the cosmic dynamo works in various guises, all involving inductive and dissipative equilibria in rotating turbulent cosmic plasmas. This book presents an up-to-date survey on investigations and results of dynamo theory and related observations. It is intended for graduate scientists working in the field of cosmical magnetism and its related problems, especially convection, turbulence and, more generally, nonlinear physics.
A quantitative measure of the accuracy of the rate coefficients and the excess energies is a desirable goal of this analysis. There are two major sources of uncertainties: The atomic and molecular data and the solar irradiance. The cross sections and branching ratios used in this analysis come from many different sources; many of them without any error indications. For this reason, we must confine ourselves to a qualitative indication of the reliability of the results. Specifically we give a quality scale in Table II for the data of each mother molecule; A indicating the highest quality of atomic and molecular data and F the lowest quality. The letter B typically means that the threshold is uncertain. For most molecules the cross section at threshold is very small and the rate coefficient for these molecules is therefore not influenced by this uncertainty. For atomic species the cross section is usually large near threshold, but for these species the threshold is known quite accurately. The letter B, therefore, indicates that the rate coefficient is most likely quite accurate, but the excess energy is less accurately known. The letter C usually means that the branching ratios are not well known. This means that the total rate coefficient is very good, but the rate coefficients and the excess energies for the individual branches are less accurate.
Since its launch in 1991, the Yohkoh satellite has been returning unprecedented observations of solar flares and the dynamic solar corona. This book is a collection of papers presented at a meeting held in: Yoyogi, Tokyo, on the occasion of Yohkoh's fifth anniversary of operation. The papers constitute a summary of observations and results over the five years, including contributions based on data from Yohkoh's hard and soft X-ray telescopes and its spectrometer experiments. The five years of data, covering approximately one-half of a solar cycle, reveal a fresh perspective on solar science, with a new picture of solar flares and the active Sun emerging. Also, for the first time there are extensive results from Yohkoh observations of the Sun during the solar minimum period. This wide-ranging volume will be of interest to workers in solar physics and X-ray astronomy. It also contains material appropriate for supplemental reading for graduate students in solar physics.
While the emergence and evolution of solar surface magnetic flux reveals what goes on in the solar interior, the interplay of convection and magnetic field in the photosphere regulates the field dispersal and drives the instabilities which heat the outer solar atmosphere. This book presents a synthesis between observers and theorists, both with regard to the magnetic elements which make up solar magnetic fields (ranging from tiny flux tubes to whole active regions), and to the surface patterns in which these elements display properties of the subsurface dynamo. A major breakthrough comes from numerical simulations. Modelling of flux concentration, flux tube dynamics, penumbral toplogy, umbral fine structure, and so on, turns solar physics into an experimental science. The reviews and research papers in this volume provide an overview of the solar frontier of astrophysical magnetohydrodynamics. The elements and patterns of solar surface magnetism contain much information about the subsurface solar dynamo, as well as on the magnetically-dominated energy budget and structuring of the outer solar atmosphere. The volume treats high-resolution solar polarimetry, the physics of solar magnetic elements, and the information contained in their patterns of emergence on the solar surface in depth, with a balance between theoretical and observational studies.
