![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics) > General
This book develops a novel approach to perturbative quantum field theory: starting with a perturbative formulation of classical field theory, quantization is achieved by means of deformation quantization of the underlying free theory and by applying the principle that as much of the classical structure as possible should be maintained. The resulting formulation of perturbative quantum field theory is a version of the Epstein-Glaser renormalization that is conceptually clear, mathematically rigorous and pragmatically useful for physicists. The connection to traditional formulations of perturbative quantum field theory is also elaborated on, and the formalism is illustrated in a wealth of examples and exercises.
After some decades of work a satisfactory theory of quantum gravity is still not available; moreover, there are indications that the original field theoretical approach may be better suited than originally expected. There, to first approximation, one is left with the problem of quantum field theory on Lorentzian manifolds. Surprisingly, this seemingly modest approach leads to far reaching conceptual and mathematical problems and to spectacular predictions, the most famous one being the Hawking radiation of black holes. Ingredients of this approach are the formulation of quantum physics in terms of C*-algebras, the geometry of Lorentzian manifolds, in particular their causal structure, and linear hyperbolic differential equations where the well-posedness of the Cauchy problem plays a distinguished role, as well as more recently the insights from suitable concepts such as microlocal analysis. This primer is an outgrowth of a compact course given by the editors and contributing authors to an audience of advanced graduate students and young researchers in the field, and assumes working knowledge of differential geometry and functional analysis on the part of the reader.
The classical mechanistic idea of nature that prevailed in science during the eighteenth and nineteenth centuries was an essentially mindless conception: the physically described aspects of nature were asserted to be completely determined by prior physically described aspects alone, with our conscious experiences entering only passively. During the twentieth century the classical concepts were found to be inadequate. In the new theory, quantum mechanics, our conscious experiences enter into the dynamics in specified ways not fixed by the physically described aspects alone. Consequences of this radical change in our understanding of the connection between mind and brain are described. This second edition contains two new chapters investigating the role of quantum phenomena in the problem of free will and in the placebo effect.
Quantum Theory: Density, Condensation, and Bonding presents in a unitary manner the main actual theories of matter, mainly the density function theory (DFT) for fermions, the Bose-Einstein condensation (BEC) for bosons, and chemical bonding as a special realization of the first two so-called mixed fermionic-bosonic states. The book covers the modern and ultimately developed quantum theories involving the key concepts of density, condensation, and bonding. The book compiles, for the first time, the density functional theory with Bose-Einstein condensation and chemical bonding theories in a fresh and novel perspective. The book introduces modern theories of matter structure and explains the nature of chemical bonds under the consecrated and ultimate quantum paradigms of molecular structure. The book is divided into three parts, one for each level of studies: Part I: Primer Density Functional Theory is suitable for undergraduate introductory courses in physics, chemistry, and the natural sciences. Part II: Primer Density Functional Bose-Einstein Condensation Theory would be suitable for graduate- or master-level courses in physics or natural sciences. Part III: Modern Quantum Theories of Chemical Bonding is written for the post-graduate, master or doctorate courses on quantum structure of molecules in chemistry or natural sciences. Thus, this book is organized as a succession of three linked courses, from undergraduate, to graduate, to postgraduate levels in modern quantum theories of many-body systems. It covers three main concepts: density, condensation, and bonding and contains the most celebrated and challenging theories of matter. The book provides a fresh perspective on the quantum theory of structure of physico-chemical systems and will show students at all levels and researchers the way for future elaboration and discoveries toward the unification of the physical and chemical concepts of matter.
In the past four decades, there has been growing interest in the exciting new topic of physics in low dimensions. Thousands of original ideas have been proposed in the literature, and some are confirmed experimentally, along with several Nobel prizes which have been awarded in this field. While there are several books available, almost all are technical and accessible only to expert researchers. This book provides an accessible introduction to the field, with less emphasis on technical details. Whilst this book does not provide a traditional history of nano-science, instead it uses simple explanations and case studies as vehicles to explain key discoveries and the importance of them, enabling readers without a background in the area to gain an understanding of some aspects of nanoscale physics. It will be of interest to researchers working in condensed matter physics, in addition to engineers and advanced students in those disciplines. It also remains accessible to 'physics enthusiasts' from other academic disciplines, as technical details are contained within boxes and footnotes which can be skipped for a general reading of the book. Features: - Provides an accessible introduction to a technical subject - Contains exciting developments from the cutting-edge science being conducted in the area - Authored by a recognised expert in the field
This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in particular for a background independent theory of quantum gravity. A sizeable proportion of current quantum gravity programs - e.g. geometrodynamical and loop quantum gravity approaches to quantum GR, quantum cosmology, supergravity and M-theory - are background independent in this sense. This book's foundational topic is thus furthermore of practical relevance in the ongoing development of quantum gravity programs. This book shows moreover that eight of the nine facets of the Problem of Time already occur upon entertaining background independence in classical (rather than quantum) physics. By this development, and interpreting shape theory as modelling background independence, this book further establishes background independence as a field of study. Background independent mechanics, as well as minisuperspace (spatially homogeneous) models of GR and perturbations thereabout are used to illustrate these points. As hitherto formulated, the different facets of the Problem of Time greatly interfere with each others' attempted resolutions. This book explains how, none the less, a local resolution of the Problem of Time can be arrived at after various reconceptualizations of the facets and reformulations of their mathematical implementation. Self-contained appendices on mathematical methods for basic and foundational quantum gravity are included. Finally, this book outlines how supergravity is refreshingly different from GR as a realization of background independence, and what background independence entails at the topological level and beyond.
