![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics) > General
Proceedings of the International School of Subnuclear Physics, ISSP 2014, 52nd Course, ERICE, Erice, 24 June - 3 July 2014.
The second edition of this book deals, as the first, with the foundations of classical physics from the 'symplectic' point of view, and of quantum mechanics from the 'metaplectic' point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the 'principle of the symplectic camel', which is a deep topological property of Hamiltonian flows. We introduce the notion of 'quantum blob', which can be viewed as the fundamental phase space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigorous form, and the Leray index of a pair of Lagrangian planes. The concept of the 'metatron' is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect.
The structural aspects of composite quantum systems in the foundation, interpretation and application of quantum theory is an increasingly prominent topic of physics research. As an emerging field, it seeks to understand the origins of the classical world of experience from the quantum level.Quantum Structural Studies presents conceptual fundamentals and mathematical methods for investigating the structuring of quantum systems into subsystems. Split into four sections, the topics covered include the historical and philosophical aspects of quantum structures, specific interpretive approaches and ontologies, and alternative methodological approaches to quantum mechanics. Questions addressed are: Specialists, graduate students and researchers seeking an introduction to the field of emergent structures and new directions for research and experimentation can use this book to find up-to-date representative texts and reviews.
This textbook offers a clear and comprehensive introduction to methods and applications in quantum mechanics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, thus developing the understanding of quantized states further on. The first part of the book introduces the quantum theory of angular momentum and approximation methods. More complex themes are covered in the second part of the book, which describes multiple particle systems and scattering theory. Ideally suited to undergraduate students with some grounding in the basics of quantum mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cover the complete core curriculum of theoretical physics at undergraduate level. Each volume is self-contained and provides all the material necessary for the individual course topic. Numerous problems with detailed solutions support a deeper understanding. Wolfgang Nolting is famous for his refined didactical style and has been referred to as the "German Feynman" in reviews.
This book addresses an interesting area of quantum computation called quantum walks, which play an important role in building quantum algorithms, in particular search algorithms. Quantum walks are the quantum analogue of classical random walks. It is known that quantum computers have great power for searching unsorted databases. This power extends to many kinds of searches, particularly to the problem of finding a specific location in a spatial layout, which can be modeled by a graph. The goal is to find a specific node knowing that the particle uses the edges to jump from one node to the next. This book is self-contained with main topics that include: Grover's algorithm, describing its geometrical interpretation and evolution by means of the spectral decomposition of the evolution operator Analytical solutions of quantum walks on important graphs like line, cycles, two-dimensional lattices, and hypercubes using Fourier transforms Quantum walks on generic graphs, describing methods to calculate the limiting distribution and mixing time Spatial search algorithms, with emphasis on the abstract search algorithm (the two-dimensional lattice is used as an example) Szedgedy's quantum-walk model and a natural definition of quantum hitting time (the complete graph is used as an example) The reader will benefit from the pedagogical aspects of the book, learning faster and with more ease than would be possible from the primary research literature. Exercises and references further deepen the reader's understanding, and guidelines for the use of computer programs to simulate the evolution of quantum walks are also provided.
ICOLS features the latest developments in the area of laser spectroscopy and related topics in atomic, molecular, and optical physics and other disciplines. The talks covered a broad range of exciting physics, such as precision tests of fundamental symmetries with atoms and molecules, atomic clocks, quantum many-body physics with ultra-cold atoms, atom interferometry, quantum information science with photons and ions, quantum optics, and ultra-fast atomic and molecular dynamics.The conference program comprised 14 sessions with 9 keynote addresses, 25 invited talks, and 3 hot topic talks. The speakers came from 15 different countries. Ever since the ICOLS conference series originated in 1973, its proceedings have been highly valued by many for capturing important developments in the field and offering the room to represent various aspects of specific research topics. The present volume contains some of the invited talks delivered at the conference.
