![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > General
One of the fundamental goals of earth system science research is to adopt a more holistic view of the earth as a 'system' comprising different domains. The Society of Earth Scientists has brought out this multidisciplinary publication to emphasize the need of an integrated approach to understand the Earth system. It focuses on natural disasters and, in particular, on climate change and its effects in Asia and understanding the significance of these developments within the context of the paleo-climatic record. The later sections of the book then focus on other types of natural disasters as well as those induced by human interaction with our environment.
Mathematical Morphology in Geomorphology and GISci presents a multitude of mathematical morphological approaches for processing and analyzing digital images in quantitative geomorphology and geographic information science (GISci). Covering many interdisciplinary applications, the book explains how to use mathematical morphology not only to perform quantitative morphologic and scaling analyses of terrestrial phenomena and processes, but also to deal with challenges encountered in quantitative spatial reasoning studies. For understanding the spatiotemporal characteristics of terrestrial phenomena and processes, the author provides morphological approaches and algorithms to: Retrieve unique geomorphologic networks and certain terrestrial features Analyze various geomorphological phenomena and processes via a host of scaling laws and the scale-invariant but shape-dependent indices Simulate the fractal-skeletal-based channel network model and the behavioral phases of geomorphologic systems based on the interplay between numeric and graphic analyses Detect strategically significant sets and directional relationships via quantitative spatial reasoning Visualize spatiotemporal behavior and generate contiguous maps via spatial interpolation Incorporating peer-reviewed content, this book offers simple explanations that enable readers-even those with no background in mathematical morphology-to understand the material. It also includes easy-to-follow equations and many helpful illustrations that encourage readers to implement the ideas.
Interest by American educators in the Holocaust has increased exponentially during the second half of the twentieth century. In 1960 the Holocaust was barely being addressed in American public schools. Yet by the 1990s several states had mandated the teaching of the event. Drawing upon a variety of sources including unpublished works and interviews, this study traces the rise of genocide education in America. The author demonstrates how the genesis of this movement can be attributed to a grassroots effort initiated by several teachers, who introduced the topic as a way to help their students navigate the moral and ethical ambiguity of the times.
A CD-ROM accompanies this handbook of practical techniques for interpreting geological structures at map scale from surface to subsurface maps. The CD-ROM has color graphs and models, and the book includes new material, in particular examples of 3-D models and techniques for using kinematic models to predict fault and ramp-anticline geometry. The book is geared toward the professional user concerned about the accuracy of an interpretation and the speed with which it can be obtained from incomplete data. Numerous analytical solutions are given that can be easily implemented with a pocket calculator or a spreadsheet.
The greatest challenge facing humanity today is the transition to a more sustainable energy infrastructure while reducing greenhouse gas emissions. Meeting this challenge will require a diversified array of solutions spanning across multiple industries. One of the solutions rising to the fore is the potential to rapidly build out carbon sequestration, which involves the removal of CO2 from the atmosphere and its storage in the subsurface. Integrated Aquifer Characterization and Modeling for Energy Sustainability: Key Lessons from the Petroleum Industry provides a comprehensive and practical technical guide into the potential that aquifers hold as sites for carbon and energy storage. Aquifers occupy a significant part of the Earth's available volume in the subsurface and thus hold immense potential as sites for carbon storage. Many aquifers have been studied extensively as part of oil and gas energy development projects and, as such, they represent an opportunity to sequester carbon within existing areas of infrastructure that have already been impacted by, and integrated into, an inherited energy framework. Moreover, future efforts to reconfigure the landscape of our national and global energy systems can extract valuable lessons from this existing trove of data and expertise. From a multidisciplinary perspective, this book provides a valuable and up-to-date overview of how we can draw on the wealth of existing technologies and data deployed by the petroleum industry in the transition to a more sustainable future. Integrated Aquifer Characterization and Modeling for Energy Sustainability will be of value to academic, professional and business audiences who wish to evaluate the potential underground storage of carbon and/or energy, and for policy makers in developing the right policy tools to further the goals of a sustainable energy transition.