This book offers an introduction to ten key topics in quantum information science and quantum coherent phenomena, aimed at graduate-student level. The chapters cover some of the most recent developments in this dynamic research field where theoretical and experimental physics, combined with computer science, provide a fascinating arena for groundbreaking new concepts in information processing. The book addresses both the theoretical and experimental aspects of the subject, and clearly demonstrates how progress in experimental techniques has stimulated a great deal of theoretical effort and vice versa. Experiments are shifting from simply preparing and measuring quantum states to controlling and manipulating them, and the book outlines how the first real applications, notably quantum key distribution for secure communication, are starting to emerge. The chapters cover quantum retrodiction, ultracold quantum gases in optical lattices, optomechanics, quantum algorithms, quantum key distribution, quantum control based on measurement, orbital angular momentum of light, entanglement theory, trapped ions and quantum metrology, and open quantum systems subject to decoherence. The contributing authors have been chosen not just on the basis of their scientific expertise, but also because of their ability to offer pedagogical and well-written contributions which will be of interest to students and established researchers.
The core content of even the most intricate intellectual edifices is often a simple fact or idea. So is it with quantum mechanics; the entire mathematical fabric of the formal description of quantum mechanics stems essentially from the fact that quantum probabilities interfere (i.e., from the superposition principle). This book is dedicated to substantiating this claim. In the process, the book tries to demonstrate how the factual content of quantum mechanics can be transcribed in the formal language of vector spaces and linear transformations by disentangling the empirical content from the usual formal description. More importantly, it tries to bring out what this transcription achieves. The book uses a pedagogic strategy which reverse engineers the postulates of quantum mechanics to device a schematic outline of the empirical content of quantum mechanics from which the postulates are then reconstructed step by step. This strategy is adopted to avoid the disconcerting details of actual experiments (however simplified) to spare the beginner of issues that lurk in the fragile foundations of the subject. In the Copenhagen interpretation of quantum mechanics, the key idea is measurement. But "measurement" carries an entirely different meaning from the connotation that the term carries elsewhere in physics. This book strives to underline this as strongly as possible. The book is intended as an undergraduate text for a first course in quantum mechanics. Since the book is self contained, it may also be used by enthusiastic outsiders interested to get a glimpse of the core content of the subject. Features: Demonstrates why linear algebra is the appropriate mathematical language for quantum mechanics. Uses a reconstructive approach to motivate the postulates of quantum mechanics. Builds the vocabulary of quantum mechanics by showing how the entire body of its conceptual ingredients can be constructed from the single notion of quantum measurement.
The author has published two texts on classical physics, Introduction to Classical Mechanics and Introduction to Electricity and Magnetism, both meant for initial one-quarter physics courses. The latter is based on a course taught at Stanford several years ago with over 400 students enrolled. These lectures, aimed at the very best students, assume a good concurrent course in calculus; they are otherwise self-contained. Both texts contain an extensive set of accessible problems that enhances and extends the coverage. As an aid to teaching and learning, the solutions to these problems have now been published in additional texts.The present text completes the first-year introduction to physics with a set of lectures on Introduction to Quantum Mechanics, the very successful theory of the microscopic world. The Schroedinger equation is motivated and presented. Several applications are explored, including scattering and transition rates. The applications are extended to include quantum electrodynamics and quantum statistics. There is a discussion of quantum measurements. The lectures then arrive at a formal presentation of quantum theory together with a summary of its postulates. A concluding chapter provides a brief introduction to relativistic quantum mechanics. An extensive set of accessible problems again enhances and extends the coverage.The goal of these three texts is to provide students and teachers alike with a good, understandable, introduction to the fundamentals of classical and quantum physics.
