0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (61)
  • R250 - R500 (313)
  • R500+ (4,620)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics) > General

Microcomputer Quantum Mechanics (Hardcover): J. P. Killingbeck Microcomputer Quantum Mechanics (Hardcover)
J. P. Killingbeck
R4,635 Discovery Miles 46 350 Ships in 10 - 15 working days

Microcomputer Quantum Mechanics combines the teaching of computing skills with depth of mathematical understanding. This practical text demonstrates how computation can be integrated with theoretical analysis as part of a unified attack on problems in one of the most interesting areas of modern physics. The author discusses the mathematical principles behind the programs and actually creates new methods to facilitate the application of microcomputers in quantum mechanics.Microcomputer Quantum Mechanics combines the teaching of computing skills with depth of mathematical understanding. This practical text demonstrates how computation can be integrated with theoretical analysis as part of a unified attack on problems in one of the most interesting areas of modern physics. The author discusses the mathematical principles behind the programs and actually creates new methods to facilitate the application of microcomputers in quantum mechanics.

Quantum Information and Quantum Optics with Superconducting Circuits (Hardcover): Juan Jose Garcia Ripoll Quantum Information and Quantum Optics with Superconducting Circuits (Hardcover)
Juan Jose Garcia Ripoll
R1,649 R1,402 Discovery Miles 14 020 Save R247 (15%) Ships in 10 - 15 working days

Superconducting quantum circuits are among the most promising solutions for the development of scalable quantum computers. Built with sizes that range from microns to tens of metres using superconducting fabrication techniques and microwave technology, superconducting circuits demonstrate distinctive quantum properties such as superposition and entanglement at cryogenic temperatures. This book provides a comprehensive and self-contained introduction to the world of superconducting quantum circuits, and how they are used in current quantum technology. Beginning with a description of their basic superconducting properties, the author then explores their use in quantum systems, showing how they can emulate individual photons and atoms, and ultimately behave as qubits within highly connected quantum systems. Particular attention is paid to cutting-edge applications of these superconducting circuits in quantum computing and quantum simulation. Written for graduate students and junior researchers, this accessible text includes numerous homework problems and worked examples.

Causal Physics - Photons by Non-Interactions of Waves (Paperback): Chandrasekhar Roychoudhuri Causal Physics - Photons by Non-Interactions of Waves (Paperback)
Chandrasekhar Roychoudhuri
R2,569 Discovery Miles 25 690 Ships in 10 - 15 working days

Causal Physics: Photons by Non Interactions of Waves redefines the mathematical Superposition Principle as an operational Superposition Effect; which is the measurable physical transformation experienced by a detector due to stimulations induced by multiple waves simultaneously acting on the detecting dipoles. This light-matter interaction process driven model emerges naturally by incorporating the observed properties, Non-Interaction of Waves (NIW) and quantized photo detectors needing to fill up their "quantum-cups" with the required quantity of energy from all the stimulating waves around it. By not incorporating this NIW-property explicitly, quantum mechanics failed to extract various embedded realities in the theory while incorporated unnecessary hypotheses like wave-particle duality. The book utilizes this NIW-property to explain all the major optical phenomena (diffraction, spectrometry, coherence.) without using any self-contradictory hypotheses that are prevalent now. The book redefines the old ether (constituting the space) as a stationary Complex Tension Field (CTF), holding all the energy of the universe (no need for Dark Energy of Dark Matter). CTF sustains perpetually propagating EM waves as its linear excitations and the particles as self-looped localized resonant non-linear excitations. Tensions are identified by Maxwell, then the velocities of emitting and detecting atoms through the CTF contribute to the Doppler shifts separately. This calls for re-visiting physical processes behind Hubble Redshift and hence Expanding Universe. The success of the book derives from a novel thinking strategy of visualizing the invisible interaction processes, named as Interaction Process Mapping Epistemology (IPM-E). This is over and above the prevailing strategy of Measurable Data Modeling Epistemology (MDM-E). The approach inspires the next generation of physicists to recognizing that the "foundation of the edifice of physics" has not yet been finalized. IPM-E will stimulate more of us to become technology innovators by learning to emulate the ontologically real physical processes in nature and become more evolution congruent. Critical thinkers without expertise in optical science and engineering, will appreciate the value of the content by reading the book backward, starting from Ch.12; which explains the critical thinking methodology besides giving a very brief summary of the contents in the previous chapters. Establishes that abandoning the wave-particle-duality actually allows us to extract more realities out of quantum mechanics. Illustrates how the discovery of the NIW-property profoundly impacts several branches of fundamental physics, including Doppler effect and hence the cosmological red shift Summarizes that many ad hoc hypotheses from physics can be removed, a la Occam's razor, while improving the reality and comprehension of some of the current working theories Demonstrates that our persistent attempts to restore causality in physical theories will be guided by our capability to visualize the invisible light matter interaction processes that are behind the emergence of all measurable data Draws close attention to the invisible but ontological interaction processes behind various optical phenomena so we can emulate them more efficiently and knowledgably in spite of limitations of our theories Designed as a reference book for general physics and philosophy, this optical science and engineering book is an ideal resource for optical engineers, physicists, and those working with modern optical equipment and high precision instrumentation.

