![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Solar system > General
J. P. Nichol (1804-59), astronomer and political economist, was Regius Professor of Astronomy at the University of Glasgow. He brought astronomy to a non-scientific audience through his enthusiastic public lectures and astronomy books. His works include the popular Views of the Architecture of the Heavens (1837; also reissued in this series) in which he supported the nebular hypothesis, which in modified form is the model of star formation most widely accepted today. Neptune was (in 1846) the first planet to be discovered by mathematical prediction rather than empirical observation, and in this book, first published in 1855, Nichol describes that discovery to a lay readership. Part 1 is an exposition of the then current view of the solar system and the research and discoveries which led to that view; Part 2 is dedicated to Neptune; while the third part explains the controversies over the planet's discovery.
The book introduces the solar coronal mass ejection phenomena. This includes both those observed in the corona and those further from the Sun, known as interplanetary coronal mass ejections. We discuss the history and physics behind these phenomena, theories describing their launch and evolution, association with other solar eruptive phenomena, and methods employed for their detection and scientific data extraction. Instruments used for their study (past, present and future) are also discussed, along with their resulting space weather effects on Earth and other planets. The latter requires a description of the Earth's magnetosphere, which is also included. Coronal Mass Ejections brings together solar physics, heliospheric physics, and magnetospheric physics, three traditionally separate fields of study. The content is accessible to beginning graduate students who are trying to master difficult fundamental concepts.
Humans evolved when the Sun was in the great void of the Local Bubble. The Sun entered the present environment of interstellar clouds only during the late Quaternary. Astronomical data reveal these long and short term changes in our galactic environment. Theoretical models then tell us how these changes affect interplanetary particles, planetary magnetospheres, and the Earth itself. Cosmic rays leave an isotopic signature in the paleoclimate record that helps trace the solar journey through space. "Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth" lays the foundation for an interdisciplinary study of the influence of interstellar material on the solar system and Earth as we travel through the Milky Way Galaxy. The solar wind bubble responds dynamically to interstellar material flowing past the Sun, regulating interstellar gas, dust, and cosmic particle fluxes in the interplanetary medium and the Earth. Cones of interstellar gas and dust focused by solar gravity, the magnetospheres of the outer planets, and cosmic rays at Earth all might yield the first hints of changes in our galactic environment. Twelve articles from leading experts in diverse fields discuss the physical changes expected as the heliosphere adjusts to its galactic environment. Topics include the interaction between the solar wind and interstellar dust and gas, cosmic ray modulation, magnetospheres, temporal variations in the solar environment, and the cosmic ray isotope record preserved in paleoclimate data. The breadth of processes discussed in this book make it a valuable resource for scientists and students doing research in the fields of Space Physics, Astronomy and the Paleoclimate. "I admire the great care that Priscilla Frisch has taken in the editorial work, the balanced subjects, the attractive and clear figures. Also the general topic is well chosen and the various chapters are presented very clearly." - C. de Jager
Research into the geological processes operating on Mars relies on interpretation of images and other data returned by unmanned orbiters, probes and landers. Such interpretations are based on our knowledge of processes occurring on Earth Terrestrial analog studies therefore play an important role in understanding the geological features observed on Mars. This 2007 book presents direct comparisons between locales on Earth and Mars, and contains contributions from leading planetary geologists to demonstrate the parallels and differences between these two neighboring planets. Mars is characterized by a wide range of geological phenomena that also occur on Earth, including tectonic, volcanic, impact cratering, eolian, fluvial, glacial and possibly lacustrine and marine processes. The book provides terrestrial analogs for data sets from Mars Global Surveyor, Mars Odyssey, Mars Exploration Rovers and Mars Express, and will therefore be a key reference for students and researchers of planetary science.
This book is intended as an introduction to the field of planetary systems at the postgraduate level. It consists of four extensive lectures on Hamiltonian dynamics, celestial mechanics, the structure of extrasolar planetary systems and the formation of planets. As such, this volume is particularly suitable for those who need to understand the substantial connections between these different topics.