The author has published two texts on classical physics, Introduction to Classical Mechanics and Introduction to Electricity and Magnetism, both meant for initial one-quarter physics courses. The latter is based on a course taught at Stanford several years ago with over 400 students enrolled. These lectures, aimed at the very best students, assume a good concurrent course in calculus; they are otherwise self-contained. Both texts contain an extensive set of accessible problems that enhances and extends the coverage. As an aid to teaching and learning, the solutions to these problems have now been published in additional texts.The present text completes the first-year introduction to physics with a set of lectures on Introduction to Quantum Mechanics, the very successful theory of the microscopic world. The Schroedinger equation is motivated and presented. Several applications are explored, including scattering and transition rates. The applications are extended to include quantum electrodynamics and quantum statistics. There is a discussion of quantum measurements. The lectures then arrive at a formal presentation of quantum theory together with a summary of its postulates. A concluding chapter provides a brief introduction to relativistic quantum mechanics. An extensive set of accessible problems again enhances and extends the coverage.The goal of these three texts is to provide students and teachers alike with a good, understandable, introduction to the fundamentals of classical and quantum physics.
In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of different aspects and scenarios. Macroscopic quantum electrodynamics is applied within the context of dispersion forces. In contrast to the normal-mode quantum electrodynamics traditionally used to study dispersion forces, the new approach allows to consider realistic material properties including absorption and is flexible enough to be applied to a broad range of geometries. Thus general properties of dispersion forces like their non-additivity and the relation between microscopic and macroscopic dispersion forces are discussed. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. In particular, nontrivial magnetic properties of the bodies, bodies of irregular shapes, the role of material absorption, and dynamical forces for excited atoms are discussed. This volume 2 deals especially with quantum electrodynamics, dispersion forces, Casimir forces, asymptotic power laws, quantum friction and universal scaling laws. The book gives both the specialist and those new to the field a thorough overview over recent results in the context of dispersion forces. It provides a toolbox for studying dispersion forces in various contexts.
The introduction of control theory in quantum mechanics has created a rich, new interdisciplinary scientific field, which is producing novel insight into important theoretical questions at the heart of quantum physics. Exploring this emerging subject, Introduction to Quantum Control and Dynamics presents the mathematical concepts and fundamental physics behind the analysis and control of quantum dynamics, emphasizing the application of Lie algebra and Lie group theory. To advantage students, instructors and practitioners, and since the field is highly interdisciplinary, this book presents an introduction with all the basic notions in the same place. The field has seen a large development in parallel with the neighboring fields of quantum information, computation and communication. The author has maintained an introductory level to encourage course use. After introducing the basics of quantum mechanics, the book derives a class of models for quantum control systems from fundamental physics. It examines the controllability and observability of quantum systems and the related problem of quantum state determination and measurement. The author also uses Lie group decompositions as tools to analyze dynamics and to design control algorithms. In addition, he describes various other control methods and discusses topics in quantum information theory that include entanglement and entanglement dynamics. Changes to the New Edition: New Chapter 4: Uncontrollable Systems and Dynamical Decomposition New section on quantum control landscapes A brief discussion of the experiments that earned the 2012 Nobel Prize in Physics Corrections and revised concepts are made to improve accuracy Armed with the basics of quantum control and dynamics, readers will invariably use this interdisciplinary knowledge in their mathematics, physics and engineering work.
Over the course of the past two to three decades, new tools of presentation and mathematical treatment have emerged and the subject matter of quantum mechanics has gone through significant changes. A Textbook on Modern Quantum Mechanics presents the selected elementary, intermediate, and advance topics with rejuvenated approach to the subject matter. Newly merged topics from contemporary physics and chemistry are included in the text as well as solved examples. The book covers: (i) fundamental discoveries that are the foundation of modern quantum mechanics; (ii) solution of Schroedinger's wave equation for 1D problems and their importance; (iii) matrix and vector formulation of quantum mechanics; (iv) transformations, symmetries, and conservation laws; (v) angular and spin momenta; (vi) solution of Schroedinger equation for central potentials; (vii) time-independent perturbation theory, variational method and WKB approximation; (viii) quantum theory of scattering; (xi) many-particle systems and their quantum mechanical treatments; (x) time-dependent perturbations and the interaction of fields with matter; (xi) relativistic quantum mechanics; and (xii) quantization of fields and the second quantization. Key Features: It provides everything a student needs to know for succeeding at all levels of the undergraduate and graduate studies. It covers most of the topics that are taught under (a) elementary, (b) intermediate, and (c) advance courses of quantum mechanics at universities and colleges. It has detailed and elegant mathematical treatment with contemporary style of interpretation and presentation in simple English. Solved examples and unsolved exercises that are part of each chapter to consolidate the readers' understanding of fundamental concepts. The subject matter of the book is well tested on the students taught by the author over a period of 30 years. This is a valuable textbook for students pursuing Bachelor of Science, Master of Science, and Doctor of Philosophy (PhD) degrees in the subjects of Physics, Chemistry, and materials science in India, South Asian countries, the United States, and Europe.
