![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Solar system > General
During the last decade, a rapid growth of knowledge in the field of re-entry and planetary entry has resulted in many significant advances useful to the student, engineer and scientist. The purpose of offering this course is to make available to them these recent significant advances in physics and technology. Accordingly, this course is organized into five parts: Part 1, Entry Dynamics, Thermodynamics, Physics and Radiation; Part 2, Entry Abla tion and Heat Transfer; Part 3, Entry Experimentation; Part 4, Entry Concepts and Technology; and Part 5, Advanced Entry Programs. It is written in such a way so that it may easily be adopted by other universities as a textbook for a two semesters senior or graduate course on the sub ject. In addition to the undersigned who served as the course instructor and wrote Chapters, 1, 2, 3 and 4, guest lecturers included: Prof. FRANKLIN K. MOORE who wrote Chapter 5 "Entry Radiative Transfer," Prof. SHIH-I PAI who wrote Chapter 6 "Entry Radiation-Magnetogasdy namics," Dr. CARL GAZLEY, J r. who wrote Chapter 7 "Entry Deaccelera [ion and Mass Change of an Ablating Body," Dr. SINCLAIRE M. SCALA who wrote Chapter 8 "Entry Heat Transfer and Material Response," Mr.
These are the proceedings of the Symposium 3 of JENAM 2011 on new scientific challenges posed by the Sun. The topics covered are 1. The unusual sunspot minimum, which poses challenges to the solar dynamo theory 2. The Sun's Terra-Hertz emission, which opens a new observational window 3. Corona wave activity 4. Space weather agents - initiation, propagation, and forecasting In 21 in-depth contributions, the reader will be presented with the latest findings.
This book provides a comprehensive treatment of the chemical nature of the Earth's early surface environment and how that led to the origin of life. This includes a detailed discussion of the likely process by which life emerged using as much quantitative information as possible. The emergence of life and the prior surface conditions of the Earth have implications for the evolution of Earth's surface environment over the following 2-2.5 billion years. The last part of the book discusses how these changes took place and the evidence from the geologic record that supports this particular version of early and evolving conditions.
This SpringerBrief details the MESSENGER Mission, the findings of which present challenges to widely held conventional views and remaining mysteries surrounding the planet. The work answers the question of why Mercury is so dense, and the implications from geochemical data on its planetary formation. It summarizes imaging and compositional data from the terrestrial planet surface processes and explains the geologic history of Mercury. It also discusses the lack of southern hemisphere coverage. Our understanding of the planet Mercury has been in a transitional phase over the decades since Mariner 10. The influx of new data from the NASA MESSENGER Mission since it was inserted into the orbit of Mercury in March of 2011 has greatly accelerated that shift. The combined compositional data of relatively high volatiles (S, K), relatively low refractories (Al, Ca), and low crustal iron, combined with an active, partially molten iron rich core, has major implications for Mercury and Solar System formation. From a scientist at NASA Goddard Space Flight Center, this presents a comprehensive overview of the discoveries from the ten-year MESSENGER mission.
The word "landscape" can mean picture as well as natural scenery. Recent advances in space exploration imaging have allowed us to now have landscapes never before possible, and this book collects some of the greatest views and vistas of Mars, Venus's Titan, Io and more in their full glory, with background information to put into context the foreign landforms of our Solar System. Here, literally, are 'other-worldly' visions of strange new scenes, all captured by the latest technology by landing and roving vehicles or by very low-flying spacecraft. There is more than scientific interest in these views. They are also aesthetically beautiful and intriguing, and Dr. Murdin in a final chapter compares them to terrestrial landscapes in fine art. Planetary Vistas is a science book and a travel book across the planets and moons of the Solar System for armchair space explorers who want to be amazed and informed. This book shows what future space explorers will experience, because these are the landscapes that astronauts and space tourists will see.