This unique , authoritative book introduces and accurately depicts the current state-of-the art in the field of space storms. Professor Koskinen, renowned expert in the field, takes the basic understanding of the system, together with the pyhsics of space plasmas, and produces a treatment of space storms. He combines a solid base describing space physics phenomena with a rigourous theoretical basis. The topics range from the storms in the solar atmosphere through the solar wind, magnetosphere and ionosphere to the production of the storm-related geoelectric field on the ground. The most up-to-date information available ist presented in a clear, analytical and quantitative way. The book is divided into three parts. Part 1 is a phenomenological introduction to space weather from the Sun to the Earth. Part 2 comprehensively presents the fundamental concepts of space plasma physics. It consists of discussions of fundamental concepts of plasma physics, starting from underlying electrodynamics and statistical physics of charged particles and continuing to single particle motion in homogeneous electromagnetic fields, waves in cold plasma approximation, Vlasov theory, magnetohydrodynamics, instabilities in space plasmas, reconnection and dynamo. Part 3 bridges the gap between the fundamental plasma physics and research level physics of space storms. This part discusses radiation and scattering processes, transport and diffiusion, shocks and shock acceleration, storms on the Sun, in the magnetosphere, the coupling to the atmosphere and ground. The book is concluded wtih a brief review of what is known of space stroms on other planets. One tool for building this briege ist extensive cross-referencing between the various chapters. Exercise problems of varying difficulty are embedded within the main body of the text.
This abundantly illustrated book provides a concise overview of our understanding of the entire mantle, its evolution since early differentiation and the consequences of superplumes for earth surface processes. The book's balanced authorship has produced a state-of-the-science report on the emerging concept of superplumes. This presents a new concept to explain catastrophic events on Earth through geologic time.
Electrical processes take place in all planetary atmospheres. There is evidence for lightning on Venus, Jupiter, Saturn, Uranus and Neptune, it is possible on Mars and Titan, and cosmic rays ionise every atmosphere, leading to charged droplets and particles. Controversy surrounds the role of atmospheric electricity in physical climate processes on Earth; here, a comparative approach is employed to review the role of electrification in the atmospheres of other planets and their moons. This book reviews the theory, and, where available, measurements, of planetary atmospheric electricity, taken to include ion production and ion-aerosol interactions. The conditions necessary for a global atmospheric electric circuit similar to Earth s, and the likelihood of meeting these conditions in other planetary atmospheres, are briefly discussed. Atmospheric electrification is more important at planets receiving little solar radiation, increasing the relative significance of electrical forces. Nucleation onto atmospheric ions has been predicted to affect the evolution and lifetime of haze layers on Titan, Neptune and Triton. For planets closer to Earth, heating from solar radiation dominates atmospheric circulations. Mars may have a global circuit analogous to the terrestrial model, but based on electrical discharges from dust storms, and Titan may have a similar global circuit, based on transfer of charged raindrops. There is an increasing need for direct measurements of planetary atmospheric electrification, in particular on Mars, to assess the risk for future unmanned and manned missions. Theoretical understanding could be increased by cross-disciplinary work to modify and update models and parameterisations initially developed for a specific atmosphere, to make them more broadly applicable to other planetary atmospheres. The possibility of electrical processes in the atmospheres of exoplanets is also discussed."
Humans have long thought that planetary systems similar to our own should exist around stars other than the Sun, yet the search for planets outside our Solar System has had a dismal history of discoveries that could not be confirmed. However, this all changed in 1995, after which astonishing progress can be seen in this field; we now know of more than 200 extrasolar planets. These findings mark crucial milestones in the search for extraterrestrial life - arguably one of the most intriguing endeavors of modern science. These proceedings from the 2005 Space Telescope Science Institute Symposium on Extrasolar Planets explore one of the hottest topics in astronomy. Discussions include the Kepler mission, observational constraints on dust disk lifetimes and the implications for planet formation, and gravitational instabilities in protoplanetary disks. With review papers written by world experts in their fields, this is an important resource on extrasolar planets.