Vladimir Naumovich Gribov is one of the creators of modern theoretical physics. The concepts and methods that Gribov has developed in the second half of the 20th century became cornerstones of the physics of high energy hadron interactions (relativistic theory of complex angular momenta, a notion of the vacuum pole - Pomeron, effective reggeon field theory), condensed matter physics (critical phenomena), neutrino oscillations, and nuclear physics.His unmatched insights into the nature of the quantum field theory helped to elucidate, in particular, the origin of classical solutions (instantons), quantum anomalies, specific problems in quantization of non-Abelian fields (Gribov anomalies, Gribov horizon), and the role of light quarks in the color confinement phenomenon.The fifth memorial workshop which marked Gribov's 85th birthday took place at the Landau Institute for Theoretical Physics, Russia, in June 2015. Participants of the workshop who came to Chernogolovka from different parts of the world presented new results of studies of many challenging theoretical physics problems across a broad variety of topics, and shared memories about their colleague, great teacher and friend.This book is a collection of the presented talks and contributed papers, which affirm the everlasting impact of Gribov's scientific heritage upon the physics of the 21st century.
The book is designed for a one-semester graduate course in quantum mechanics for electrical engineers. It can also be used for teaching quantum mechanics to graduate students in materials science and engineering departments as well as to applied physicists. The selection of topics in the book is based on their relevance to engineering applications. The book provides the theoretical foundation for graduate courses in quantum optics and lasers, semiconductor electronics, applied superconductivity and quantum computing. It covers (along with traditional subjects) the following topics: resonant and Josephson tunneling; Landau levels and their relation to the integer quantum Hall effect; effective mass Schrodinger equation and semi-classical transport; quantum transitions in two-level systems; Berry phase and Berry curvature; density matrix and optical Bloch equation for two-level systems; Wigner function and quantum transport; exchange interaction and spintronic.
The book is designed for a one-semester graduate course in quantum mechanics for electrical engineers. It can also be used for teaching quantum mechanics to graduate students in materials science and engineering departments as well as to applied physicists. The selection of topics in the book is based on their relevance to engineering applications. The book provides the theoretical foundation for graduate courses in quantum optics and lasers, semiconductor electronics, applied superconductivity and quantum computing. It covers (along with traditional subjects) the following topics: resonant and Josephson tunneling; Landau levels and their relation to the integer quantum Hall effect; effective mass Schrodinger equation and semi-classical transport; quantum transitions in two-level systems; Berry phase and Berry curvature; density matrix and optical Bloch equation for two-level systems; Wigner function and quantum transport; exchange interaction and spintronic.
Based on lectures held at the 8th edition of the series of summer schools in Villa de Leyva since 1999, this book presents an introduction to topics of current interest at the interface of geometry, algebra, analysis, topology and theoretical physics. It is aimed at graduate students and researchers in physics or mathematics, and offers an introduction to the topics discussed in the two weeks of the summer school: operator algebras, conformal field theory, black holes, relativistic fluids, Lie groupoids and Lie algebroids, renormalization methods, spectral geometry and index theory for pseudo-differential operators.
The aim of this book is to teach undergraduate college or university students, and adults interested in astronomy and astrophysics, the basic mathematics and physics concepts needed to understand the evolution of the universe, and based on this to teach the astrophysical theories behind evolution from the very early times to the present. The book does not require extensive knowledge of mathematics, like calculus, and includes material that explains concepts such as velocity, acceleration, and force. Based on this, fascinating topics such as Dark Matter, measuring Dark Energy via supernovae velocities, and the creation of mass via the Higgs mechanism are explained. All college students with an interest in science, especially astronomy, without extensive mathematical backgrounds, should be able to use and learn from this book. Adults interested in topics like Dark Energy, the Higgs boson, and detection of Gravitational Waves, which are in the news, can make use of this book as well.
The aim of this book is to teach undergraduate college or university students, and adults interested in astronomy and astrophysics, the basic mathematics and physics concepts needed to understand the evolution of the universe, and based on this to teach the astrophysical theories behind evolution from the very early times to the present. The book does not require extensive knowledge of mathematics, like calculus, and includes material that explains concepts such as velocity, acceleration, and force. Based on this, fascinating topics such as Dark Matter, measuring Dark Energy via supernovae velocities, and the creation of mass via the Higgs mechanism are explained. All college students with an interest in science, especially astronomy, without extensive mathematical backgrounds, should be able to use and learn from this book. Adults interested in topics like Dark Energy, the Higgs boson, and detection of Gravitational Waves, which are in the news, can make use of this book as well.