Computational Quantum Mechanics for Materials Engineers - The EMTO Method and Applications (Hardcover, 2007 ed.): Levente Vitos Computational Quantum Mechanics for Materials Engineers - The EMTO Method and Applications (Hardcover, 2007 ed.)
Levente Vitos
R4,230 Discovery Miles 42 300 Ships in 18 - 22 working days

Traditionally, new materials have been developed by empirically correlating their chemical composition, and the manufacturing processes used to form them, with their properties. Until recently, metallurgists have not used quantum theory for practical purposes. However, the development of modern density functional methods means that today, computational quantum mechanics can help engineers to identify and develop novel materials. Computational Quantum Mechanics for Materials Engineers describes new approaches to the modelling of disordered alloys that combine the most efficient quantum-level theories of random alloys with the most sophisticated numerical techniques to establish a theoretical insight into the electronic structure of complex materials such as stainless steels, Hume-Rothery alloys and silicates. The practical success of these approaches to applications in all of these areas are covered in detail.

Introduction to Quantum Field Theory - Classical Mechanics to Gauge Field Theories (Hardcover): Anthony G. Williams Introduction to Quantum Field Theory - Classical Mechanics to Gauge Field Theories (Hardcover)
Anthony G. Williams
R2,248 Discovery Miles 22 480 Ships in 9 - 17 working days

This textbook offers a detailed and uniquely self-contained presentation of quantum and gauge field theories. Writing from a modern perspective, the author begins with a discussion of advanced dynamics and special relativity before guiding students steadily through the fundamental principles of relativistic quantum mechanics and classical field theory. This foundation is then used to develop the full theoretical framework of quantum and gauge field theories. The introductory, opening half of the book allows it to be used for a variety of courses, from advanced undergraduate to graduate level, and students lacking a formal background in more elementary topics will benefit greatly from this approach. Williams provides full derivations wherever possible and adopts a pedagogical tone without sacrificing rigour. Worked examples are included throughout the text and end-of-chapter problems help students to reinforce key concepts. A fully worked solutions manual is available online for instructors.

Quantum Puzzle, The: Critique Of Quantum Theory And Electrodynamics (Hardcover): Barry R. Clarke Quantum Puzzle, The: Critique Of Quantum Theory And Electrodynamics (Hardcover)
Barry R. Clarke
R3,492 Discovery Miles 34 920 Ships in 18 - 22 working days

In 1861, James Clerk-Maxwell published Part II of his four-part series 'On physical lines of force'. In it, he attempted to construct a vortex model of the magnetic field but after much effort neither he, nor other late nineteenth century physicists who followed him, managed to produce a workable theory. What survived from these attempts were Maxwell's four equations of electrodynamics together with the Lorentz force law, formulae that made no attempt to describe an underlying reality but stood only as a mathematical description of the observed phenomena. When the quantum of action was introduced by Planck in 1900 the difficulties that had faced Maxwell's generation were still unresolved. Since then theories of increasing mathematical complexity have been constructed to attempt to bring the totality of phenomena into order with little success. This work examines the problems that had been abandoned long before quantum mechanics was formulated in 1925 and argues that these issues need to be revisited before real progress in the quantum theory of the electromagnetic field can be made.