Starburst regions in nearby and distant galaxies have a profound impact on our understanding of the early universe. This new, substantially updated and extended edition of Norbert Schulz's unique book "From Dust to Stars" describes complex physical processes involved in the creation and early evolution of stars. It illustrates how these processes reveal themselves from radio wavelengths to high energy X-rays and gamma-rays, with special reference towards high energy signatures. Several sections devoted to key analysis techniques demonstrate how modern research in this field is pursued and new chapters are introduced on massive star formation, proto-planetary disks and observations of young exoplanets. Recent advances and contemporary research on the theory of star formation are explained, as are new observations, specifically from the three great observatories of the Spitzer Space Telescope, the Hubble Space Telescope and the Chandra X-Ray Observatory which all now operate at the same time and make high resolution space based observing in its prime. As indicated by the new title two new chapters have been included on proto-planetary disks and young exoplanets. Many more colour images illustrate attractive old and new topics that have evolved in recent years. The author gives updates in theory, fragmentation, dust, and circumstellar disks and emphasizes and strengthens the targeting of graduate students and young researchers, focusing more on computational approaches in this edition.
An authoritative introduction for graduate students in the physical sciences, this award-winning textbook explains the wide variety of physical, chemical, and geological processes that govern the motions and properties of planets. This updated second edition has been revised and improved while maintaining its existing structure and organization. Many data tables and plots have been updated to account for the latest measurements. A new Appendix focuses on recent discoveries since the second edition was first published. These include results from Cassini, Kepler, MESSENGER, MRO, LRO, Dawn at Vesta, Curiosity, and others, as well as many ground-based observatories. With over 300 exercises to help students apply the concepts covered, this textbook is ideal for graduate courses in astronomy, planetary science and earth science, and well suited as a reference for researchers. Color versions of many figures, movie clips supplementing the text, and other resources are available at www.cambridge.org/depater.
It is known that large asteroids and comets can collide with the Earth with severe consequences. Although the chances of a collision in a person's lifetime are small, collisions are a random process and could occur at any time. This book, which was first published in 2004, collects the latest thoughts and ideas of scientists concerned with mitigating the threat of hazardous asteroids and comets. It reviews knowledge of the population of potential colliders, including their numbers, locations, orbits, and how warning times might be improved. The structural properties and composition of their interiors and surfaces are reviewed, and their orbital response to the application of pulses of energy is discussed. Difficulties of operating in space near, or on the surface of, very low mass objects are examined. The book concludes with a discussion of the problems faced in communicating the nature of the impact hazard to the public.
Chondrules in primitive meteorites have excited and challenged scientists since they were first described nearly 200 years ago. Chondrules were made by some pervasive process in the early solar system that formed melted silicate droplets. This 1996 text was the first comprehensive review of chondrules and their origins since a consensus developed that they were made in the disk of gas and solids that formed the Sun and planets 4.5 billion years ago. Fifty scientists from assorted disciplines have collaborated to review how chondrules could have formed in the protoplanetary disk. When and where in the disk did they form? What were they made from and how fast were they heated and cooled? What provided the energy to melt chondrules - nebular shock waves, lightning discharges, protostellar jets? Following an exciting international conference in Albuquerque, New Mexico, the latest answers to these questions are presented in thirty-four articles.