This book provides an interdisciplinary approach to one of the most fascinating and important open questions in science: What is quantum mechanics really talking about? In the last decades quantum mechanics has given rise to a new quantum technological era, a revolution taking place today especially within the field of quantum information processing; which goes from quantum teleportation and cryptography to quantum computation. Quantum theory is probably our best confirmed physical theory. However, in spite of its great empirical effectiveness it stands today still without a universally accepted physical representation that allows us to understand its relation to the world and reality.The novelty of the book comes from the multiple perspectives put forward by top researchers in quantum mechanics, from Europe as well as North and South America, discussing the meaning and structure of the theory of quanta. The book comprises in a balanced manner physical, philosophical, logical and mathematical approaches to quantum mechanics and quantum information. Going from quantum superpositions and entanglement to dynamics and the problem of identity; from quantum logic, computation and quasi-set theory to the category approach and teleportation; from realism and empiricism to operationalism and instrumentalism; the book considers from different angles some of the most intriguing questions in the field.From Buenos Aires to Brussels and Cagliari, from Florence to Florianopolis, the interaction between different groups is reflected in the many different articles. This book is interesting not only to the specialists but also to the general public attempting to get a grasp on some of the most fundamental questions of present quantum physics.
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020) Mariusz Lemanczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antic, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
Structured singular light is an ubiquitous phenomenon. It is not only created when light refracts at a water surface but can also be found in the blue daytime sky. Such light fields include a spatially varying amplitude, phase, or polarization, enabling the occurrence of optical singularities. As structurally stable units of the light field, these singularities are particularly interesting since they determine its topology. In this excellent book, the author presents a pioneering study of structured singular light, thereby contributing many original approaches. Especially in the field of polarization and its rich number of different types of singularities the book defines and drives a completely new field. The work demonstrates how to control complex polarization singularity networks and their propagation. Additionally, the author pioneers tightly focusing vectorial beams, also developing an urgently needed detection scheme for three-dimensional nanoscale polarization structures. She also studies classical spatial entanglement using structured light, introducing entanglement beating and paraxial spin-orbit-coupling. The book is hallmarked by its comprehensive and thorough way of describing a plethora of different approaches to structure light by amplitude, phase and polarization, as well as the important role of optical singularities.
Quantum Communication and Information Theory: Information Theoretic Interpretations of von Neumann Entropy; R. Jozsa. Quantum Information Theory, the Entropy Bound, and Mathematical Rigor in Physics; H.P. Yuen. Classical and Quantum Information Transmission and Interactions; C.H. Bennett. Bounds of the Accessible Information under the Influence of Thermal Noise; M. Ban, et al. Quantum Computing: Quantum Computing and Decoherence in Quantum Optical Systems; J.I. Cirac, et al. Unitary Dynamics for Quantum Codewords; A. Peres. Quantum Error Correction with Imperfect Gates; A.Y. Kitaev. Eliminating the Effects of Spontaneous Emission in Quantum Computations with Cold Trapped Ions; C. D'Helon, G.J. Milburn. Quantum Measurement Theory and Statistical Physics: On Covariant Instruments in Quantum Measurement Theory; A.S. Holevo. Quantum State Reduction and the Quantum Bayes Principle; M. Ozawa. On the Quantum Theory of Direct Detection; A. Barchielli. Homodyning as Universal Detection; G.M. D'Ariano. Quantum Optics: Atom Lasers; C.M. Savage, et al. Measurement of Quantum Phase Distribution by Projection Synthesis; D.t. Pegg, S.M. Barnett. Quantum Optical Phase; S.M. Barnett, D.T. Pegg. 42 Additional Articles. Index.