This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.
How to see physics in its full picture? This book offers a new approach: start from math, in its simple and elegant tools: discrete math, geometry, and algebra, avoiding heavy analysis that might obscure the true picture. This will get you ready to master a few fundamental topics in physics: from Newtonian mechanics, through relativity, towards quantum mechanics.Thanks to simple math, both classical and modern physics follow and make a complete vivid picture of physics. This is an original and unified point of view to highlighting physics from a fresh pedagogical angle.Each chapter ends with a lot of relevant exercises. The exercises are an integral part of the chapter: they teach new material and are followed by complete solutions. This is a new pedagogical style: the reader takes an active part in discovering the new material, step by step, exercise by exercise.The book could be used as a textbook in undergraduate courses such as Introduction to Newtonian mechanics and special relativity, Introduction to Hamiltonian mechanics and stability, Introduction to quantum physics and chemistry, and Introduction to Lie algebras with applications in physics.
Authored by two experts in the field who have been long-time collaborators, this monograph treats the scattering and inverse scattering problems for the matrix Schroedinger equation on the half line with the general selfadjoint boundary condition. The existence, uniqueness, construction, and characterization aspects are treated with mathematical rigor, and physical insight is provided to make the material accessible to mathematicians, physicists, engineers, and applied scientists with an interest in scattering and inverse scattering. The material presented is expected to be useful to beginners as well as experts in the field. The subject matter covered is expected to be interesting to a wide range of researchers including those working in quantum graphs and scattering on graphs. The theory presented is illustrated with various explicit examples to improve the understanding of scattering and inverse scattering problems. The monograph introduces a specific class of input data sets consisting of a potential and a boundary condition and a specific class of scattering data sets consisting of a scattering matrix and bound-state information. The important problem of the characterization is solved by establishing a one-to-one correspondence between the two aforementioned classes. The characterization result is formulated in various equivalent forms, providing insight and allowing a comparison of different techniques used to solve the inverse scattering problem. The past literature treated the type of boundary condition as a part of the scattering data used as input to recover the potential. This monograph provides a proper formulation of the inverse scattering problem where the type of boundary condition is no longer a part of the scattering data set, but rather both the potential and the type of boundary condition are recovered from the scattering data set.
This book gathers the lecture notes of courses given at the 2010 summer school in theoretical physics in Les Houches, France, Session XCIV. Written in a pedagogical style, this volume illustrates how the field of quantum gases has flourished at the interface between atomic physics and quantum optics, condensed matter physics, nuclear and high-energy physics, non-linear physics and quantum information. The physics of correlated atoms in optical lattices is covered from both theoretical and experimental perspectives, including the Bose and Fermi Hubbard models, and the description of the Mott transition. Few-body physics with cold atoms has made spectacular progress and exact solutions for 3-body and 4-body problems have been obtained. The remarkable collisional stability of weakly bound molecules is at the core of the studies of molecular BEC regimes in Fermi gases. Entanglement in quantum many-body systems is introduced and is a key issue for quantum information processing. Rapidly rotating quantum gases and optically induced gauge fields establish a remarkable connection with the fractional quantum Hall effect for electrons in semiconductors. Dipolar quantum gases with long range and anisotropic interaction lead to new quantum degenerate regimes in atoms with large magnetic moments, or electrically aligned polar molecules. Experiments with ultracold fermions show how quantum gases serve as ''quantum simulators'' of complex condensed matter systems through measurements of the equation of state. Similarly, the recent observation of Anderson localization of matter waves in a disordered optical potential makes a fruitful link with the behaviour of electrons in disordered systems.