When this book was published in 2006, it had been just over ten years since the first planet outside our solar system was detected. Since then, much work has focused on understanding how extrasolar planets may form, and discovering the frequency of potentially habitable Earth-like planets. This volume addresses fundamental questions concerning the formation of planetary systems in general, and of our solar system in particular. Drawing from advances in observational, experimental and theoretical research, it summarises our understanding of the planet formation processes, and addresses major open questions and research issues. Chapters are written by leading experts in the field of planet formation and extrasolar planet studies. The book is based on a meeting held at Ringberg Castle in Bavaria, where experts gathered together to present and exchange their ideas and findings. It is a comprehensive resource for graduate students and researchers, and is written to be accessible to newcomers to the field.
over to nominal operations and began making our groundbreaking science observations. Remarkably, the IBEX project was able to do all this work including developing an entirely new launch capability, building and ying a unique and highly specialized spacecraft and instrument suite, and maintaining full funding for our Education and Public Outreach and Phase E science activities, while still under-running our original cost cap (as modi ed by NASA-directed changes), by roughly three-quarters of a million dollars. This book comprises a set of papers that describe the IBEX science, instruments, and mission and put these in the context of the existing knowledge of the interstellar interaction at the time of the launch. The book sets the stage for research that will be based on data from the IBEX mission. We sincerely hope that future researchers, authors and students will use this information to help in their studies. Chapter 1 [McComas et al. ] provides an overview of the entire IBEX program including the IBEX science, hardware, and mission. Chapter 2 describes the IBEX spacecraft and ight system [Scherrer et al. ]. Chapters 3-4 provide the details of the IBEX-Hi instrument [Funsten et al. ] and background monitor that is built into it [Allegrini et al. ], while Chapters 5-7 describe the IBEX-Lo instrument [Fuselier et al. ], how IBEX-Lo can measure the interstellar neutrals directly entering the heliosphere [Moebius et al.
Recent space missions to the outer solar system, Galileo (1996-2003) and Cassini-Huygens (2004-today), together with ground observations, have revealed that the moons of the outer solar system are enigmatic objects, introducing extraordinary challenges for geologists, astrobiologists, organic chemists, and planetologists. Chemical exchange exists through the different layers that form their interiors, and also from the interior to the surface. The most convincing evidence is certainly the discovery of water vapour and ice particles emerging from Enceladus's active south polar region. Evidence for exchange with a subsurface liquid ocean has also been provided by the inference of hydrated salts on the surfaces of Jupiter's moons, Europa and Ganymede, as well as the detection of sodium salts in particles originating in Enceladus's plumes. Aqueous exchange with the rocky core may also be possible, considering that 40Ar has been observed in the plumes of Enceladus during one flyby of Cassini and in the atmosphere of Titan. The ongoing CH4 replenishment in Titan's atmosphere is additional striking evidence of exchange processes within the moons.
Can we detect the moons of extrasolar planets? For two decades, astronomers have made enormous progress in the detection and characterisation of exoplanetary systems but the identification of an "exomoon" is notably absent. In this thesis, David Kipping shows how transiting planets may be used to infer the presence of exomoons through deviations in the time and duration of the planetary eclipses. A detailed account of the transit model, potential distortions, and timing techniques is covered before the analytic forms for the timing variations are derived. It is shown that habitable-zone exomoons above 0.2 Earth-masses are detectable with the Kepler space telescope using these new timing techniques.
This volume is dedicated to the Solar Dynamics Observatory (SDO), which was launched 11 February 2010. The articles focus on the spacecraft and its instruments: the Atmospheric Imaging Assembly (AIA), the Extreme Ultraviolet Variability Experiment (EVE), and the Helioseismic and Magnetic Imager (HMI). Articles within also describe calibration results and data processing pipelines that are critical to understanding the data and products, concluding with a description of the successful Education and Public Outreach activities. This book is geared towards anyone interested in using the unprecedented data from SDO, whether for fundamental heliophysics research, space weather modeling and forecasting, or educational purposes. Previously published in Solar Physics journal, Vol. 275/1-2, 2012. Selected articles in this book are published open access under a CC BY-NC 2.5 license at link.springer.com. For further details, please see the license information in the chapters.