In The Smallest Lights in the Universe, MIT astrophysicist Sara Seager interweaves the story of her search for meaning and solace after losing her first husband to cancer, her unflagging search for an Earth-like exoplanet and her unexpected discovery of new love. Sara Seager has made it her life's work to peer into the spaces around stars – looking for exoplanets outside our solar system, hoping to find the one-in-a-billion world enough like ours to sustain life. But with the unexpected death of her husband, her life became an empty, lightless space. Suddenly, she was the single mother of two young boys, a widow at forty, clinging to three crumpled pages of instructions her husband had written for things like grocery shopping – things he had done while she did pioneering work as a planetary scientist at MIT. She became painfully conscious of her Asperger's, which before losing her husband had felt more like background noise. She felt, for the first time, alone in the universe. In this probing, invigoratingly honest memoir, Seager tells the story of how, as she stumblingly navigated the world of grief, she also kept looking for other worlds. She continues to develop ground-breaking projects, such as the Starshade, a sunflower-shaped instrument that, when launched into space, unfurls itself so as to block planet-obscuring starlight, and she takes solace in the alien beauty of exoplanets. At the same time, she discovers what feels every bit as wondrous: other people, reaching out across the space of her grief. Among them are the Widows of Concord, a group of women offering consolation and advice, and her beloved sons, Max and Alex. Most unexpected of all, there is another kind of one-in-a-billion match with an amateur astronomer. Equally attuned to the wonders of deep space and human connection, The Smallest Lights in the Universe is its own light in the dark.
The systematic study of the planets has experienced a slow but steady progress from the efforts of a single individual (Galileo Galilei, 1564-1642) to nations that individually and collectively create whole agencies and complex infrastructures devoted to the exploration and understanding of our solar system. This quest for knowledge continues in earnest today as we attempt to understand Earth's unique place among its closest neighbors. Known diversities emphasize fractionation processes that may have occurred in the nebula during early solar system formation, and the vastly different evolutionary paths taken by the planets and their satellites. The discovery of similarities and differences among the planets has given rise to a discipline of "Comparative Planetology. " Here terrestrial properties and giant planet atmospheres are viewed and probed, surface geologies are related to atmospheres and oceans, interior structures are envisioned, magnetic fields mapped, and bizarre differences in satellites and ring systems continue to enlighten, amaze and confound the detectives of planetary science. A science organizing committee with international participation was formed to develop a conference program to address the basic issues and the fundamental processes that are common among the planets. The goals of the meeting were twofold: first the production of a reference source on comparative planetology for academia, and second, the provision of an impetus for NASA to begin a program devoted to this emerging science discipline. The conference program accommodated seventeen invited papers and nineteen poster presentations.
A Corotating Interaction Region (CIR) is the result of the interaction of fast solar wind with slower solar wind ahead. CIRs have a very large three-dimensional ex tent and are the dominant large-scale structure in the heliosphere on the declining and minimum phase of the solar activity cycle. Until recently, however, CIRs could only be observed close to the ecliptic plane, and their three-dimensional structure was therefore not obvious to observers and theoreticians alike. Ulysses was the first spacecraft allowing direct exploration of the third dimen sion of the heliosphere. Since 1992, when it has entered a polar orbit that takes it 0 up to 80 latitude, the spacecraft's performance has been flawless and the mission has provided excellent data from a superbly matched set of instruments. Perhaps the most exciting observation during Ulysses' first passage towards the south pole of the Sun was a strong and long lasting CIR whose energetic particle effects were observed up to unexpectedly high latitudes. These observations, documented in a number of publications, stimulated considerable new theoretical work.
Magnetic fields are responsible for much of the variability and structuring in the universe, but only on the Sun can the basic magnetic field related processes be explored in detail. While several excellent textbooks have established a diagnostic foundation for exploring the physics of unmagnetized stellar atmospheres through spectral analysis, no corresponding treatise for magnetized stellar atmospheres has been available. The present monograph fills this gap. The theoretical foundation for the diagnostics of stellar magnetism is developed from first principles in a comprehensive way, both within the frameworks of classical physics and quantum field theory, together with a presentation of the various solar applications. This textbook can serve as an introduction to solar and stellar magnetism for astronomers and physicists at the graduate or advanced undergraduate level and will also become a resource book for more senior scientists with a general interest in cosmic magnetic fields.