Introduction To Quantum Field Theory (Hardcover, Second Edition): Roberto Casalbuoni Introduction To Quantum Field Theory (Hardcover, Second Edition)
Roberto Casalbuoni
R2,423 Discovery Miles 24 230 Ships in 18 - 22 working days

This book deals with quantum field theory, the language of modern elementary particles physics. Based on university lectures given by the author, this volume provides a detailed technical treatment of quantum field theory that is particularly useful for students; it begins with the quantization of the most important free fields, the scalar, the spin-1/2 and the photon fields, and is then followed by a detailed account of symmetry properties, including a discussion on global and local symmetries and the spontaneous breaking of symmetries. Perturbation theory, one-loop effects for quantum electrodynamics, and renormalization properties are also covered. In this second edition new chapters have been introduced with a general description of path integral quantization both on quantum mechanics and in quantum field theory, with a particular attention to the gauge fields. The path integral quantization of Fermi fields is also discussed.

Measurement of Higgs Boson Production Cross Sections in the Diphoton Channel - with the full ATLAS Run-2 Data and Constraints... Measurement of Higgs Boson Production Cross Sections in the Diphoton Channel - with the full ATLAS Run-2 Data and Constraints on Anomalous Higgs Boson Interactions (Hardcover, 1st ed. 2020)
Ahmed Tarek Abouelfadl Mohamed
R2,691 Discovery Miles 26 910 Ships in 18 - 22 working days

This thesis presents the measurement of the Higgs boson cross section in the diphoton decay channel. The measurement relies on proton-proton collision data at a center-of-mass energy s = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider (LHC). The collected data correspond to the full Run-2 dataset with an integrated luminosity of 139 fb-1. The measured cross sections are used to constrain anomalous Higgs boson interactions in the Effective Field Theory (EFT) framework. The results presented in this thesis represent a reduction by a factor 2 of the different photon and jet energy scale and resolution systematic uncertainties with respect to the previous ATLAS publication. The thesis details the calibration of electron and photon energies in ATLAS, in particular the measurement of the presampler energy scale and the estimation of its systematic uncertainty. This calibration was used to perform a measurement of the Higgs boson mass in the H and H 4l channels using the 36 fb 1 dataset.

Loop Quantum Gravity: The First 30 Years (Hardcover): Abhay Ashtekar, Jorge Pullin Loop Quantum Gravity: The First 30 Years (Hardcover)
Abhay Ashtekar, Jorge Pullin
R2,810 Discovery Miles 28 100 Ships in 18 - 22 working days

'Written by young theoretical physicists who are experts in the field, this volume is meant both to provide an introduction to the field and to offer a review of the latest developments, not discussed in many other existing books, for senior researchers. It will also appeal to scientists who do not work directly on LQG but are interested in issues at the interface of general relativity and quantum physics.'CERN CourierThis volume presents a snapshot of the state-of-the-art in loop quantum gravity from the perspective of younger leading researchers. It takes the reader from the basics to recent advances, thereby bridging an important gap.The aim is two-fold - to provide a contemporary introduction to the entire field for students and post-docs, and to present an overview of the current status for more senior researchers. The contributions include the latest developments that are not discussed in existing books, particularly recent advances in quantum dynamics both in the Hamiltonian and sum over histories approaches; and applications to cosmology of the early universe and to the quantum aspects of black holes.

Loop Quantum Gravity: The First 30 Years (Paperback): Abhay Ashtekar, Jorge Pullin Loop Quantum Gravity: The First 30 Years (Paperback)
Abhay Ashtekar, Jorge Pullin
R1,476 Discovery Miles 14 760 Ships in 10 - 15 working days

'Written by young theoretical physicists who are experts in the field, this volume is meant both to provide an introduction to the field and to offer a review of the latest developments, not discussed in many other existing books, for senior researchers. It will also appeal to scientists who do not work directly on LQG but are interested in issues at the interface of general relativity and quantum physics.'CERN CourierThis volume presents a snapshot of the state-of-the-art in loop quantum gravity from the perspective of younger leading researchers. It takes the reader from the basics to recent advances, thereby bridging an important gap.The aim is two-fold - to provide a contemporary introduction to the entire field for students and post-docs, and to present an overview of the current status for more senior researchers. The contributions include the latest developments that are not discussed in existing books, particularly recent advances in quantum dynamics both in the Hamiltonian and sum over histories approaches; and applications to cosmology of the early universe and to the quantum aspects of black holes.