Investigation of the interplanetary dust cloud is characterized by contributions from quite different methods and fields, such as research on zodiacal light, meteors, micrometeoroids, asteroids, and comets. Since the earth's environment and interplanetary space became accessible to space vehicles these interrelations are clearly evident and extremely useful. Space measurements by micrometeoroid detectors, for example, provide individual and eventually detailed information on impact events, which however are limited in number and therefore restricted in statistical significance. On the other hand, zodiacal light measurements involve scattered light from many particles and therefore provide global information about the average values of physical properties and spatial distribution of interplanetary grains. Additional knowledge stems from lunar samples and from dust collections in the atmosphere and in deep sea sediments. All these sources of complementary information must be put together into a synoptical synthesis. This also has to take into account dynamical aspects and the results of laboratory investigations concerning physical properties of small grains. Such considerable effort is not merely an academic exercise for a few specialists interested in the solar dust cloud. Since this same cloud exclusively allows direct in-situ acess to investigate extraterrestrial dust particles over a wide range of sizes and materials, it provides valuable information for realistic treatment of dust phenomena in other remote cosmic regions such as in dense molecular clouds, circumstellar dust shells, and even protostellar or protoplanetary systems.
This volume covers different aspects of recent theoretical and observational work on magnetic reconnection, a fundamental plasma-physical process by which energy stored in magnetic field is converted, often explosively, into heat and kinetic energy. This collection of papers from the fields of solar and space physics, astrophysics, and laboratory plasma physics is especially timely in view of NASA's upcoming Magnetospheric Multiscale mission, which will use Earth's magetosphere as a laboratory to test, through in-situ measurement of the plasma, energetic particles, and electric and magnetic fields, the various and sometimes competing models and theories of magnetic reconnection. This volume is aimed at researchers in solar physics, magnetospheric physics and plasma physics. Previously published in Space Science Reviews journal, Vol. 160/1-4, 2011.
This volume explores the cross-linkages between the kinetic processes and macroscopic phenomena in the solar atmosphere, which are at the heart of our current understanding of the heating of the closed and open corona and the acceleration of the solar wind. The focus lies on novel data, on theoretical models that have observable consequences through remote sensing, and on near-solar and inner-heliosphere observations, such as anticipated by the upcoming Solar Orbiter and Solar Probe missions, which are currently developed by the international community. This volume is aimed at students and researchers active in solar physics and space science. Previously published in Space Science Reviews journal, Vol. 172, Nos. 1-4, 2012.
Roger-Maurice Bonnet*Michel Blanc Originally published in the journal Space Science Reviews, Volume 137, Nos 1-4. DOI: 10. 1007/s11214-008-9418-0 (c) Springer Science+Business Media B. V. 2008 "Planetary Atmospheric Electricity" is the rst publication of its kind in the Space Science Series of ISSI. It is the result of a new and successful joint venture between ISSI and Eu- planet. Europlanet is a network of over 110 European and U. S. laboratories deeply involved in the development of planetary sciences and support to the European planetary space exp- ration programme. In 2004, the Europlanet consortium obtained support from the European Commission to strengthen the planetary science community worldwide, and to amplify the scienti c output, impact and visibility of the European space programme, essentially the - ropean Space Agency's Horizon 2000, Cosmic Vision programmes and their successors. Its presentcontractwiththeCommissionextendsfrom2005to2008,andincludes7networking activities, including discipline-based working groups covering the main areas of planetary sciences. A new contract with the Commission, presently under negotiation, will extend - roplanet's activities into the period 2009-2012. With the broad community connection made through its Discipline Working Groups and other activities, Europlanet offers an ideal base from which to identify new elds of research for planetary sciences and to stimulate coll- orative work among its member laboratories.
The first Catalogue of Meteorites from South America includes new specimens never previously reported, while doubtful cases and pseudometeorites have been deliberately omitted. The falling of these objects is a random event, but the sites where old meteorites are found tend to be focused in certain areas, e.g. in the deflation surfaces in Chile s Atacama Desert, due to favorable climate conditions and ablation processes. Our Catalogue provides basic information on each specimen like its provenance and the place where it was discovered (in geographic co-ordinates and with illustrative maps), its official name, its classification type (class, and if applicable, weathering grade and shock stage), if it was seen falling or was found by chance, its total mass or weight, the institution where it is held, and the most important bibliographic references about it. "
First published in 1958, and composed primarily of presentations delivered at the Ninth General Assembly of the International Astronomical Union in 1955, this book contains sixteen papers on the subject of the Galactic System in the light of then-recent developments in radio astronomy. The contributors compare new knowledge of our Galactic System with what can be gleaned from other galaxies and star systems, such as the Andromeda nebula. This book will be of value to anyone with an interest in astronomy and in the development of astronomical knowledge.