Written in 1877 by the French journalist Amedee Guillemin, this work appeared on British bookshelves at a time of intense interest in space, the solar system and stars. In the same year, Schiaparelli made his infamous 'discovery' of Martian canals, whetting the public's appetite for all things astronomical. Guillemin's account of comets was equally ambitious and, ultimately, more valuable. His subjects range from comet superstitions in Renaissance Italy to an accessible explanation of their orbits, constitution and brilliance. As James Glaisher notes in his Preface, 'there is no work that at all occupies the ground covered' by Guillemin. The author's imaginative prose, exemplified by his description of comets as 'long disowned stars', was translated sympathetically by Glaisher. Accompanied by eighty-five striking illustrations, including Halley's Comet as depicted in the Bayeux Tapestry, The World of Comets provides a fascinating insight into both astronomy and nineteenth-century scientific enquiry.
Advances in Space Environment Research - Volume I contains the
proceedings of two international workshops, the World Space
Environment Forum (WSEF2002) and the High Performance Computing in
Space Environment Research (HPC2002), organized by the World
Institute for Space Environment Research (WISER) from 22 July to 2
August 2002 in Adelaide, Australia.
NASA's Genesis mission, launched on August 8, 2001 is the fifth mission in the Discovery series. Genesis addresses questions about the materials and processes involved in the origin of the solar system by providing precise knowledge of solar isotopic and elemental compositions for comparison with the compositions of meteoritic and planetary materials. This book describes the Genesis mission, the solar wind collector materials, the solar wind concentrator and simulations of its performance, the plasma ion and electron instruments, and the way these two instruments are used to determine the solar wind flow regime on board the spacecraft. The book is of interest to all potential users of the data returned by the Genesis mission, to those studying the isotopic and chemical composition of the early solar system whose work will be influenced by the measurements made by Genesis and by all those interested in the design and implementation of space instruments to study space plasmas.
The Hatfield Photographic Lunar Atlas has been long regarded as the finest photographic lunar atlas available and remains as a model of accuracy and clarity. This fully revised version is completely updated with new maps, names and technical data. The superb large-scale photographic plates and the accompanying full-scale maps make this an exceptionally easy-to-use lunar atlas for the field or observatory.
Fans of "Asterix the Gallic" know well that the only fear of people in Brittany is that the sky falls upon their head. So it must have been a shock for them (the fans of Asterix) to learn that a horde of Physicists and Dynamicists (some of them being actually Roman - ils sont fous ces Romains!) invaded the bay of Saint-Brieuc and spend a full week conjuring all the nastiness that the sky has in reserve, revelling in the horrors hidden beyond the blue dome; they talked with delight about "asteroids", "comets" and "meteor streams"; they grinned at the idea of "artificial satellites", these pots and pans of space always ready to fall upon you; some of them said strange things about the Moon, the planets, and evoked the "rings" of Saturn or of some other of their gods. One evening, a Roman from Pisa went as far as cornering some inhabitants in the large hut they used for their witchcraft and filled them with terror by describing the fate of the poor dinosaurs victims of a particularly nasty asteroid (or was it a comet?). You will be surprized to learn that Bretons did not exact a spectacular revenge for these offenses. On the contrary.
Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. Over the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever increasing rate. This 2010 volume, the last in this series of three heliophysics texts, focuses on long-term variability from the Sun's decade-long sunspot cycle and considers the evolution of the planetary system over ten billion years from a climatological perspective. Topics covered range from the dynamo action of stars and planets to processes in the Earth's troposphere, ionosphere, and magnetosphere and their effects on planetary climate and habitability. Supplemented by online teaching materials, it can be used as a textbook for courses or as a foundational reference for researchers in fields from astrophysics and plasma physics to planetary and climate science.
This book focuses on the recent advances in our understanding of solar convection and activity, and on new methods and results of helioseismic diagnostics. It provides a comprehensive overview of the current status of the field and presents new ideas and approaches. |
You may like...
After Dinner Amusements: Which Would You…
Chronicle Books
Other printed item
Opinion Mining and Text Analytics on…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R9,276
Discovery Miles 92 760
Microwave Active Circuit Analysis and…
Clive Poole, Izzat Darwazeh
Hardcover
|