Universal Measurements: How To Free Three Birds In One Move (Hardcover): Diederik Aerts, Massimiliano Sassoli de Bianchi Universal Measurements: How To Free Three Birds In One Move (Hardcover)
Diederik Aerts, Massimiliano Sassoli de Bianchi
R1,665 Discovery Miles 16 650 Ships in 18 - 22 working days

This is a book presenting to a wide audience of readers, ranging from fans of science to professional researchers, some of the authors' recent discoveries in three distinct, but intimately related domains: probability theory (Bertrand's paradox), observation in physics (the measurement problem) and the modeling of experiments in psychology (quantum cognition). In all three of these domains of investigation, and the associated problems, the authors explain how to advantageously use the key notion of universal measurement, which constitutes the fil rouge of the whole text.

Universal Measurements: How To Free Three Birds In One Move (Paperback): Diederik Aerts, Massimiliano Sassoli de Bianchi Universal Measurements: How To Free Three Birds In One Move (Paperback)
Diederik Aerts, Massimiliano Sassoli de Bianchi
R748 Discovery Miles 7 480 Ships in 10 - 15 working days

This is a book presenting to a wide audience of readers, ranging from fans of science to professional researchers, some of the authors' recent discoveries in three distinct, but intimately related domains: probability theory (Bertrand's paradox), observation in physics (the measurement problem) and the modeling of experiments in psychology (quantum cognition). In all three of these domains of investigation, and the associated problems, the authors explain how to advantageously use the key notion of universal measurement, which constitutes the fil rouge of the whole text.

Wigner Transform, The (Hardcover): Maurice A. De Gosson Wigner Transform, The (Hardcover)
Maurice A. De Gosson
R2,824 Discovery Miles 28 240 Ships in 18 - 22 working days

This book provides an in-depth and rigorous study of the Wigner transform and its variants. They are presented first within a context of a general mathematical framework, and then through applications to quantum mechanics. The Wigner transform was introduced by Eugene Wigner in 1932 as a probability quasi-distribution which allows expression of quantum mechanical expectation values in the same form as the averages of classical statistical mechanics. It is also used in signal processing as a transform in time-frequency analysis, closely related to the windowed Gabor transform.Written for advanced-level students and professors in mathematics and mathematical physics, it is designed as a complete textbook course providing analysis on the most important research on the subject to date. Due to the advanced nature of the content, it is also suitable for research mathematicians, engineers and chemists active in the field.

Wigner Transform, The (Paperback): Maurice A. De Gosson Wigner Transform, The (Paperback)
Maurice A. De Gosson
R1,490 Discovery Miles 14 900 Ships in 10 - 15 working days

This book provides an in-depth and rigorous study of the Wigner transform and its variants. They are presented first within a context of a general mathematical framework, and then through applications to quantum mechanics. The Wigner transform was introduced by Eugene Wigner in 1932 as a probability quasi-distribution which allows expression of quantum mechanical expectation values in the same form as the averages of classical statistical mechanics. It is also used in signal processing as a transform in time-frequency analysis, closely related to the windowed Gabor transform.Written for advanced-level students and professors in mathematics and mathematical physics, it is designed as a complete textbook course providing analysis on the most important research on the subject to date. Due to the advanced nature of the content, it is also suitable for research mathematicians, engineers and chemists active in the field.

