![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics) > General
This book presents new developments in the open quantum systems theory with emphasis on applications to the (frequent) measurement theory.In the first part of the book, the uniqueness theorems for the solutions to the restricted Weyl commutation relations braiding unitary groups and semi-groups of contractions are discussed. The major theme involves an intrinsic characterization of the simplest symmetric operator solutions to the Heisenberg uncertainty relations, the problem posed by Jorgensen and Muhly, followed by the proof of the uniqueness theorems for the simplest solutions to the restricted Weyl commutation relations. The detailed study of unitary invariants of the corresponding dissipative and symmetric operators opens up a look at the classical Stone-von Neumann uniqueness theorem from a new angle and provides an extended version of the uniqueness result relating various realizations of a differentiation operator on the corresponding metric graphs.The second part of the book is devoted to mathematical problems of the quantum measurements under continuous monitoring. Among the topics discussed are the complementarity of the Quantum Zeno effect and Exponential Decay scenario in frequent quantum measurements, and a rigorous treatment, within continuous monitoring paradigm, of the celebrated 'double-slit experiment' where the renowned exclusive and interference measurement alternatives approach in quantum theory is presented in a way that is accessible for mathematicians. One of the striking applications of the generalized (1-stable) central limit theorem is the mathematical evidence of exponential decay of unstable states of the quantum pendulum under continuous monitoring.
This book addresses an interesting area of quantum computation called quantum walks, which play an important role in building quantum algorithms, in particular search algorithms. Quantum walks are the quantum analogue of classical random walks. It is known that quantum computers have great power for searching unsorted databases. This power extends to many kinds of searches, particularly to the problem of finding a specific location in a spatial layout, which can be modeled by a graph. The goal is to find a specific node knowing that the particle uses the edges to jump from one node to the next. This book is self-contained with main topics that include: Grover's algorithm, describing its geometrical interpretation and evolution by means of the spectral decomposition of the evolution operator Analytical solutions of quantum walks on important graphs like line, cycles, two-dimensional lattices, and hypercubes using Fourier transforms Quantum walks on generic graphs, describing methods to calculate the limiting distribution and mixing time Spatial search algorithms, with emphasis on the abstract search algorithm (the two-dimensional lattice is used as an example) Szedgedy's quantum-walk model and a natural definition of quantum hitting time (the complete graph is used as an example) The reader will benefit from the pedagogical aspects of the book, learning faster and with more ease than would be possible from the primary research literature. Exercises and references further deepen the reader's understanding, and guidelines for the use of computer programs to simulate the evolution of quantum walks are also provided.
This volume is a compilation of lectures delivered at the TASI 2015 summer school, 'New Frontiers in Fields and Strings', held at the University of Colorado Boulder in June 2015. The school focused on topics in theoretical physics of interest to contemporary researchers in quantum field theory and string theory. The lectures are accessible to graduate students in the initial stages of their research careers.
It is naturally important for any of us to have a correct view of the universe we are in. Having realized that the Newtonian world-view is untenable, this book joins others that are searching for an alternative world view. It is unique in using quantum physics to promote this search. One aim of the book is to present a lucid exposition of quantum mechanics in terms accessible to the general reader. Another aim is to show that realism (the belief that the outside world exists "from its own side" regardless of acts of consciousness) and locality (the belief that nothing moves faster than light) are invalid, and should be replaced by a new paradigm according to which the universe is alive. A third aim is to show that the thinking of quantum physicists evokes the philosophies of Plato and Plotinus. The second edition will include a conversation between two fictional characters to elucidate the discussion of the meaning of wave functions.