This textbook is intended as an introduction to the physics of solar and stellar coronae, emphasizing kinetic plasma processes. It is addressed to observational astronomers, graduate students, and advanced undergraduates without a ba- ground in plasma physics. Coronal physics is today a vast field with many different aims and goals. So- ing out the really important aspects of an observed phenomenon and using the physics best suited for the case is a formidable problem. There are already several excellent books, oriented toward the interests of astrophysicists, that deal with the magnetohydrodynamics of stellar atmospheres, radiation transport, and radiation theory. In kinetic processes, the different particle velocities play an important role. This is the case when particle collisions can be neglected, for example in very brief phenomena - such as one period of a high-frequency wave - or in effects produced by energetic particles with very long collision times. Some of the most persistent problems of solar physics, like coronal heating, shock waves, flare energy release, and particle acceleration, are likely to be at least partially related to such p- cesses. Study of the Sun is not regarded here as an end in itself, but as the source of information for more general stellar applications. Our understanding of stellar processes relies heavily, in turn, on our understanding of solar processes. Thus an introduction to what is happening in hot, dilute coronae necessarily starts with the plasma physics of our nearest star.
ESA's Venus Express Mission has monitored Venus since April 2006, and scientists worldwide have used mathematical models to investigate its atmosphere and model its circulation. This book summarizes recent work to explore and understand the climate of the planet through a research program under the auspices of the International Space Science Institute (ISSI) in Bern, Switzerland. Some of the unique elements that are discussed are the anomalies with Venus' surface temperature (the huge greenhouse effect causes the surface to rise to 460 DegreesC, without which would plummet as low as -40 DegreesC), its unusual lack of solar radiation (despite being closer to the Sun, Venus receives less solar radiation than Earth due to its dense cloud cover reflecting 76% back) and the juxtaposition of its atmosphere and planetary rotation (wind speeds can climb up to 200 m/s, much faster than Venus' sidereal day of 243 Earth-days).
The book introduces the solar coronal mass ejection phenomena. This includes both those observed in the corona and those further from the Sun, known as interplanetary coronal mass ejections. We discuss the history and physics behind these phenomena, theories describing their launch and evolution, association with other solar eruptive phenomena, and methods employed for their detection and scientific data extraction. Instruments used for their study (past, present and future) are also discussed, along with their resulting space weather effects on Earth and other planets. The latter requires a description of the Earth's magnetosphere, which is also included. Coronal Mass Ejections brings together solar physics, heliospheric physics, and magnetospheric physics, three traditionally separate fields of study. The content is accessible to beginning graduate students who are trying to master difficult fundamental concepts.
Humans evolved when the Sun was in the great void of the Local Bubble. The Sun entered the present environment of interstellar clouds only during the late Quaternary. Astronomical data reveal these long and short term changes in our galactic environment. Theoretical models then tell us how these changes affect interplanetary particles, planetary magnetospheres, and the Earth itself. Cosmic rays leave an isotopic signature in the paleoclimate record that helps trace the solar journey through space. "Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth" lays the foundation for an interdisciplinary study of the influence of interstellar material on the solar system and Earth as we travel through the Milky Way Galaxy. The solar wind bubble responds dynamically to interstellar material flowing past the Sun, regulating interstellar gas, dust, and cosmic particle fluxes in the interplanetary medium and the Earth. Cones of interstellar gas and dust focused by solar gravity, the magnetospheres of the outer planets, and cosmic rays at Earth all might yield the first hints of changes in our galactic environment. Twelve articles from leading experts in diverse fields discuss the physical changes expected as the heliosphere adjusts to its galactic environment. Topics include the interaction between the solar wind and interstellar dust and gas, cosmic ray modulation, magnetospheres, temporal variations in the solar environment, and the cosmic ray isotope record preserved in paleoclimate data. The breadth of processes discussed in this book make it a valuable resource for scientists and students doing research in the fields of Space Physics, Astronomy and the Paleoclimate. "I admire the great care that Priscilla Frisch has taken in the editorial work, the balanced subjects, the attractive and clear figures. Also the general topic is well chosen and the various chapters are presented very clearly." - C. de Jager
This unique , authoritative book introduces and accurately depicts the current state-of-the art in the field of space storms. Professor Koskinen, renowned expert in the field, takes the basic understanding of the system, together with the pyhsics of space plasmas, and produces a treatment of space storms. He combines a solid base describing space physics phenomena with a rigourous theoretical basis. The topics range from the storms in the solar atmosphere through the solar wind, magnetosphere and ionosphere to the production of the storm-related geoelectric field on the ground. The most up-to-date information available ist presented in a clear, analytical and quantitative way. The book is divided into three parts. Part 1 is a phenomenological introduction to space weather from the Sun to the Earth. Part 2 comprehensively presents the fundamental concepts of space plasma physics. It consists of discussions of fundamental concepts of plasma physics, starting from underlying electrodynamics and statistical physics of charged particles and continuing to single particle motion in homogeneous electromagnetic fields, waves in cold plasma approximation, Vlasov theory, magnetohydrodynamics, instabilities in space plasmas, reconnection and dynamo. Part 3 bridges the gap between the fundamental plasma physics and research level physics of space storms. This part discusses radiation and scattering processes, transport and diffiusion, shocks and shock acceleration, storms on the Sun, in the magnetosphere, the coupling to the atmosphere and ground. The book is concluded wtih a brief review of what is known of space stroms on other planets. One tool for building this briege ist extensive cross-referencing between the various chapters. Exercise problems of varying difficulty are embedded within the main body of the text.
