![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics) > General
- Covers both continuum differential equation approach and matrix algebra. - Refined lecture notes, tested on students for over 30 years.
Key features: Presents the first elementary introduction to quantum geometry Explores how to understand quantum geometry without prior knowledge beyond bachelor level physics and mathematics. Contains exercises, problems and solutions to supplement and enhance learning
This book developed from a course given by the author to undergraduate and postgraduate students. It takes up Matrix Theory, Antenna Theory, and Probability Theory in detail. The first chapter on matrix theory discusses in reasonable depth the theory of Lie Algebras leading upto Cartan's Classification Theory. It also discusses some basic elements of Functional Analysis and Operator Theory in infinite dimensional Banach and Hilbert spaces. The second chapter discusses Basic Probability Theory and the topics discussed find applications to Stochastic Filtering Theory for differential equations driven by white Gaussian noise. The third chapter is on Antenna Theory with a focus on Modern Quantum Antenna Theory. The book will be a valuable resource to students and early career researchers in the field of Mathametical Physics.
Quantum field theory is the application of quantum mechanics to systems with infinitely many degrees of freedom. This 2007 textbook presents quantum field theoretical applications to systems out of equilibrium. It introduces the real-time approach to non-equilibrium statistical mechanics and the quantum field theory of non-equilibrium states in general. It offers two ways of learning how to study non-equilibrium states of many-body systems: the mathematical canonical way and an easy intuitive way using Feynman diagrams. The latter provides an easy introduction to the powerful functional methods of field theory, and the use of Feynman diagrams to study classical stochastic dynamics is considered in detail. The developed real-time technique is applied to study numerous phenomena in many-body systems. Complete with numerous exercises to aid self-study, this textbook is suitable for graduate students in statistical mechanics and condensed matter physics.
Quantum mechanics has shown unprecedented success as a physical theory, but it has forced a new view on the description of physical reality. In recent years, important progress has been achieved both in the theory of open quantum systems and in the experimental realization and control of such systems. A great deal of the new results is concerned with the characterization and quantification of quantum memory effects. From this perspective, the 684. WE-Heraeus-Seminar has brought together scientists from different communities, both theoretical and experimental, sharing expertise on open quantum systems, as well as the commitment to the understanding of quantum mechanics. This book consists of many contributions addressing the diversified physics community interested in foundations of quantum mechanics and its applications and it reports about recent results in open quantum systems and their connection with the most advanced experiments testing quantum mechanics.
Unified Field Theory was an expression first used by Einstein in his attempt to unify general relativity with electromagnetism. Unified Field Theory and Occam's Razor attempts to provide real answers to foundational questions related to this unification and should be of high interest to innovative scientists. A diverse group of contributing authors approach an old problem with an open-mindedness that presents a new and fresh perspective. The following topics are discussed in detail in the hope of a fruitful dialogue with all who are interested in this subject:This highly original book brings together theoretical researchers and experimentalists specialized in the areas of mathematics and epistemology, theoretical and experimental physics, engineering, and technology. For years they have worked independently on topics related to the foundations and unity of physics and have had numerous overlapping ideas in terms of using Clifford algebra and spinors. Within the book, new technology applications are outlined and theoretical results are complemented by interpretations of experimental data.
Features: Includes over 104 codes in OOPs python, all of which can be used either as a standalone program or integrated with any other main program without any issues. Every parameter in the input, output and execution has been provided while keeping both beginner and advanced users in mind. The output of every program is explained thoroughly with detailed examples. A detailed mathematical commenting is done along side the code which enhances clarity about the flow and working of the code
This book is a wide-ranging survey of the physics of out-of-equilibrium systems of correlated electrons, ranging from the theoretical, to the numerical, computational and experimental aspects. It starts from basic approaches to non-equilibrium physics, such as the mean-field approach, then proceeds to more advanced methods, such as dynamical mean-field theory and master equation approaches. Lastly, it offers a comprehensive overview of the latest advances in experimental investigations of complex quantum materials by means of ultrafast spectroscopy.