Starting from Mars outward this concise handbook provides thorough information on the satellites of the planets in the solar system. Each chapter begins with a section on the discovery and the naming of the planet s satellites or rings. This is followed by a section presenting the historic sources of those names. The book contains tables with the orbital and physical parameters of all satellites and is illustrated throughout with modern photos of the planets and their moons as well as historical and mythological drawings. The Cyrillic transcriptions of the satellite names are provided in a register. Readers interested in the history of astronomy and its mythological backgrounds will enjoy this beautiful volume. "
Captures advances being made in the field of coronal magnetism, from theory to observations and instrumentation. This volume is a collection of research articles on the subject of the solar corona, and particularly, coronal magnetism. The book was motivated by the Workshop on Coronal Magnetism: Connecting Models to Data and the Corona to the Earth, which was held 21 - 23 May 2012 in Boulder, Colorado, USA. This workshop was attended by approximately 60 researchers. Articles from this meeting are contained in this topical issue, but the topical issue also contains contributions from researchers not present at the workshop. This volume is aimed at researchers and graduate students active in solar physics. Originally published in Solar Physics, Vol. 288, Issue 2, 2013 and Vol. 289, Issue 8, 2014.
Les deuxiernes "Rencontres de l'Observatoire", qui ont eu lieu a l'Observatoire de Paris a Meudon du 10 au 14 Janvier 2000, ont reuni autour du theme "Problernes ernergents en physique de I'espace" 120 physiciens et astrophysiciens venus d'une vingtaine de pays differents. Nous avons voulu honorer a cette occasion Jean-Louis Steinberg pour ses con- tributions majeures a la recherche spatiale, ala radioastronomie et a la physique de I'espace. L'approche explicitement pluridisciplinaire de ce colloque, qui ne s'est pas laisse confiner dans les limites etroites de la physique spatiale ni dans celles imposees par certains programmes officiels, suit l'esprit de sa carriere scientifique: sortir des limites des sujets deja etudies ou sur Ie point de l'etre, et appliquer les connaissances acquises pour explorer de nouveaux domaines. Ce dernier quart de siecle a vu une croissance vertigineuse des performances spatiales. La technologie moderne ne perrnet pas encore de jongler avec les univers comme Ie prestidigitateur de Grandville (Grandville, Un autre monde, ed. H. Four- nier, Paris, 1844); mais quelques decades ont suffi pour voir des instruments soph- istiques explorer les frontieres du systerne solaire, et la cornmunaute de la recher- che spatiale a depasse rapidement Ie sujet etroit de I'environnement soleil-terre pour s'interesser a I'ensemble de l'heliosphere, OU les memes processus physiques sont a I'ceuvre.
The SECCHI A and B instrument suites (Howard et al. , 2006) onboard the two STEREO mission spacecraft (Kaiser, 2005) are each composed of: one Extreme Ultra-Violet Imager (EUVI), two white-light coronagraphs (COR1 and COR2), and two wide-angle heliospheric imagers (HI1 and HI2). Technical descriptions of EUVI, COR1 and the HIs can be found in Wuelser et al. (2004), Thompson et al. (2003), and De?se et al. (2003), respectively. The images produced by SECCHI represent a data visualization challenge: i) the images are 2048x2048 pixels (except for the HIs, which are usually binned onboard 2x2), thus the vast majority of computer displays are not able to display them at full frame and full r- olution, and ii) more importantly, the ?ve instruments of SECCHI A and B were designed to be able to track Coronal Mass Ejections from their onset (with EUVI) to their pro- gation in the heliosphere (with the HIs), which implies that a set of SECCHI images that covers the propagation of a CME from its initiation site to the Earth is composed of im- ?1 ages with very different spatial resolutions - from 1. 7 arcsecondspixel for EUVI to 2. 15 ?1 arcminutespixel for HI2, i. e. 75 times larger. A similar situation exists with the angular scales of the physical objects, since the size of a CME varies by orders of magnitude as it expands in the heliosphere.
This unique volume contains the proceedings of two "Non-Sleeping Universe" conferences: "Stars and the ISM" and "From Galaxies to the Horizon." The book provides an overview of recent developments in a variety of areas, covering a very wide range of spatial and temporal scales.