This abundantly illustrated book provides a concise overview of our understanding of the entire mantle, its evolution since early differentiation and the consequences of superplumes for earth surface processes. The book's balanced authorship has produced a state-of-the-science report on the emerging concept of superplumes. This presents a new concept to explain catastrophic events on Earth through geologic time.
Electrical processes take place in all planetary atmospheres. There is evidence for lightning on Venus, Jupiter, Saturn, Uranus and Neptune, it is possible on Mars and Titan, and cosmic rays ionise every atmosphere, leading to charged droplets and particles. Controversy surrounds the role of atmospheric electricity in physical climate processes on Earth; here, a comparative approach is employed to review the role of electrification in the atmospheres of other planets and their moons. This book reviews the theory, and, where available, measurements, of planetary atmospheric electricity, taken to include ion production and ion-aerosol interactions. The conditions necessary for a global atmospheric electric circuit similar to Earth s, and the likelihood of meeting these conditions in other planetary atmospheres, are briefly discussed. Atmospheric electrification is more important at planets receiving little solar radiation, increasing the relative significance of electrical forces. Nucleation onto atmospheric ions has been predicted to affect the evolution and lifetime of haze layers on Titan, Neptune and Triton. For planets closer to Earth, heating from solar radiation dominates atmospheric circulations. Mars may have a global circuit analogous to the terrestrial model, but based on electrical discharges from dust storms, and Titan may have a similar global circuit, based on transfer of charged raindrops. There is an increasing need for direct measurements of planetary atmospheric electrification, in particular on Mars, to assess the risk for future unmanned and manned missions. Theoretical understanding could be increased by cross-disciplinary work to modify and update models and parameterisations initially developed for a specific atmosphere, to make them more broadly applicable to other planetary atmospheres. The possibility of electrical processes in the atmospheres of exoplanets is also discussed."
Starburst regions in nearby and distant galaxies have a profound impact on our understanding of the early universe. This new, substantially updated and extended edition of Norbert Schulz's unique book "From Dust to Stars" describes complex physical processes involved in the creation and early evolution of stars. It illustrates how these processes reveal themselves from radio wavelengths to high energy X-rays and gamma-rays, with special reference towards high energy signatures. Several sections devoted to key analysis techniques demonstrate how modern research in this field is pursued and new chapters are introduced on massive star formation, proto-planetary disks and observations of young exoplanets. Recent advances and contemporary research on the theory of star formation are explained, as are new observations, specifically from the three great observatories of the Spitzer Space Telescope, the Hubble Space Telescope and the Chandra X-Ray Observatory which all now operate at the same time and make high resolution space based observing in its prime. As indicated by the new title two new chapters have been included on proto-planetary disks and young exoplanets. Many more colour images illustrate attractive old and new topics that have evolved in recent years. The author gives updates in theory, fragmentation, dust, and circumstellar disks and emphasizes and strengthens the targeting of graduate students and young researchers, focusing more on computational approaches in this edition.