The Azores archipelago consists of nine islands that emerge from the Azores Plateau in the Central Northern Atlantic, situated within the triple junction of the American, Eurasian and African lithosphere plates. Subaerial volcanic activity has been well known since the Pliocene and continues today, with several well-documented eruptions since the settlement of the islands in the fifteenth century. The origin of the Azores Plateau has been a matter of scientific debate and thus this book provides the first comprehensive overview of geological features in the Azores from volcanological, geochemical, petrological, paleontological, structural and hydrological perspectives
This holistic book covers the richest area in North East India in terms of both explored and foreseen reserves of fossil fuels and other natural resources. Using a multidisciplinary approach, GIS, and geospatial data gathered from different case studies included, this book helps readers develop a thorough understanding of a highly dynamic big river, the Brahmaputra, and use it as a comprehensive resource for further understanding the science of rivers. It discusses the causal factors of decadal-scale fluvial dynamics, the nature of fluvial dynamics, lateral variability of the older flood plains and neotectonics in the shallow subsurface, and the overall trend of basin evolution at different depths.
No engineering structure can be built on the ground or within it without the influence of geology being experienced by the engineer. Yet geology is an ancillary subject to students of engineering and it is therefore essential that their training is supported by a concise, reliable and usable text on geology and its relationship to engineering. In this book all the fundamental aspects of geology are described and explained, but within the limits thought suitable for engineers. It describes the structure of the earth and the operation of its internal processes, together with the geological processes that shape the earth and produce its rocks and soils. It also details the commonly occurring types of rock and soil, and many types of geological structure and geological maps. Care has been taken to focus on the relationship between geology and geomechanics, so emphasis has been placed on the geological processes that bear directly upon the composition, structure and mechanics of soil and rocks, and on the movement of groundwater. The descriptions of geological processes and their products are used as the basis for explaining why it is important to investigate the ground, and to show how the investigations may be conducted at ground level and underground. Specific instruction is provided on the relationship between geology and many common activities undertaken when engineering in rock and soil.
An Introduction to Geological Structures and Maps is a concise and accessible textbook providing simple structural terminology and map problems which introduce geological structures. It is a perfect introduction to mapping for students of geology, engineering geology and civil engineering. Each topic is explained and illustrated by figures, and exercises follow on successive maps. If students are unable to complete an exercise, they can read on to obtain more specific instructions on how theory may be used to solve the problem. An appendix at the end of the book provides the solutions. This new, eighth edition contains simplified introductory matter to make the subject as easy to grasp as possible. Colour photographs illustrating geological structures bring the subject to life and a new map from the British Geological Survey illustrates a real area. There is more on outcrop patterns, which will help students to think in 3D, and on structures and the relationship of topography to geological structure. Cliff sections have been added to reinforce the concept of apparent dip. The section on planetary geology has been more closely tied to igneous geology to aid understanding of the connection between the two. Finally, a new map on economic geology has been added for the benefit of engineering students. A geological glossary helps students to understand and memorise key terms and a new, colourful, text design enlivens the appearance of this popular book.
Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a "how to" reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal.
Mixed-Phase Clouds: Observations and Modeling presents advanced research topics on mixed-phase clouds. As the societal impacts of extreme weather and its forecasting grow, there is a continuous need to refine atmospheric observations, techniques and numerical models. Understanding the role of clouds in the atmosphere is increasingly vital for current applications, such as prediction and prevention of aircraft icing, weather modification, and the assessment of the effects of cloud phase partition in climate models. This book provides the essential information needed to address these problems with a focus on current observations, simulations and applications.
Introduction to Satellite Remote Sensing: Atmosphere, Ocean and Land Applications is the first reference book to cover ocean applications, atmospheric applications, and land applications of remote sensing. Applications of remote sensing data are finding increasing application in fields as diverse as wildlife ecology and coastal recreation management. The technology engages electromagnetic sensors to measure and monitor changes in the earth's surface and atmosphere. The book opens with an introduction to the history of remote sensing, starting from when the phrase was first coined. It goes on to discuss the basic concepts of the various systems, including atmospheric and ocean, then closes with a detailed section on land applications. Due to the cross disciplinary nature of the authors' experience and the content covered, this is a must have reference book for all practitioners and students requiring an introduction to the field of remote sensing.
Impacts and Insights of Gorkha Earthquake in Nepal offers a practical perspective on disaster risk management using lessons learned and considerations from the 2015 Gorkha earthquake in Nepal, which was the worst disaster to hit Nepal since the 1934 Nepal-Bihar earthquake. Using a holistic approach to examine seismicity, risk perception and intervention, the book serves as a detailed case study to improve disaster resilience globally, including social, technical, governmental and institutional risk perception, as well as scientific understanding of earthquake disasters. Covering the details of the Gorkha earthquake, including damage mapping and recovery tactics, the book offers valuable insights into ways forward for seismologists, earthquake researchers and engineers and policy-makers.