Spin Wave Confinement - Propagating Waves (Hardcover, 2nd edition): Sergej O. Demokritov Spin Wave Confinement - Propagating Waves (Hardcover, 2nd edition)
Sergej O. Demokritov
R4,064 Discovery Miles 40 640 Ships in 10 - 15 working days

Since the publication of the first edition of Spin-Wave Confinement, the magnetic community's interest in dynamic excitations in magnetic systems of reduced dimensions has been increasing. Although the concept of spin waves and their quanta (magnons) as propagating excitation of magnetic media was introduced more than 80 years ago, this field has been repeatedly bringing us fascinating new physical phenomena. The successful development of magnonics as an emerging subfield of spintronics, which considers confined spin waves as a basis for smaller, faster, more robust, and more power-efficient electronic devices, inevitably demands reduction in the sizes and dimensions of the magnetic systems being studied. The unique features of magnons, including the possibility of carrying spin information over relatively long distances, the possibility of achieving submicrometer wavelength at microwave frequencies, and controllability by electronic signal via magnetic fields, make magnonic devices distinctively suited for implementation of novel integrated electronic schemes characterized by high speed, low power consumption, and extended functionalities. Edited by S. O. Demokritov, a prominent magnonics researcher who has successfully collected the results of cutting-edge research by almost all main players in the field, this book is for everyone involved in nanotechnology, spintronics, magnonics, and nanomagnetism.

Quantum Field Theory (Hardcover): Harald Fritzsch Quantum Field Theory (Hardcover)
Harald Fritzsch
R1,692 Discovery Miles 16 920 Ships in 10 - 15 working days

The matter in our universe is composed of electrons and quarks. The dynamics of electrons and quarks is described by the Standard Model of particle physics, which is based on quantum field theories. The general framework of quantum field theories is described in this book. After the classical mechanics and the relativistic mechanics the details of classical scalar fields, of electrodynamics and of quantum mechanics are discussed. Then the quantization of scalar fields, of spinor fields and of vector fields is described.The basic interactions are described by gauge theories. These theories are discussed in detail, in particular the gauge theories of quantum electrodynamics (QED) and of quantum chromodynamics (QCD), based on the gauge group SU(3). In both theories the gauge bosons, the photon and the gluons, have no mass. The gauge theory of the electroweak interactions, based on the gauge group SU(2) x U(1), describes both the electromagnetic and the weak interactions. The weak force is generated by the exchange of the weak bosons. They have a large mass, and one believes that these masses are generated by a spontaneous breaking of the gauge symmetry.It might be that the strong and the electroweak interactions are unified at very high energies ('Grand Unification'). The gauge groups SU(3) and SU(2) x U(1) must be subgroups of a big gauge group, describing the Grand Unification. Two such theories are discussed, based on the gauge groups SU(5) and SO(10).

Light And Vacuum: The Wave-particle Nature Of The Light And The Quantum Vacuum. Electromagnetic Theory And Quantum... Light And Vacuum: The Wave-particle Nature Of The Light And The Quantum Vacuum. Electromagnetic Theory And Quantum Electrodynamics Beyond The Standard Model (Hardcover, Second Edition)
Meis Constantin
R2,123 Discovery Miles 21 230 Ships in 18 - 22 working days

Light and Vacuum presents a synthesis of selected fundamental topics of electromagnetic wave theory and quantum electrodynamics (QED) and analyzes the main theoretical difficulties encountered to ensure a coherent mathematical description of the simultaneous wave-particle nature of light, put in evidence by the experiments. The notion and the role of the quantum vacuum, strongly related to light, are extensively investigated.Classical electrodynamics issued from Maxwell's equations revealed the necessity of introducing the notion of volume for an electromagnetic wave to stand entailing precise values of cut-off wavelengths to account for the shape and dimensions of the surrounding space. Conversely, in QED, light is considered to be composed of point particles disregarding the conceptual question on how the frequency of oscillating electric and magnetic fields may be attributed to a point particle.To conciliate these concepts, the book provides a comprehensive overview of the author's work, including innovative contributions on the quantization of the vector potential amplitude at a single photon state, the non-local simultaneous wave-particle mathematical representation of the photon and finally the quantum vacuum. The purpose of the advanced elaborations is to raise questions, give hints and answers, and finally aspire for further theoretical and experimental studies in order to improve our knowledge and understanding on the real essence of Light and Vacuum.In this new edition, improvements have been made to the various chapters taking into account the actual status of the knowledge in this field. The photon wave function is further analyzed and a new concept of quantum vacuum is advanced compatible with recent astrophysical observations.