This self-contained monograph provides a mathematically simple and physically meaningful model which unifies gravity, electromagnetism, optics and even some quantum behavior. The simplicity of the model is achieved by working in the frame of an inertial observer and by using a physically meaningful least action principle. The authors introduce an extension of the Principle of Inertia. This gives rise to a simple, physically meaningful action function. Visualizations of the geometryare obtained by plotting the action function. These visualizations may be used to compare the geometries of different types of fields. Moreover, a new understanding of the energy-momentum of a field emerges. The relativistic dynamics derived here properly describes motion of massive and massless objects under the influence of a gravitational and/or an electromagnetic field, and under the influence of isotropic media. The reader will learn how to compute the precession of Mercury, the deflection of light, and the Shapiro time delay. Also covered is the relativistic motion of binary stars, including the generation of gravitational waves, a derivation of Snell's Law and a relativistic description of spin. We derive a complex-valued prepotential of an electromagnetic field. The prepotential is similar to the wave function in quantum mechanics. The mathematics is accessible to students after standard courses in multivariable calculus and linear algebra. For those unfamiliar with tensors and the calculus of variations, these topics are developed rigorously in the opening chapters. The unifying model presented here should prove useful to upper undergraduate and graduate students, as well as to seasoned researchers.
The first part of this book reviews some key topics on multi-variable advanced calculus. The approach presented includes detailed and rigorous studies on surfaces in Rn which comprises items such as differential forms and an abstract version of the Stokes Theorem in Rn. The conclusion section introduces readers to Riemannian geometry, which is used in the subsequent chapters. The second part reviews applications, specifically in variational quantum mechanics and relativity theory. Topics such as a variational formulation for the relativistic Klein-Gordon equation, the derivation of a variational formulation for relativistic mechanics firstly through (semi)-Riemannian geometry are covered. The second part has a more general context. It includes fundamentals of differential geometry. The later chapters describe a new interpretation for the Bohr atomic model through a semi-classical approach. The book concludes with a classical description of the radiating cavity model in quantum mechanics.
Scientists have always attempted to explain the world in terms
of a few unifying principles. In the fifth century B.C. Democritus
boldly claimed that reality is simply a collection of indivisible
and eternal parts or atoms. Over the centuries his doctrine has
remained a landmark, and much progress in physics is due to its
distinction between subjective perception and objective reality.
This book discusses theory reduction in physics, which states that
the whole is nothing more than the sum of its parts: the properties
of things are directly determined by their constituent parts.
Reductionism deals with the relation between different theories
that address different levels of reality, and uses extrapolations
to apply that relation in different sciences. Reality shows a
complex structure of connections, and the dream of a unified
interpretation of all phenomena in several simple laws continues to
attract anyone with genuine philosophical and scientific interests.
If the most radical reductionist point of view is correct, the
relationship between disciplines is strictly inclusive: chemistry
becomes physics, biology becomes chemistry, and so on. Eventually,
only one science, indeed just a single theory, would survive, with
all others merging in the Theory of Everything. Is the current
coexistence of different sciences a mere historical venture which
will end when the Theory of Everything has been established? Can
there be a unified description of nature?
This book discusses a link between statistical theory and quantum theory based on the concept of epistemic processes. The latter are processes, such as statistical investigations or quantum mechanical measurements, that can be used to obtain knowledge about something. Various topics in quantum theory are addressed, including the construction of a Hilbert space from reasonable assumptions and an interpretation of quantum states. Separate derivations of the Born formula and the one-dimensional Schroedinger equation are given. In concrete terms, a Hilbert space can be constructed under some technical assumptions associated with situations where there are two conceptual variables that can be seen as maximally accessible. Then to every accessible conceptual variable there corresponds an operator on this Hilbert space, and if the variables take a finite number of values, the eigenspaces/eigenvectors of these operators correspond to specific questions in nature together with sharp answers to these questions. This paves a new way to the foundations of quantum theory. The resulting interpretation of quantum mechanics is related to Herve Zwirn's recent Convivial Solipsism, but it also has some relations to Quantum Bayesianism and to Rovelli's relational quantum mechanics. Niels Bohr's concept of complementarity plays an important role. Philosophical implications of this approach to quantum theory are discussed, including consequences for macroscopic settings. The book will benefit a broad readership, including physicists and statisticians interested in the foundations of their disciplines, philosophers of science and graduate students, and anyone with a reasonably good background in mathematics and an open mind.
First published in 1993: This book is an outgrowth of fiber optic design courses given by the author. |
You may like...
Press Photography Award 1942-1998 - From…
Heinz Dietrich Fischer, Erika J Fischer
Hardcover
R4,538
Discovery Miles 45 380
Gourmands and Gluttons - The Rhetoric of…
Carlnita P. Greene
Hardcover
R2,037
Discovery Miles 20 370
Artificial Intelligence for Neurological…
Ajith Abraham, Sujata Dash, …
Paperback
R3,925
Discovery Miles 39 250
John Grisham Film Collection - The…
Julia Roberts, Denzel Washington, …
DVD
(1)R483 Discovery Miles 4 830
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R6,687
Discovery Miles 66 870
|