It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrodinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
There is no sharp dividing line between the foundations of physics and philosophy of physics. This is especially true for quantum mechanics. The debate on the interpretation of quantum mechanics has raged in both the scientific and philosophical communities since the 1920s and continues to this day. (We shall understand the unqualified term 'quantum mechanics' to mean the mathematical formalism, i. e. laws and rules by which empirical predictions and theoretical advances are made. ) There is a popular rendering of quantum mechanics which has been publicly endorsed by some well known physicists which says that quantum mechanics is not only 1 more weird than we imagine but is weirder than we can imagine. Although it is readily granted that quantum mechanics has produced some strange and counter-intuitive results, the case will be presented in this book that quantum mechanics is not as weird as we might have been led to believe! The prevailing theory of quantum mechanics is called Orthodox Quantum Theory (also known as the Copenhagen Interpretation). Orthodox Quantum Theory endows a special status on measurement processes by requiring an intervention of an observer or an observer's proxy (e. g. a measuring apparatus). The placement of the observer (or proxy) is somewhat arbitrary which introduces a degree of subjectivity. Orthodox Quantum Theory only predicts probabilities for measured values of physical quantities. It is essentially an instrumental theory, i. e.
- integrates contemporary science, philosophy, and psychoanalysis - first book on the market to discuss more than one area of contemporary science in relation to psychoanalysis
- integrates contemporary science, philosophy, and psychoanalysis - first book on the market to discuss more than one area of contemporary science in relation to psychoanalysis
The counter-intuitive aspects of quantum physics have been for long illustrated by thought experiments, from Einstein's photon box to Schroedinger's cat. These experiments have now become real, with single particles - electrons, atoms or photons - directly unveiling the weird features of the quantum. State superpositions, entanglement and complementarity define a novel quantum logic which can be harnessed for information processing, raising great hopes for applications. This book describes a class of such thought experiments made real. Juggling with atoms and photons confined in cavities, ions or cold atoms in traps, is here an incentive to shed a new light on the basic concepts of quantum physics. Measurement processes and decoherence at the quantum-classical boundary are highlighted. This volume, which combines theory and experiments, will be of interest to students in quantum physics, teachers seeking illustrations for their lectures and new problem sets, researchers in quantum optics and quantum information.
- New advancements of fractal analysis with applications to many scientific, engineering, and societal issues - Recent changes and challenges of fractal geometry with the rapid advancement of technology - Attracted chapters on novel theory and recent applications of fractals. - Offers recent findings, modelling and simulations of fractal analysis from eminent institutions across the world - Analytical innovations of fractal analysis - Edited collection with a variety of viewpoints
This volume is a comprehensive compilation of carefully selected questions at the PhD qualifying exam level, including many actual questions from Columbia University, University of Chicago, MIT, State University of New York at Buffalo, Princeton University, University of Wisconsin and the University of California at Berkeley over a twenty-year period. Topics covered in this book include the basic principles of quantum phenomena, particles in potentials, motion in electromagnetic fields, perturbation theory and scattering theory, among many others.This latest edition has been updated with more problems and solutions and the original problems have also been modernized, excluding outdated questions and emphasizing those that rely on calculations. The problems range from fundamental to advanced in a wide range of topics on quantum mechanics, easily enhancing the student's knowledge through workable exercises. Simple-to-solve problems play a useful role as a first check of the student's level of knowledge whereas difficult problems will challenge the student's capacity on finding the solutions.
This book highlights the novel research in quantum memory networking, especially quantum memories based on cold atomic ensembles. After discussing the frontiers of quantum networking research and building a DLCZ-type quantum memory with cold atomic ensemble, the author develops the ring cavity enhanced quantum memory and demonstrates a filter-free quantum memory, which significantly improves the photon-atom entanglement. The author then realizes for the first time the GHZ-type entanglement of three separate quantum memories, a building block of 2D quantum repeaters and quantum networks. The author also combines quantum memories and time-resolved measurements, and reports the first multiple interference of three single photons with different colors. The book is of good reference value for graduate students, researchers, and technical personnel in quantum information sciences.
