![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Geology & the lithosphere > General
Quantitative Analysis and Modeling of Earth and Environmental Data: Space-Time and Spacetime Data Considerations introduces the notion of chronotopologic data analysis that offers a systematic, quantitative analysis of multi-sourced data and provides information about the spatial distribution and temporal dynamics of natural attributes (physical, biological, health, social). It includes models and techniques for handling data that may vary by space and/or time, and aims to improve understanding of the physical laws of change underlying the available numerical datasets, while taking into consideration the in-situ uncertainties and relevant measurement errors (conceptual, technical, computational). It considers the synthesis of scientific theory-based methods (stochastic modeling, modern geostatistics) and data-driven techniques (machine learning, artificial neural networks) so that their individual strengths are combined by acting symbiotically and complementing each other. The notions and methods presented in Quantitative Analysis and Modeling of Earth and Environmental Data: Space-Time and Spacetime Data Considerations cover a wide range of data in various forms and sources, including hard measurements, soft observations, secondary information and auxiliary variables (ground-level measurements, satellite observations, scientific instruments and records, protocols and surveys, empirical models and charts). Including real-world practical applications as well as practice exercises, this book is a comprehensive step-by-step tutorial of theory-based and data-driven techniques that will help students and researchers master data analysis and modeling in earth and environmental sciences (including environmental health and human exposure applications).
This book presents the latest experimental and numerical analysis work in the field of ground deformation and base instability of deep excavations in soft clay subjected to hydraulic uplift. The authors' latest research findings, based on dimensional analyses, well-instrumented full-scale field tests, systematic coupled-consolidation finite element analyses and centrifuge tests are reported. This book shows how to systematically approach a complex geotechnical problem, from identifying existing problems, reviewing literature, to dimensional and numerical analyses, validation through full-scale testing and centrifuge model testing. The methodologies are also introduced as major tools adopted in geotechnical research.
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. It covers metals essential for critical modern technologies including electronics, electric motors, generators, energy storage systems, and specialty alloys. Rare metals are the main building blocks of many emerging critical technologies and have been receiving significant attention in recent years. Much research in academia and industry is devoted to finding novel techniques to extract critical and rare metals from primary and secondary sources. The technologies that rely on critical metals are dominating the world, and finding a way to extract and supply them effectively is highly desirable and beneficial. Rapid development of these technologies entails fast advancement of the resource and processing industry for their building materials. Authors from academia and industry exchange knowledge on developing, operating, and advancing extractive and processing technologies. Contributions cover rare-earth elements (magnets, catalysts, phosphors, and others), energy storage materials (lithium, cobalt, vanadium, graphite), alloy elements (scandium, niobium, titanium), and materials for electronics (gallium, germanium, indium, gold, silver). The contributions also cover various processing techniques in mineral beneficiation, hydrometallurgy, separation and purification, pyrometallurgy, electrometallurgy, supercritical fluid extraction, and recycling (batteries, magnets, electrical and electronic equipment).
The Physical Oceanography of the Arctic Mediterranean Sea describes the circulation and the processes in the Arctic Mediterranean, how our present knowledge has developed, and presents recent changes caused by a gradually warmer global climate. The Arctic Mediterranean Sea has been intensively studied in recent years, especially during the fourth International Polar Year, 2007-09, and we have become increasingly aware of the changes presently taking place. This book collects and presents newly acquired knowledge and sets it in perspective to previous studies. Authored by a world-renowned leader in the field, this book explores the role of this small but important sea in the global oceanic circulation and climate-a must-read for researchers and students in the fields of oceanography and climate science.
Paleostress Inversion Techniques: Methods and Applications for Tectonics is an ideal reference for both academic and industry researchers in the Earth Sciences. The book introduces the methodologies developed to reconstruct (paleo) stress tensors from geological data. The interest and potential outcomes of the methods are illustrated by practical examples and supplementary electronic material and an overview on future research directions. As paleostress inversion methods are particularly useful in tectonic analyses at regional and local scales and their outcomes are relevant when trying to predict the orientations of fracture sets and potential fluid flow paths and associated mineralizations, this book provides an ideal resource.