There once may have been 250,000 miles of stone walls in America's
Northeast, stretching farther than the distance to the moon. They
took three billion man-hours to build. And even though most are
crumbling today, they contain a magnificent scientific and cultural
story--about the geothermal forces that formed their stones, the
tectonic movements that brought them to the surface, the glacial
tide that broke them apart, the earth that held them for so long,
and about the humans who built them.
Forecasting and Planning for Volcanic Hazards, Risks, and Disasters expands and complements the subject and themes in Volcanic Hazards, Risks and Disasters. Together, the two volumes represent an exhaustive compendium on volcanic hazards, risks, and disasters. Volume two presents a comprehensive picture of the volcano dynamics relevant for volcanic hazard forecasts. It also includes case studies of the associated risks and aspects like operational volcano observatory responses, communication before and across volcanic crises, emergency planning, social science aspects, and resilience from volcanic disasters. Forecasting and Planning for Volcanic Hazards, Risks, and Disasters takes a geoscientific approach to the topic while integrating the social and economic issues related to volcanoes and volcanic hazards and disasters.
Marine Geo-Hazards in China, the first book to focus specifically on potential marine geological hazards in China, includes 19 chapters with varying focus on key issues surrounding the topic. Early chapters discuss the historical background, research progress, and geological environments in China's sea area. Next, multiple chapters present special topics on geological hazards in China's sea area, including its disaster pregnant environment, mechanisms of disaster change, the development regularity and disaster formation process, and existing or potential dangers and countermeasures. Final chapters present the latest information on the distribution, development, assessment, and risk analysis of marine geological hazards. This book is an important source of information for government and local policymakers, environmental and marine scientists, and engineers.
Develop a Greater Understanding of How and Why Surface Wave Testing Works Using examples and case studies directly drawn from the authors' experience, Surface Wave Methods for Near-Surface Site Characterization addresses both the experimental and theoretical aspects of surface wave propagation in both forward and inverse modeling. This book accents the key facets associated with surface wave testing for near-surface site characterization. It clearly outlines the basic principles, the theoretical framework and the practical implementation of surface wave analysis. In addition, it also describes in detail the equipment and measuring devices, acquisition techniques, signal processing, forward and inverse modeling theories, and testing protocols that form the basis of modern surface wave techniques. Review Examples of Typical Applications for This Geophysical Technique Divided into eight chapters, the book explains surface wave testing principles from data measurement to interpretation. It effectively integrates several examples and case studies illustrating how different ground conditions and geological settings may influence the interpretation of data measurements. The authors accurately describe each phase of testing in addition to the guidelines for correctly performing and interpreting results. They present variants of the test within a consistent framework to facilitate comparisons, and include an in-depth discussion of the uncertainties arising at each stage of surface wave testing. Provides a comprehensive and in-depth treatment of all the steps involved in surface wave testing Discusses surface wave methods and their applications in various geotechnical conditions and geological settings Explains how surface wave measurements can be used to estimate both stiffness and dissipative properties of the ground Addresses the issue of uncertainty, which is often an overlooked problem in surface wave testing Includes examples with comparative analysis using different processing techniques and inversion algorithms Outlines advanced applications of surface wave testing such as joint inversion, underwater investigation, and Love wave analysis Written for geotechnical engineers, engineering seismologists, geophysicists, and researchers, Surface Wave Methods for Near-Surface Site Characterization offers practical guidance, and presents a thorough understanding of the basic concepts.
Sealing of boreholes and underground excavations has not received much engineering attention until fairly recently. The growing awareness of and sensitivity to environmental concerns of the technical community as well as of the public at large has resulted in an increasing recognition of the fact that these geological penetrations may have an environmental impact. The issue of possible contamination resulting from migration along boreholes, adits, shafts or tunnels unquestionably has been raised most forcefully with in the context of nuclear waste disposal. Several nuclear waste disposal programs, notably the Civilian and the Defence programs of the US De partment of Energy, the US Nuclear Regulatory Commission and the Canadian and Swedish radioactive waste disposal programs have conducted major research efforts aimed at developing adequate seal designs for penet rations in host rock formations for high-level nuclear waste repositories. While a considerable data base has been gathered over the last two decades or so with regard to the performance of seals, most of the information is presented in research reports and widely scattered papers in journals and proceedings of conferences. Hence, the materials are not readily accessible to potential users such as designers, contractors or regulators who are not familiar with nuclear waste disposal programs."