David Bohm is one of the foremost scientific thinkers of today and one of the most distinguished scientists of his generation. His challenge to the conventional understanding of quantum theory has led scientists to reexamine what it is they are going and his ideas have been an inspiration across a wide range of disciplines. Quantum Implications is a collection of original contributions by many of the world' s leading scholars and is dedicated to David Bohm, his work and the issues raised by his ideas. The contributors range across physics, philosophy, biology, art, psychology, and include some of the most distinguished scientists of the day. There is an excellent introduction by the editors, putting Bohm's work in context and setting right some of the misconceptions that have persisted about the work of David Bohm
The Conference on Quantum Mechanics, Elementary Particles, Quantum Cosmology and Complexity was held in honour of Professor Murray Gell-Mann's 80th birthday in Singapore on 24-26 February 2010. The conference paid tribute to Professor Gell-Mann's great achievements in the elementary particle physics.This notable birthday volume contains the presentations made at the conference by many eminent scientists, including Nobel laureates C N Yang, G 't Hooft and K Wilson. Other invited speakers include G Zweig, N Samios, M Karliner, G Karl, M Shifman, J Ellis, S Adler and A Zichichi.About Murray Gell-MannMurray Gell-Mann, born September 15, 1929, won the 1969 Nobel Prize in physics for his work on the theory of elementary particles.His contributions span the entire history of particle physics, from the early days of the particle zoo to the modern day QCD. Along the way, even as he proposed new quantum numbers to bring order into the zoo, he had fun in naming them. And thus was born Strangeness, Flavor, Hadrons, Baryons, Leptons, the Eightfold Way, Color, Quarks, Gluons and, with Harald Fritzsch, the standard field theory of strong interactions, Quantum Chromodynamics (QCD).He also proposed with Richard Feynman the V-A theory of beta decay. Gell-Mann discovered the Current Algebra, proposed (with Levy) the sigma model of pions and the see-saw mechanism for the neutrino masses.
Quantum gravity is the name given to a theory that unites general relativity - Einstein's theory of gravitation and spacetime - with quantum field theory, our framework for describing non-gravitational forces. The Structural Foundations of Quantum Gravity brings together philosophers and physicists to discuss a range of conceptual issues that surface in the effort to unite these theories, focusing in particular on the ontological nature of the spacetime that results. Although there has been a great deal written about quantum gravity from the perspective of physicists and mathematicians, very little attention has been paid to the philosophical aspects. This volume closes that gap, with essays written by some of the leading researchers in the field. Individual papers defend or attack a structuralist perspective on the fundamental ontologies of our physical theories, which offers the possibility of shedding new light on a number of foundational problems. It is a book that will be of interest not only to physicists and philosophers of physics but to anyone concerned with foundational issues and curious to explore new directions in our understanding of spacetime and quantum physics.
The investigation of discrete symmetries is a fascinating subject which has been central to the agenda of physics research for 50 years, and has been the target of many experiments, ongoing and in preparation, all over the world. This book approaches the subject from a somewhat less traditional angle: while being self-contained and suitable to the reader who wants to acquire a solid knowledge of the topic, it puts more emphasis on the experimental aspects of the field, trying to provide a wider picture than usual and to convey the intellectual challenge of experimental physics. The book includes the related connection to phenomenology, a purpose for which the precision experiments in this field - often rather elegant and requiring a good amount of ingenuity - are very well suited. The book discusses discrete symmetries (parity, charge conjugation, time reversal, and of course CP symmetry) in microscopic (atomic, nuclear, and particle) physics, and includes the detailed description of some key or representative experiments. The book discusses their principles and challenges more than the historical development. The main past achievements and the most recent developments are both included. The level goes from introductory to advanced. While mainly addressed to graduate students, the book can also be useful to undergraduates (by skipping some of the more advanced sections, and utilizing the brief introductions to some topics in the appendices), and to young researchers looking for a wider modern overview of the issues related to CP symmetry.
This book contains exclusively invited contributions from collaborators of Maximilian Kreuzer, giving accounts of his scientific legacy and original articles from renowned theoretical physicists and mathematicians, including Victor Batyrev, Philip Candelas, Michael Douglas, Alexei Morozov, Joseph Polchinski, Peter van Nieuwenhuizen, and Peter West.Besides a collection of review and research articles from high-profile researchers in string theory and related fields of mathematics (in particular, algebraic geometry) which discuss recent progress in the exploration of string theory vacua and corresponding mathematical developments, this book contains a pedagogical account of the important work of Brandt, Dragon, and Kreuzer on classification of anomalies in gauge theories. This highly cited work, which is also quoted in the textbook of Steven Weinberg on quantum field theory, has not yet been presented in full detail except in private lecture notes by Norbert Dragon.Similarly, the software package PALP (Package for Analyzing Lattice Polytopes with applications to toric geometry), which has been incorporated in the SAGE (Software for Algebra and Geometry Experimentation) project, has not yet been documented in full detail. This book contains a user manual for a new thoroughly revised version of PALP.By including these two very useful original contributions, researchers in quantum field theory, string theory, and mathematics will find added value in a pedagogical presentation of the classification of quantum gauge field anomalies, and the accompanying comprehensive manual and tutorial for the powerful software package PALP.