Classical And Quantum Dissipative Systems (Hardcover, Second Edition): Mohsen Razavy Classical And Quantum Dissipative Systems (Hardcover, Second Edition)
Mohsen Razavy
R5,162 Discovery Miles 51 620 Ships in 18 - 22 working days

Dissipative forces play an important role in problems of classical as well as quantum mechanics. Since these forces are not among the basic forces of nature, it is essential to consider whether they should be treated as phenomenological interactions used in the equations of motion, or they should be derived from other conservative forces. In this book we discuss both approaches in detail starting with the Stoke's law of motion in a viscous fluid and ending with a rather detailed review of the recent attempts to understand the nature of the drag forces originating from the motion of a plane or a sphere in vacuum caused by the variations in the zero-point energy. In the classical formulation, mathematical techniques for construction of Lagrangian and Hamiltonian for the variational formulation of non-conservative systems are discussed at length. Various physical systems of interest including the problem of radiating electron, theory of natural line width, spin-boson problem, scattering and trapping of heavy ions and optical potential models of nuclear reactions are considered and solved.

Classical And Quantum Dissipative Systems (Paperback, Second Edition): Mohsen Razavy Classical And Quantum Dissipative Systems (Paperback, Second Edition)
Mohsen Razavy
R2,441 Discovery Miles 24 410 Ships in 10 - 15 working days

Dissipative forces play an important role in problems of classical as well as quantum mechanics. Since these forces are not among the basic forces of nature, it is essential to consider whether they should be treated as phenomenological interactions used in the equations of motion, or they should be derived from other conservative forces. In this book we discuss both approaches in detail starting with the Stoke's law of motion in a viscous fluid and ending with a rather detailed review of the recent attempts to understand the nature of the drag forces originating from the motion of a plane or a sphere in vacuum caused by the variations in the zero-point energy. In the classical formulation, mathematical techniques for construction of Lagrangian and Hamiltonian for the variational formulation of non-conservative systems are discussed at length. Various physical systems of interest including the problem of radiating electron, theory of natural line width, spin-boson problem, scattering and trapping of heavy ions and optical potential models of nuclear reactions are considered and solved.

A Conceptual History of Space and Symmetry - From Plato to the Superworld (Hardcover, 1st ed. 2018): Pietro Giuseppe Fre A Conceptual History of Space and Symmetry - From Plato to the Superworld (Hardcover, 1st ed. 2018)
Pietro Giuseppe Fre
R4,730 Discovery Miles 47 300 Ships in 18 - 22 working days

This book presents the author's personal historical perspective and conceptual analysis on symmetry and geometry. The author enlightens with modern views the historical process which led to the contemporary vision of space and symmetry that are used in theoretical physics and in particular in such abstract and advanced descriptions of the physical world as those provided by supergravity. The book is written intertwining storytelling and philosophical argumentation with some essential technical material. The author argues that symmetry and geometry are inextricably entangled and their current meaning is the result of a long process of abstraction which was determined through history and can be understood within the analytic system of thought of western civilization that started with the Ancient Greeks. The evolution of geometry and symmetry theory in the last forty years has been deeply and constructively influenced by supersymmetry/supergravity and the allied constructions of strings and branes. Further advances in theoretical physics cannot be based simply on the Galilean method of interrogating nature and then formulating a testable theory to explain the observed phenomena. One ought to interrogate human thought, meaning frontier-line mathematics concerned with geometry and symmetry in order to find there the threads of so far unobserved correspondences, reinterpretations and renewed conceptions.