Dirt, soil, call it what you want - it's everywhere we go. It is the root of our existence, supporting our feet, our farms, and our cities. This fascinating yet disquieting book finds, however, that we are running out of dirt, and it's no laughing matter. An engaging natural and cultural history of soil that sweeps from ancient civilizations to modern times, "Dirt: The Erosion of Civilizations" explores the compelling idea that we are - and have long been - using up Earth's soil. Once bare of protective vegetation and exposed to wind and rain, cultivated soils erode bit by bit, slowly enough to be ignored in a single lifetime but fast enough over centuries to limit the lifespan of civilizations. A rich mix of history, archaeology and geology, "Dirt" traces the role of soil use and abuse in the history of Mesopotamia, Ancient Greece, the Roman Empire, China, European colonialism, Central America, and the American push westward. We see how soil has shaped us and we have shaped soil - as society after society has risen, prospered, and plowed through a natural endowment of fertile dirt. David R. Montgomery sees in the recent rise of organic and no-till farming the hope for a new agricultural revolution that might help us avoid the fate of previous civilizations.
The Earth is a beautiful and wondrous planet, but also frustratingly complex and, at times, violent: much of what has made it livable can also cause catastrophe. Volcanic eruptions create land and produce fertile, nutrient-rich soil, but they can also bury forests, fields, and entire towns under ash, mud, lava, and debris. The very forces that create and recycle Earth's crust also spawn destructive earthquakes and tsunamis. Water and wind bring and spread life, but in hurricanes they can leave devastation in their wake. And while it is the planet's warmth that enables life to thrive, rapidly increasing temperatures are causing sea levels to rise and weather events to become more extreme. Today, we know more than ever before about the powerful forces that can cause catastrophe, but significant questions remain. Why can't we better predict some natural disasters? What do scientists know about them already? What do they wish they knew? In Dangerous Earth, marine scientist and science communicator Ellen Prager explores the science of investigating volcanoes, earthquakes, tsunamis, hurricanes, landslides, rip currents, and--maybe the most perilous hazard of all--climate change. Each chapter considers a specific hazard, begins with a game-changing historical event (like the 1980 eruption of Mt. St. Helens or the landfall and impacts of Hurricane Harvey), and highlights what remains unknown about these dynamic phenomena. Along the way, we hear from scientists trying to read Earth's warning signs, pass its messages along to the rest of us, and prevent catastrophic loss. A sweeping tour of some of the most awesome forces on our planet--many tragic, yet nonetheless awe-inspiring--Dangerous Earth is an illuminating journey through the undiscovered, unresolved, and in some cases unimagined mysteries that continue to frustrate and fascinate the world's leading scientists: the "wish-we-knews" that ignite both our curiosity and global change.
Originally published in 1986, The Permafrost Environment examines how the search for oil, gas and minerals in the arctic region instigated new and vitally important needs to understand the permafrost environment. The construction of roads, airfields, buildings and pipelines in this inhospitable environment has posed enormous problems for engineers and geologists. This book is a comprehensive review of the nature of the permafrost environment and its utilization. It looks at environmental processes and their effects and examines the management problems which result. It provides a detailed look at how normal procedures for construction etc. need to be modified to cope with the special conditions and it gives examples from throughout the arctic region, including Canada, Siberia, Alaska, Greenland and Northern Scandinavia. |
![]() ![]() You may like...
Proceedings of the American Association…
Assoc for the Advancement of Science
Hardcover
United States Circuit Court of Appeals…
U S Court of Appeals Ninth Circuit
Paperback
R819
Discovery Miles 8 190
Understanding Earth Achieve access card
John Grotzinger, Thomas H. Jordan
Mixed media product
R2,671
Discovery Miles 26 710
Columbia River System Operation Review…
United States Department of Energy
Paperback
R427
Discovery Miles 4 270
Reports of the First, Second, and Third…
Association of American Geo Naturalists
Paperback
R752
Discovery Miles 7 520
|