It is naturally important for any of us to have a correct view of the universe we are in. Having realized that the Newtonian world-view is untenable, this book joins others that are searching for an alternative world view. It is unique in using quantum physics to promote this search. One aim of the book is to present a lucid exposition of quantum mechanics in terms accessible to the general reader. Another aim is to show that realism (the belief that the outside world exists "from its own side" regardless of acts of consciousness) and locality (the belief that nothing moves faster than light) are invalid, and should be replaced by a new paradigm according to which the universe is alive. A third aim is to show that the thinking of quantum physicists evokes the philosophies of Plato and Plotinus. The second edition will include a conversation between two fictional characters to elucidate the discussion of the meaning of wave functions.
This book is a remarkable synthesis, a clear and simple introduction to Quantum Physics with a sort of Galilean dialogue on the supreme systems of contemporary Physics. The author, whose research interests and work extended from quarks to liquid systems and from crystals to stars, introduces the common conceptual and mathematical framework of all quantum theories, realistic enough to successfully confront Nature: Quantum Field Theory applied to the study of both dilute and condensed matter. In the dilute limit, quantum mechanics is shown to be a good approximation to Quantum Field Theory. However, in condensed matter physics the problem of the ground state, which acts as a kind of template for physical reality, is studied under the hypothesis that the standard perturbative vacuum is unstable with respect to a new coherent vacuum, whose spectrum emerges quite naturally through a simple variational procedure.
There are very few with Philip Morrison's gifts, few who can lead us with firm knowledge whispering just the right encouragement as he guides us across the great ideas of science. Take this journey with one of the most astute navigators and you'll find yourself compelled to go deeper into some of the most daring adventures of modern science. Nothing is too grand or seemingly too trivial - the nature of time, the fabric of the atom, what it means to explore scientific horizons, the galaxies, even the search for unknown intelligence in the vast as-yet-uncharted universe. Then as deftly as Morrison takes us on a dazzling tour of the stars, he gently settles down for an intimate stop in the nursery where children have their first encounters with the things of everyday life, everyday things that cause us to wonder and make for discovery. With an equally firm grasp, Morrison, who witnessed the first tests of the atom bomb, takes us unflinchingly through some of the most frightening terrain of modern times, where the arms race can cause our ultimate destruction, but where sanity can still bring us peace. This extraordinary collection of essays by one of the most profound commentators on the successes and failures of the scientific enterprize concludes with lively portraits of men of science - Neils Bohr, Richard Feynman, Charles Babbage, among other notable friends and heroes.
Get First-Hand Insight from a Contributor to the Standard Model of Particle Physics Written by an award-winning former director-general of CERN and one of the world's leading experts on particle physics, Electroweak Interactions explores the concepts that led to unification of the weak and electromagnetic interactions. It provides the fundamental elements of the theory of compact Lie groups and their representations, enabling a basic understanding of the role of flavor symmetry in particle physics. Understand Conceptual Elements of the Theory of Elementary Particles The book begins with the identification of the weak hadronic current with the isotopic spin current, Yang-Mills theory, and the first electroweak theory of Glashow. It discusses spontaneous breaking of a global symmetry and a local symmetry, covering the Goldstone theorem, Brout-Englert-Higgs mechanism, and the theory of Weinberg and Salam. The author then describes the theory of quarks, quark mixing, the Cabibbo angle, the Glashow-Iliopoulos-Maiani (GIM) mechanism, the theory of Kobayashi and Maskawa, six quark flavors, and CP violation. Delve into Experimental Tests and Unresolved Problems The author goes on to explore some phenomenological topics, such as neutral current interactions of neutrinos and CP violation in the neutral K-meson system. He also highlights how flavor-changing neutral current processes have emerged as probes to reveal the presence of new phenomena at energies not yet accessible with particle accelerators. The book concludes with an explanation of the expected properties of the Higgs boson and the methods adopted for its search. The predictions are also compared with relevant experimental results. View the author's first book in this collection: Relativistic Quantum Mechanics: An Introduction to Relativistic Quantum Fields.