Stochastic Simulations of Clusters - Quantum Methods in  Flat and Curved Spaces (Paperback): Emanuele Curotto Stochastic Simulations of Clusters - Quantum Methods in Flat and Curved Spaces (Paperback)
Emanuele Curotto
R2,404 Discovery Miles 24 040 Ships in 10 - 15 working days

Unravels Complex Problems through Quantum Monte Carlo Methods Clusters hold the key to our understanding of intermolecular forces and how these affect the physical properties of bulk condensed matter. They can be found in a multitude of important applications, including novel fuel materials, atmospheric chemistry, semiconductors, nanotechnology, and computational biology. Focusing on the class of weakly bound substances known as van derWaals clusters or complexes, Stochastic Simulations of Clusters: Quantum Methods in Flat and Curved Spaces presents advanced quantum simulation techniques for condensed matter. The book develops finite temperature statistical simulation tools and real-time algorithms for the exact solution of the Schroedinger equation. It draws on potential energy models to gain insight into the behavior of minima and transition states. Using Monte Carlo methods as well as ground state variational and diffusion Monte Carlo (DMC) simulations, the author explains how to obtain temperature and quantum effects. He also shows how the path integral approach enables the study of quantum effects at finite temperatures. To overcome timescale problems, this book supplies efficient and accurate methods, such as diagonalization techniques, differential geometry, the path integral method in statistical mechanics, and the DMC approach. Gleaning valuable information from recent research in this area, it presents special techniques for accelerating the convergence of quantum Monte Carlo methods.

Lecture Notes In Topics In Path Integrals And String Representations (Hardcover): Luiz C.L. Botelho Lecture Notes In Topics In Path Integrals And String Representations (Hardcover)
Luiz C.L. Botelho
R2,405 Discovery Miles 24 050 Ships in 18 - 22 working days

'All are every interesting topics treated with a high level of mathematical sophistication. One of the very useful tricks the author repeatedly resorts to is the introduction of one-parameter families of operators interpolating between two operators which appear naturally in the formalism. From this one-parameter family a differential equation for the determinant (or ratio of determinants) or for correlation functions is derived, which can then be solved. This is a very simple, elegant and powerful technique.'Mathematical Reviews ClippingsFunctional Integrals is a well-established method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and string theory. This book presents a unique, original and modern treatment of strings representations on Bosonic Quantum Chromodynamics and Bosonization theory on 2d Gauge Field Models, besides of rigorous mathematical studies on the analytical regularization scheme on Euclidean quantum field path integrals and stochastic quantum field theory. It follows an analytic approach based on Loop space techniques, functional determinant exact evaluations and exactly solubility of four dimensional QCD loop wave equations through Elfin Botelho fermionic extrinsic self avoiding string path integrals.

Universal Quantum Computing: Supervening Decoherence - Surmounting Uncertainty (Hardcover): Richard L Amoroso Universal Quantum Computing: Supervening Decoherence - Surmounting Uncertainty (Hardcover)
Richard L Amoroso
R5,431 Discovery Miles 54 310 Ships in 18 - 22 working days

This breakthrough volume touts having dissolved the remaining barriers to implementing Bulk Universal Quantum Computing (UQC), and as such most likely describes the most advanced QC development platform. Numerous books, hundreds of patents, thousands of papers and a Googolplex of considerations fill the pantheon of QC R&D. Of late QC mathemagicians claim QCs already exist; but by what chimeric definition. Does flipping a few qubits in a logic gate without an algorithm qualify as quantum computing? In physics, theory bears little weight without rigorous experimental confirmation, less if new, radical or a paradigm shift. This volume develops quantum computing based on '3rd regime' physics of Unified Field Mechanics (UFM). What distinguishes this work from a myriad of other avenues to UQC under study? Virtually all R&D paths struggle with technology and decoherence. If highly favored room-sized cryogenically cooled QCs ever become successful, they would be reminiscent of the city block-sized Eniac computer of 1946. The QC prototype proposed herein is room temperature and tabletop. It is dramatically different in that it is not confined to the limitations of quantum mechanics; since it is based on principles of UFM the Uncertainty Principle and Decoherence no longer apply. Thus this QC model could be implemented on any other quantum platform!