There are very few with Philip Morrison's gifts, few who can lead us with firm knowledge whispering just the right encouragement as he guides us across the great ideas of science. Take this journey with one of the most astute navigators and you'll find yourself compelled to go deeper into some of the most daring adventures of modern science. Nothing is too grand or seemingly too trivial - the nature of time, the fabric of the atom, what it means to explore scientific horizons, the galaxies, even the search for unknown intelligence in the vast as-yet-uncharted universe. Then as deftly as Morrison takes us on a dazzling tour of the stars, he gently settles down for an intimate stop in the nursery where children have their first encounters with the things of everyday life, everyday things that cause us to wonder and make for discovery. With an equally firm grasp, Morrison, who witnessed the first tests of the atom bomb, takes us unflinchingly through some of the most frightening terrain of modern times, where the arms race can cause our ultimate destruction, but where sanity can still bring us peace. This extraordinary collection of essays by one of the most profound commentators on the successes and failures of the scientific enterprize concludes with lively portraits of men of science - Neils Bohr, Richard Feynman, Charles Babbage, among other notable friends and heroes.
This book is written from the viewpoint of a person standing with one foot in physics and the other in radiation oncology, trying to help practitioners in one field understand the problems of, and find solutions for, practitioners in the other. It should therefore be of interest both to radiation oncologists and medial physicists. The book is written in such a way that it should be of use both to beginners and to those with experience in either field - and even, perhaps, to those who are contemplating entering one of them. The goal is not to give formal and complete developments of the topics covered - these are covered in standard textbooks - but to develop a foundation for understanding them. The presentations cover the principle physical and biological aspects of radiation therapy and address practical clinical considerations in planning and delivering therapy. The importance of the assessment of uncertainties is emphasized. with matter; the definition of the goals and the design of radiation therapy approaches; proton therapy; living with uncertainty; biophysical models of radiation damage; computer-based optimization of treatments; and the reporting of results.Its approach can perhaps best be defined in terms of what it is not: The book is not a textbook; no attempt has been made to be objective. Rather, it presents the author's ideas about a number of matters of importance in Radiation Oncology. areas in which the author has personal experience. Formulae, and quantitation, in general, have been avoided in the belief that an understanding of the majority of important medical and biological issues generally cannot be achieved through mathematical relationships. The book is written with three goals in mind. The first of these is to arm its readers to better know why they can or should do, or not do, certain things in the course of treating a cancer. The second and complimentary goal is to encourage the asking of the question why not? in the face of assertions that some proposal is impractical, unreasonable or impossible. use of radiation in the treatment of cancer with understanding, confidence and imagination - with the aim of improving treatment outcomes for patients.
We have lost one of the giants of the twentieth century physics when Yoichiro Nambu passed away in July, 2015, at the age of 94.Today's Standard Model, though still incomplete in many respects, is the culmination of the most successful theory of the Universe to date, and it is built upon foundations provided by discoveries made by Nambu in the 1960s: the mechanism of spontaneously broken symmetry in Nature (with G Jona-Lasinio) and the hidden new SU(3) symmetry of quarks and gluons (with M-Y Han).In this volume honoring Nambu's memory, World Scientific Publishing presents a unique collection of papers written by his former colleagues, collaborating researchers and former students and associates, not only citing Nambu's great contributions in physics but also many personal and private reminiscences, some never told before. This volume also contains the very last scientific writing by Professor Nambu himself, discussing the development of particle physics.This book is a volume for all who benefited not only from Nambu's contributions toward understanding the Universe but also his warm and kind persona. It is a great addition to the history of contemporary physics.
We have lost one of the giants of the twentieth century physics when Yoichiro Nambu passed away in July, 2015, at the age of 94.Today's Standard Model, though still incomplete in many respects, is the culmination of the most successful theory of the Universe to date, and it is built upon foundations provided by discoveries made by Nambu in the 1960s: the mechanism of spontaneously broken symmetry in Nature (with G Jona-Lasinio) and the hidden new SU(3) symmetry of quarks and gluons (with M-Y Han).In this volume honoring Nambu's memory, World Scientific Publishing presents a unique collection of papers written by his former colleagues, collaborating researchers and former students and associates, not only citing Nambu's great contributions in physics but also many personal and private reminiscences, some never told before. This volume also contains the very last scientific writing by Professor Nambu himself, discussing the development of particle physics.This book is a volume for all who benefited not only from Nambu's contributions toward understanding the Universe but also his warm and kind persona. It is a great addition to the history of contemporary physics.