Space and time are probably the most important elements in physics. Within the memory of man, all essential things are represented within the frame of space-time pictures. This is obviously the most basic information. What can we say about space and time? It is normally assumed that the space is a container filled with matter and that the time is just that which we measure with our clocks. However, there are some reasons to take another standpoint and to consider this container-conception as unrealistic, as prejudice so to say. Already the philosopher Immanuel Kant pointed on this serious problem. In this monograph, the author discusses the so-called projection theory. In contrast to the container-conception (reality is embedded in space and time), within projection theory the physical reality is projected onto space and time and quantum processes are of particular relevance. Like Whitehead and Bergson, the author argues for the primacy of process. One of the most interesting results is that projection theory automatically leads to a new aspect for the notion "time." Here we have not only the time of conventional physics, which is exclusively treated as an external parameter, but we obtain within projection theory a system-specific time. Just this system-specific time might be of fundamental importance in the future description of physical systems. For example, the self-assembly of nano-systems could lead to predictions that are even not thinkable within usual physics. Also in connection with cosmology the projection principle must inevitably lead to fundamentally new statements.
This book covers the fundamentals of and new developments in gaseous Bose-Einstein condensation. It begins with a review of fundamental concepts and theorems, and introduces basic theories describing Bose-Einstein condensation (BEC). It then discusses some recent topics such as fast-rotating BEC, spinor and dipolar BEC, low-dimensional BEC, balanced and imbalanced fermionic superfluidity including BCS-BEC crossover and unitary gas, and p-wave superfluidity.
In last years increasing attention has been again devoted to interpretations of quantum theory. In the same time interesting quantum optical experiments have been performed using nonlinear optical processes, in particular frequency down conversion, which provided new information about nature of a photon on the basis of interference and correlation (coincidence) phenomena. Such single-photon and twin-photon effects of quantum optics provide new point of view of interpretations of quantum theory and new tests of its principles. The purpose of this book is to discuss these questions. To follow this goal we give brief reviews of principles of quantum theory and of quantum theory of measurement. As a fundamental theoretical tool the coherent state technique is adopted based on a general algebraic treatment, including the de scription of interaction of radiation and matter. Typical quantum behaviour of physical systems is exhibited by nonclassical optical phenomena, which can be examined using photon interferences and correlations. These phenomena are closely related to violation of various classical inequalities and Bell's in equalities. The most important part of this book discusses quantum optical experiments supporting quantum theory. This book may be considered as a continuation of previous monographs by one of the authors on Coherence of Light (Van Nostrand Reinhold, London 1972, second edition D. Reidel, Dordrecht 1985) and on Quantum Statistics of Linear and Nonlinear Optical Phenomena (D. Reidel, Dordrecht 1984, second edition Kluwer, Dordrecht 1991), which may serve as a preparation for reading this book."
Quantum physics has, on the one hand, drastically changed our theoretical description of the physical world and has, on the other hand, revolutionized everyday life, by allowing us to build lasers, atomic clocks used in GPS, and semiconductor-based devices such as laptop computers and smartphones. The object of this book is to give a self-contained introduction to both aspects. It contains a detailed account of the foundational principles: superposition, entanglement, quantum non-locality, decoherence and measurement theory, and of some selected applications: quantum cryptography and quantum computers, cold atoms, light emitting and laser diodes, and atomic clocks. The book is aimed at a general audience and the only prerequisite is a high-school background in mathematics.
Published in 1934, this monograph was one of the first introductory accounts of the principles which form the physical basis of the Quantum Theory, considered as a branch of mathematics. The exposition is restricted to a discussion of general principles and does not attempt detailed application to the wide domain of atomic physics, although a number of special problems are considered in elucidation of the principles. The necessary fundamental mathematical methods - the theory of linear operators and of matrics - are developed in the first chapter so this could introduce anyone to the new theory. This is an interesting snapshot of scientific history.
This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics - all of which are addressed here - made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.
N atur non facit saltus? This book is devoted to the fundamental problem which arises contin uously in the process of the human investigation of reality: the role of a mathematical apparatus in a description of reality. We pay our main attention to the role of number systems which are used, or may be used, in this process. We shall show that the picture of reality based on the standard (since the works of Galileo and Newton) methods of real analysis is not the unique possible way of presenting reality in a human brain. There exist other pictures of reality where other num ber fields are used as basic elements of a mathematical description. In this book we try to build a p-adic picture of reality based on the fields of p-adic numbers Qp and corresponding analysis (a particular case of so called non-Archimedean analysis). However, this book must not be considered as only a book on p-adic analysis and its applications. We study a much more extended range of problems. Our philosophical and physical ideas can be realized in other mathematical frameworks which are not obliged to be based on p-adic analysis. We shall show that many problems of the description of reality with the aid of real numbers are induced by unlimited applications of the so called Archimedean axiom."