This volume covers different aspects of recent theoretical and
observational work on magnetic reconnection, a fundamental
plasma-physical process by which energy stored in magnetic field is
converted, often explosively, into heat and kinetic energy. This
collection of papers from the fields of solar and space physics,
astrophysics, and laboratory plasma physics is especially timely in
view of NASA's upcoming Magnetospheric Multiscale mission, which
will use Earth's magetosphere as a laboratory to test, through
in-situ measurement of the plasma, energetic particles, and
electric and magnetic fields, the various and sometimes competing
models and theories of magnetic reconnection.
IAU Symposium 172 Dynamics, Ephemerides and Astrometry of the Solar System was held in Paris in July, 1995. 250 scientists from 33 countries attended the symposium; 24 invited lectures and 165 contributed papers were presented (117 of which were posters). The papers covered topics on celestial mechanics (chaos and evolution of the solar system, asteroids, theories of the motion of the planets, the moon and the natural satellites), methods (symplectic mappings and elliptic functions), astrometry (CCD observations, VLBI and radar observations), ephemerides (representation and numerical integration) and on the history of celestial mechanics.
Representatives of several scientific communities, such as planetary scientists, astronomers, space physicists, chemists and astrobiologists have met with the aim to review the knowledge on four major themes: (1) the study of the formation and evolution processes of the outer planets and their satellites, beginning with the formation of compounds and planetesimals in the solar nebula, and the subsequent evolution of the interiors of the outer planets, (2) a comparative study of the atmospheres of the outer planets and Titan, (3) the study of the planetary magnetospheres and their interactions with the solar wind, and (4) the formation and properties of satellites and rings, including their interiors, surfaces, and their interaction with the solar wind and the magnetospheres of the outer planets. Beyond these topics, the implications for the prebiotic chemical evolution on Europa and Titan are reviewed. At the time of publication, the study of the outer planets is particularly motivated by the fact that the Saturn system is being investigated by the Cassini-Huygens mission.
The first edition of The Sun From Space, completed in 1999, focused on the early accomplishments of three solar spacecraft, SOHO, Ulysses and Yohkoh, primarily during a minimum in the Sun's 11-year cycle of magnetic activity. This comprehensive Second Edition includes the main findings of these three spacecraft over an entire activity cycle, including two minima and a maximum, and discusses the significant results of six further solar missions. It contains the relevant discoveries of the past decade, integrated into chapters completely rewritten for the purposes of this book. This provides a fresh perspective on the major topics of solar enquiry, written in an enjoyable, easily understood text accessible to all readers, from the interested layperson to the student or professional. After describing the scientific objectives of the nine solar missions and a historical perspective on studies of the Sun and heliosphere, the author presents key advances in our understanding of the solar interior, the heating of the million-degree outer atmosphere of the Sun, known as the solar corona, the origin and nature of the solar winds, the cause, prediction and propagation of explosive solar flares and coronal mass ejections, and all aspects of space-weather interactions of the Sun with the Earth, with unprotected astronauts on the Moon or Mars, and with spacecraft in outer space. The author is known also for his famous books "Astrophysical Formulae," "Sun, Earth and Sky," and the prize-winning "Wanderers in Space," he has succeeded once again in addressing a complex scientific topic in a very approachable way. Hence, this generously illustrated book, whilst primarily addressing students, will also be of interest to a broader readership covering all levels from the amateur to the expert.
Nanodust and nanometer-sized structures are important components of many objects in space. Nanodust is observed in evolved stars, young stellar objects, protoplanetary disks, and dust debris disks. Within the solar system, nanodust is observed with in-situ experiments from spacecraft. Nanometer-sized substructures are found in the collected cometary and interplanetary dust particles and in meteorites. Understanding the growth and destruction of dust, its internal evolution, as well as the optical properties and the detection of nanoparticles is of fundamental importance for astrophysical research. This book provides a focused description of the current state of research and experimental results concerning nanodust in the solar system. It addresses three major questions: What is nanodust? How was it discovered in the solar system? And how do we interpret the observations? The book serves as a self-contained reference work for space researchers and provides solid information on nanodust in cosmic environments for researchers working in astrophysics or in other fields of physics.