How do atoms and electrons behave? Are they just like marbles, basketballs, suns, and planets, but smaller?They are not. Atoms and electrons behave in a fashion quite unlike the familiar marbles, basketballs, suns, and planets. This sophomore-level textbook delves into the counterintuitive, intricate, but ultimately fascinating world of quantum mechanics. Building both physical insight and mathematical technique, it opens up a new world to the discerning reader.After discussing experimental demonstrations showing that atoms behave differently from marbles, the book builds up the phenomena of the quantum world - quantization, interference, and entanglement - in the simplest possible system, the qubit. Once the phenomena are introduced, it builds mathematical machinery for describing them. It goes on to generalize those concepts and that machinery to more intricate systems. Special attention is paid to identical particles, the source of considerable student confusion. In the last chapter, students get a taste of what is not treated in the book and are invited to continue exploring quantum mechanics. Problems in the book test both conceptual and technical knowledge, and invite students to develop their own questions.
Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
This edited, multi-author book gathers selected, peer-reviewed contributions based on papers presented at the 23rd International Workshop on Quantum Systems in Chemistry, Physics, and Biology (QSCP-XXIII), held in Mopani Camp, The Kruger National Park, South Africa, in September 2018. The content is primarily intended for scholars, researchers, and graduate students working at universities and scientific institutes who are interested in the structure, properties, dynamics, and spectroscopy of atoms, molecules, biological systems, and condensed matter.
Gives basics of Fortran and Numerical Calculation. The book includes Fortran codes and also gives access to author's website. Summarizes history of Quantum Mechanics through the most important papers. Presents detailed mathematical basis of Quantum Mechanics and Quantum Chemistry. Includes proposed exercises and do-it-yourself activities.
The heart of the book is the development of a short-time asymptotic expansion for the heat kernel. This is explained in detail and explicit examples of some advanced calculations are given. In addition some advanced methods and extensions, including path integrals, jump diffusion and others are presented. The book consists of four parts: Analysis, Geometry, Perturbations and Applications. The first part shortly reviews of some background material and gives an introduction to PDEs. The second part is devoted to a short introduction to various aspects of differential geometry that will be needed later. The third part and heart of the book presents a systematic development of effective methods for various approximation schemes for parabolic differential equations. The last part is devoted to applications in financial mathematics, in particular, stochastic differential equations. Although this book is intended for advanced undergraduate or beginning graduate students in, it should also provide a useful reference for professional physicists, applied mathematicians as well as quantitative analysts with an interest in PDEs.
Remains accessible but incorporates a rigorous mathematical treatment with clarity and emphasizing a contemporary style and a rejuvenated approach Presents a student-friendly and self-contained structure Balances theory and worked examples
The second edition deals with all essential aspects of non-relativistic quantum physics up to the quantisation of fields. In contrast to common textbooks of quantum mechanics, modern experiments are described both for the purpose of foundation of the theory and in relation to recent applications. Links are made to important research fields and applications such as elementary particle physics, solid state physics and nuclear magnetic resonance in medicine, biology and material science. Special emphasis is paid to quantum physics in nanoelectronics such as resonant tunnelling, Coulomb blockade and the realisation of quantum bits. This second edition also considers quantum transport through quantum point contacts and its application as charge detectors in nanoelectronic circuits. Also the realization and the study of electronic properties of an artificial quantum dot molecule are presented. Because of its recent interest a brief discussion of Bose-Einstein condensation has been included, as well as the recently detected Higgs particle. Another essential new addition to the present book concerns a detailed discussion of the particle picture in quantum field theory. Counterintuitive aspects of single particle quantum physics such as particle-wave duality and the Einstein-Podolski-Rosen (EPR) paradox appear more acceptable to our understanding if discussed on the background of quantum field theory. The non-locality of quantum fields explains non-local behaviour of particles in classical Schroedinger quantum mechanics. Finally, new problems have been added. The book is suitable as an introduction into quantum physics, not only for physicists but also for chemists, biologists, engineers, computer scientists and even for philosophers as far as they are interested in natural philosophy and epistemology. |
You may like...
Dynamic Web Application Development…
David Parsons, Simon Stobart
Paperback
|