Published in 1934, this monograph was one of the first introductory accounts of the principles which form the physical basis of the Quantum Theory, considered as a branch of mathematics. The exposition is restricted to a discussion of general principles and does not attempt detailed application to the wide domain of atomic physics, although a number of special problems are considered in elucidation of the principles. The necessary fundamental mathematical methods - the theory of linear operators and of matrics - are developed in the first chapter so this could introduce anyone to the new theory. This is an interesting snapshot of scientific history.
This book is meant as an introduction to graphene plasmonics and aims at the advanced undergraduate and graduate students entering the field of plasmonics in graphene. In it different theoretical methods are introduced, starting with an elementary description of graphene plasmonics and evolving towards more advanced topics. This book is essentially self-contained and brings together a number of different topics about the field that are scattered in the vast literature. The text is composed of eleven chapters and of a set of detailed appendices. It can be read in two different ways: Reading only the chapters to get acquainted with the field of plasmonics in graphene or reading the chapters and studying the appendices to get a working knowledge of the topic. The study of the material in this book will bring the students to the forefront of the research in this field.
This book is meant as an introduction to graphene plasmonics and aims at the advanced undergraduate and graduate students entering the field of plasmonics in graphene. In it different theoretical methods are introduced, starting with an elementary description of graphene plasmonics and evolving towards more advanced topics. This book is essentially self-contained and brings together a number of different topics about the field that are scattered in the vast literature. The text is composed of eleven chapters and of a set of detailed appendices. It can be read in two different ways: Reading only the chapters to get acquainted with the field of plasmonics in graphene or reading the chapters and studying the appendices to get a working knowledge of the topic. The study of the material in this book will bring the students to the forefront of the research in this field.
In last years increasing attention has been again devoted to interpretations of quantum theory. In the same time interesting quantum optical experiments have been performed using nonlinear optical processes, in particular frequency down conversion, which provided new information about nature of a photon on the basis of interference and correlation (coincidence) phenomena. Such single-photon and twin-photon effects of quantum optics provide new point of view of interpretations of quantum theory and new tests of its principles. The purpose of this book is to discuss these questions. To follow this goal we give brief reviews of principles of quantum theory and of quantum theory of measurement. As a fundamental theoretical tool the coherent state technique is adopted based on a general algebraic treatment, including the de scription of interaction of radiation and matter. Typical quantum behaviour of physical systems is exhibited by nonclassical optical phenomena, which can be examined using photon interferences and correlations. These phenomena are closely related to violation of various classical inequalities and Bell's in equalities. The most important part of this book discusses quantum optical experiments supporting quantum theory. This book may be considered as a continuation of previous monographs by one of the authors on Coherence of Light (Van Nostrand Reinhold, London 1972, second edition D. Reidel, Dordrecht 1985) and on Quantum Statistics of Linear and Nonlinear Optical Phenomena (D. Reidel, Dordrecht 1984, second edition Kluwer, Dordrecht 1991), which may serve as a preparation for reading this book."
'It may be that a real synthesis of quantum and relativity theories requires not just technical developments but radical conceptual renewal.'J S BellBeyond Peaceful Coexistence: The Emergence of Space, Time and Quantum brings together leading academics in mathematics and physics to address going beyond the 'peaceful coexistence' of space-time descriptions (local and continuous ones) and quantum events (discrete and non-commutative ones). Formidable challenges waiting beyond the Standard Model require a new semantic consistency within the theories in order to build new ways of understanding, working and relating to them. The original A. Shimony meaning of the peaceful coexistence (the collapse postulate and non-locality) appear to be just the tip of the iceberg in relation to more serious fundamental issues across physics as a whole.Chapters in this book present perspectives on emergent, discrete, geometrodynamic and topological approaches, as well as a new interpretative spectrum of quantum theories after Copenhagen, discrete time theories, time-less approaches and 'super-fluid' pictures of space-time.As well as stimulating further research among established theoretical physicists, the book can also be used in courses on the philosophy and mathematics of theoretical physics. |
You may like...
The Scarlet Letter SparkNotes Literature…
Spark Notes, Nathaniel Hawthorne
Paperback
|