The continuing success of helio- and asteroseismology in studying the internal structure and dynamics of the Sun, and of other single stars, has been highlighted in recent years by many topical meetings. The present Proceedings document the first Seismology symposium ever held in conjunction with an IAU General Assembly. This substantially influenced the layout of the scientific programme and demonstrates the vitality of this field of astronomy. The invited reviews are intended to address an audience that includes many non-specialists. Therefore, this volume is particularly valuable as an introduction to the general concepts of the field, and for conveying the excitement that comes with discussions of the most recent observational and theoretical results. There are two chapters on the many facets of asteroseismology, which also compare solar and stellar achievements. A major focus of the symposium was the new developments resulting from the observations of unprecedented quality obtained from global multi-site networks, and especially from the Solar and Heliospheric Observatory SoHO, currently continuing its observations from the Lagrangian point L1. From the center of the Sun to its outer layers, the reader will learn how modern diagnostic techniques reveal the inextricable links between the complex structure of the interior and atmosphere of our nearest star. The book is recommended for undergraduates, postgraduates, and professionals with a strong interest in modern developments in astrophysics.
Much of what is known about the universe came from the study of celestial shadows. This book looks in detail at the way eclipses and other celestial shadows have given us amazing insights into the nature of the objects in our solar system and how they are even helping us discover and analyze planets that orbit stars other than our Sun. A variety of eclipses, transits, and occultations of the mooons of Jupiter and Saturn, Pluto and its satellite Charon, asteroids and stars have helped astronomers to work out their dimensions, structures, and shapes - even the existence of atmospheres and structures of exoplanets. Long before Columbus set out to reach the Far East by sailing West, the curved shadow of the Earth on the Moon during a lunar eclipse revealed that we inhabit a round world, a globe. More recently, comparisons of the sunlit and Earthlit parts of the Moon have been used to determine changes in the Earth's brightness as a way of monitoring possible effects in cloud coverage which may be related to global warming. Shadows were used by the Greek mathematician Eratosthenes to work out the first estimate of the circumference of the Earth, by Galileo to measure the heights of the lunar mountains and by eighteenth century astronomers to determine the scale of the Solar System itself. Some of the rarest and most wonderful shadows of all are those cast onto Earth by the lovely "Evening Star" Venus as it goes between the Earth and the Sun. These majestic transits of Venus occur at most two in a century; after the 2012 transit, there is not a chance to observe this phenomenon until 2117, while the more common sweep of a total solar eclipse creates one of the most dramatic and awe-inspiring events of nature. Though it may have once been a source of consternation or dread, solar eclipses now lead thousands of amateur astronomers and "eclipse-chasers" to travel the globe in order to experience the dramatic view under "totality." These phenomena are among the most spectacular available to observers and are given their full due in Westfall and Sheehan's comprehensive study.
This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun's inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun's outer atmosphere is heated to a million degrees, and just where the Sun's continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore provides modern interpretations of ozone depletion and global warming that are related to both the Sun and to human activities. introduces the Sun and its physics, and describes all aspects of the Sun's interaction with us on Earth. |
You may like...
Fluid Mechanics of Planets and Stars
Michael Le Bars, Daniel Lecoanet
Hardcover
R2,807
Discovery Miles 28 070
A Brief History Of Black Holes - And Why…
Dr. Becky Smethurst
Paperback
Advanced Topics on Astrophysical and…
E. M. De Gouveia Dal Pino, Etc
Hardcover
R2,404
Discovery Miles 24 040
The Sun - Beginner's Guide To Our Local…
Dr. Ryan French, Royal Observatory Greenwich, …
Paperback
R194
Discovery Miles 1 940
|