over to nominal operations and began making our groundbreaking science observations. Remarkably, the IBEX project was able to do all this work including developing an entirely new launch capability, building and ying a unique and highly specialized spacecraft and instrument suite, and maintaining full funding for our Education and Public Outreach and Phase E science activities, while still under-running our original cost cap (as modi ed by NASA-directed changes), by roughly three-quarters of a million dollars. This book comprises a set of papers that describe the IBEX science, instruments, and mission and put these in the context of the existing knowledge of the interstellar interaction at the time of the launch. The book sets the stage for research that will be based on data from the IBEX mission. We sincerely hope that future researchers, authors and students will use this information to help in their studies. Chapter 1 [McComas et al. ] provides an overview of the entire IBEX program including the IBEX science, hardware, and mission. Chapter 2 describes the IBEX spacecraft and ight system [Scherrer et al. ]. Chapters 3-4 provide the details of the IBEX-Hi instrument [Funsten et al. ] and background monitor that is built into it [Allegrini et al. ], while Chapters 5-7 describe the IBEX-Lo instrument [Fuselier et al. ], how IBEX-Lo can measure the interstellar neutrals directly entering the heliosphere [Moebius et al.
Originally published in 1947, this book presents a concise account of the role of John Couch Adams (1819 92) in the discovery of Neptune. Excerpts from Adams' letters are incorporated throughout the text. This book will be of value to anyone with an interest in astronomy and the history of science."
Recent space missions to the outer solar system, Galileo (1996-2003) and Cassini-Huygens (2004-today), together with ground observations, have revealed that the moons of the outer solar system are enigmatic objects, introducing extraordinary challenges for geologists, astrobiologists, organic chemists, and planetologists. Chemical exchange exists through the different layers that form their interiors, and also from the interior to the surface. The most convincing evidence is certainly the discovery of water vapour and ice particles emerging from Enceladus's active south polar region. Evidence for exchange with a subsurface liquid ocean has also been provided by the inference of hydrated salts on the surfaces of Jupiter's moons, Europa and Ganymede, as well as the detection of sodium salts in particles originating in Enceladus's plumes. Aqueous exchange with the rocky core may also be possible, considering that 40Ar has been observed in the plumes of Enceladus during one flyby of Cassini and in the atmosphere of Titan. The ongoing CH4 replenishment in Titan's atmosphere is additional striking evidence of exchange processes within the moons.
Can we detect the moons of extrasolar planets? For two decades, astronomers have made enormous progress in the detection and characterisation of exoplanetary systems but the identification of an "exomoon" is notably absent. In this thesis, David Kipping shows how transiting planets may be used to infer the presence of exomoons through deviations in the time and duration of the planetary eclipses. A detailed account of the transit model, potential distortions, and timing techniques is covered before the analytic forms for the timing variations are derived. It is shown that habitable-zone exomoons above 0.2 Earth-masses are detectable with the Kepler space telescope using these new timing techniques.
How did the Sun evolve, and what will it become? What is the origin of its light and heat? How does solar activity affect the atmospheric conditions that make life on Earth possible? These are the questions at the heart of solar physics, and at the core of this book. The Sun is the only star near enough to study in sufficient detail to provide rigorous tests of our theories and help us understand the more distant and exotic objects throughout the cosmos. Having observed the Sun using both ground-based and spaceborne instruments, the authors bring their extensive personal experience to this story revealing what we have discovered about phenomena from eclipses to neutrinos, space weather, and global warming. This second edition is updated throughout, and features results from the current spacecraft that are aloft, especially NASA's Solar Dynamics Observatory, for which one of the authors designed some of the telescopes.
This volume is dedicated to the Solar Dynamics Observatory (SDO), which was launched 11 February 2010. The articles focus on the spacecraft and its instruments: the Atmospheric Imaging Assembly (AIA), the Extreme Ultraviolet Variability Experiment (EVE), and the Helioseismic and Magnetic Imager (HMI). Articles within also describe calibration results and data processing pipelines that are critical to understanding the data and products, concluding with a description of the successful Education and Public Outreach activities. This book is geared towards anyone interested in using the unprecedented data from SDO, whether for fundamental heliophysics research, space weather modeling and forecasting, or educational purposes. Previously published in Solar Physics journal, Vol. 275/1-2, 2012. Selected articles in this book are published open access under a CC BY-NC 2.5 license at link.springer.com. For further details, please see the license information in the chapters. |
You may like...
Epigenetics and DNA Damage, Volume 33
Miriam Galvonas Jasiulionis
Paperback
R3,433
Discovery Miles 34 330
The New Social and Impact Economy - An…
Benjamin Gidron, Anna Domaradzka
Hardcover
R3,142
Discovery Miles 31 420
Statistics For Business And Economics
David Anderson, James Cochran, …
Paperback
(1)
|