The structural aspects of composite quantum systems in the foundation, interpretation and application of quantum theory is an increasingly prominent topic of physics research. As an emerging field, it seeks to understand the origins of the classical world of experience from the quantum level.Quantum Structural Studies presents conceptual fundamentals and mathematical methods for investigating the structuring of quantum systems into subsystems. Split into four sections, the topics covered include the historical and philosophical aspects of quantum structures, specific interpretive approaches and ontologies, and alternative methodological approaches to quantum mechanics. Questions addressed are: Specialists, graduate students and researchers seeking an introduction to the field of emergent structures and new directions for research and experimentation can use this book to find up-to-date representative texts and reviews.
This captivating book presents a new, unified picture of the everyday world around us. It provides rational, scientific support for the idea that there may well be more to our reality than meets the eye...Accessible and engaging for readers with no prior knowledge of quantum physics, author Ruth Kastner draws on the popular transactional interpretation of quantum mechanics to explain our 'quantum reality.' Her book focuses on modern-day examples and deals with big philosophical questions as well as ideas from physics.If you have any interest in quantum physics, this book is for you - whether you be a physics student or academic, or simply an inquisitive reader who wants to delve deeper into the reality of the world around you. Dr Ruth Kastner has received two National Science Foundation awards for the study of interpretational issues in quantum theory.
Introduction to Spintronics provides an accessible, organized, and progressive presentation of the quantum mechanical concept of spin and the technology of using it to store, process, and communicate information. Fully updated and expanded to 18 chapters, this Second Edition: Reflects the explosion of study in spin-related physics, addressing seven important physical phenomena with spintronic device applications Discusses the recently discovered field of spintronics without magnetism, which allows one to manipulate spin currents by purely electrical means Explores lateral spin-orbit interaction and its many nuances, as well as the possibility to implement spin polarizers and analyzers using quantum point contacts Introduces the concept of single-domain-nanomagnet-based computing, an ultra-energy-efficient approach to compute and store information using nanomagnets, offering a practical rendition of single-spin logic architecture ideas and an alternative to transistor-based computing hardware Features many new drill problems, and includes a solution manual and figure slides with qualifying course adoption Still the only known spintronics textbook written in English, Introduction to Spintronics, Second Edition is a must read for those interested in the science and technology of storing, processing, and communicating information via the spin degree of freedom of electrons.
Featuring detailed explanations of the major algorithms used in quantum Monte Carlo simulations, this is the first textbook of its kind to provide a pedagogical overview of the field and its applications. The book provides a comprehensive introduction to the Monte Carlo method, its use, and its foundations, and examines algorithms for the simulation of quantum many-body lattice problems at finite and zero temperature. These algorithms include continuous-time loop and cluster algorithms for quantum spins, determinant methods for simulating fermions, power methods for computing ground and excited states, and the variational Monte Carlo method. Also discussed are continuous-time algorithms for quantum impurity models and their use within dynamical mean-field theory, along with algorithms for analytically continuing imaginary-time quantum Monte Carlo data. The parallelization of Monte Carlo simulations is also addressed. This is an essential resource for graduate students, teachers, and researchers interested in quantum Monte Carlo techniques. |
![]() ![]() You may like...
Metrical Theory of Continued Fractions
M. Iosifescu, Cor Kraaikamp
Hardcover
R3,109
Discovery Miles 31 090
Stochastic Processes and Related Topics…
Ioannis Karatzas, B.S. Rajput, …
Hardcover
R2,685
Discovery Miles 26 850
Numerical Solution of Stochastic…
Peter E. Kloeden, Eckhard Platen
Hardcover
R4,005
Discovery Miles 40 050
Intelligent Data Analysis for e-Learning…
Jorge Miguel, Santi Caballe, …
Paperback
Hidden Markov Models - Estimation and…
Robert J Elliott, Lakhdar Aggoun, …
Hardcover
R4,576
Discovery Miles 45 760
|