Quantum Trajectories (Paperback): Pratim Kumar Chattaraj Quantum Trajectories (Paperback)
Pratim Kumar Chattaraj
R2,368 Discovery Miles 23 680 Ships in 10 - 15 working days

The application of quantum mechanics to many-particle systems has been an active area of research in recent years as researchers have looked for ways to tackle difficult problems in this area. The quantum trajectory method provides an efficient computational technique for solving both stationary and time-evolving states, encompassing a large area of quantum mechanics. Quantum Trajectories brings the expertise of an international panel of experts who focus on the epistemological significance of quantum mechanics through the quantum theory of motion. Emphasizing a classical interpretation of quantum mechanics as developed by de Broeglie and Bohm, this volume: Introduces the concept of the quantum theory of motion Explains the connection with conventional quantum mechanics Presents various numerical techniques generated from the Bohmian approach Describes the epistemological significance of quantum trajectories Provides an authoritative account of the foundations of quantum mechanics vis-a-vis that of the Bohmian mechanics The popularity of using the quantum trajectory as a computational tool has exploded over the last decade, finally bringing this methodology to the level of practical applications. Many of the experts in the field who have either developed the methodology or have improved upon it have contributed chapters to this volume, making it a state-of-the-art expression of the field as it exists today and providing insight into the future of this technology.

Group And Representation Theory (Hardcover): Ioannis John Demetrius Vergados Group And Representation Theory (Hardcover)
Ioannis John Demetrius Vergados
R2,187 Discovery Miles 21 870 Ships in 10 - 15 working days

This volume goes beyond the understanding of symmetries and exploits them in the study of the behavior of both classical and quantum physical systems. Thus it is important to study the symmetries described by continuous (Lie) groups of transformations. We then discuss how we get operators that form a Lie algebra. Of particular interest to physics is the representation of the elements of the algebra and the group in terms of matrices and, in particular, the irreducible representations. These representations can be identified with physical observables.This leads to the study of the classical Lie algebras, associated with unitary, unimodular, orthogonal and symplectic transformations. We also discuss some special algebras in some detail. The discussion proceeds along the lines of the Cartan-Weyl theory via the root vectors and root diagrams and, in particular, the Dynkin representation of the roots. Thus the representations are expressed in terms of weights, which are generated by the application of the elements of the algebra on uniquely specified highest weight states. Alternatively these representations can be described in terms of tensors labeled by the Young tableaux associated with the discrete symmetry Sn. The connection between the Young tableaux and the Dynkin weights is also discussed. It is also shown that in many physical systems the quantum numbers needed to specify the physical states involve not only the highest symmetry but also a number of sub-symmetries contained in them. This leads to the study of the role of subalgebras and in particular the possible maximal subalgebras. In many applications the physical system can be considered as composed of subsystems obeying a given symmetry. In such cases the reduction of the Kronecker product of irreducible representations of classical and special algebras becomes relevant and is discussed in some detail. The method of obtaining the relevant Clebsch-Gordan (C-G) coefficients for such algebras is discussed and some relevant algorithms are provided. In some simple cases suitable numerical tables of C-G are also included.The above exposition contains many examples, both as illustrations of the main ideas as well as well motivated applications. To this end two appendices of 51 pages - 11 tables in Appendix A, summarizing the material discussed in the main text and 39 tables in Appendix B containing results of more sophisticated examples are supplied. Reference to the tables is given in the main text and a guide to the appropriate section of the main text is given in the tables.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
A Mathematically Coherent Quantum…
James Moffat Paperback R750 Discovery Miles 7 500
Quantum Mechanics in the Single Photon…
Muhammad Hamza Waseem Paperback R758 Discovery Miles 7 580
Modern Physics
Canio Noce Paperback R781 Discovery Miles 7 810
Particle Physics
Richard A. Dunlap Paperback R752 Discovery Miles 7 520
A Modern Introduction to Neutrino…
Frank F. Deppisch Paperback R752 Discovery Miles 7 520
The Electrostatic Accelerator - A…
Ragnar Hellborg, Harry J. Whitlow Paperback R754 Discovery Miles 7 540
Relativistic Quantum Field Theory…
Michael Strickland Paperback R756 Discovery Miles 7 560
The Bohr Atom
Bruce Cameron Reed Paperback R750 Discovery Miles 7 500
Introduction to Quantum Mechanics
S. M. Blinder Paperback R3,993 Discovery Miles 39 930
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, … Hardcover R6,101 Discovery Miles 61 010

 

Partners