The development of the base-load capable, climate-friendly, and practically inexhaustible source of "geothermal energy" represents an important pillar of the energy supply of the future. If it were possible to expand geothermal energy production accordingly, Germany could generate 100% of its energy in a climate-neutral manner by 2050. The joint research project "Dolomitkluft," funded by the German Federal Ministry for Economic Affairs and Energy from 2016 to 2018, aims to establish a new and improved reservoir model for the Upper Jurassic carbonates of the Northern Alpine Foreland Basin for deep geothermal energy. Emerged from this project, the dissertation by Mr. Stockinger geomechanically and numerically characterizes the deep geothermal reservoir in carbonate rocks-limestones and dolomites-of the Upper Jurassic in the Northern Alpine Foreland Basin in over 4000 m depth. This book specifically addresses fracture initiation, propagation, and hydraulic conductivity around a borehole and their controlling factors such as the in situ stress, the existing discontinuity network, and the geomechanical rock properties. Mr. Stockinger has thus successfully addressed the most important aspects for the retrievability of deep geothermal energy at its point of origin-namely the (deep) borehole.
Science for the Protection of Indonesian Coastal Ecosystems (SPICE) provides key information on all aspects related to the management of coastal ecosystems. This includes the coastal management involved, the ecology of this area, and the relationship between humans and the environment found here. The book presents guidelines defined by scientific experts, allowing for proper application of science products into ecosystem management. The bio-geo-physical importance of coastal ecosystems of Indonesia makes this a book of global importance and interest.
In Ground in Stone: Landscape, Social Identity, and Ritual Space on the High Plains, Elizabeth Lynch examines the insights and challenges of bedrock ground stone research in archaeological inquiry. Ground in Stone includes analyses of case studies to illustrate field data collection techniques as well as the rich social lives of ground in stone on the Chaquaqua Plateau. Lynch argues that the bedrock features in southeastern Colorado offer valuable insight into the archaeology of the High Plains because they are spaces where people gathered to craft important products-food, tools, and art. In doing so, these places anchored human movement to the landscape and became integral to story-telling and cultural lifeways.
The CADIC's Geological Resources Program will soon turn 40 years of fruitful development. During this period many projects were carried out and others remain to be implemented. In the course of time three generations of researchers have been formed. Mentioning names would be unfair to those that could be involuntarily omitted. There is still a long way to go. The eagerness for knowledge should not stop. This book is a tribute to all those people who have worked in the different projects of pure and applied science, and educational, and human resources training, granted to this founding program and associated laboratories of the regional center of CONICET in Ushuaia, Tierra del Fuego, Argentina. The twenty papers which constitute this book have a genuine Latin appeal, having been written by 50 authors based in Argentina and Spain. All this contributions are concerned with Fuegian geological resources. Everyone concerned with this work hopes that it will prove a fitting and lasting memorial to Nacho Subias, whose personal contribution to our knowledge of this geology was outstanding.
The study of heat transfer mechanisms in hydrothermal systems is important for understanding the basic physics behind orebody formation and mineralization in the upper crust (Bickle and Mckenzie 1987; Bjorlykke et al. 1988; Brady 1988; England and Thompson 1989; Hoisch 1991; Connolly 1997). Generally, heat energy may be transferred within the crust in the following forms: conduction, advection (including forced convection) where the heat is carried by a moving mass of rock during def- mation or by a moving uid, convection (i. e. , free convection, natural convection, buoyancy driven convection, temperature gradient driven convection) and a com- nation of these processes. Since advective ow is usually generated by a pore- uid pressure gradient, heat transfer due to advective ow is largely dependent on the pore- uid pressure gradient distribution in hydrothermal systems. A typical ex- ple of this advective ow is the upward through ow caused by lithostatic pore- uid pressure gradients within the lower crust. Extensive studies (Connolly and Ko 1995; Etheridge et al. 1983; England et al. 1987; Fyfe et al. 1978; Walther and Orville 1982; Peacock 1989; Yardley and Bottrell 1992; Hanson 1992; Yardley and Lloyd 1995; Norton and Knapp 1970) have shown that lithostatic pore- uid pressure can be built up by metamorphic uids arising from devolatilization and dehydration - actions, if the permeability is low enough to control uid ow in the lower crust.
Methods and Applications in Petroleum and Mineral Exploration and Engineering Geology is an interdisciplinary book bridging the fields of earth sciences and engineering. It covers topics on natural resources exploration as well as the application of geological exploration methods and techniques to engineering problems. Each topic is presented through theoretical approaches that are illustrated by case studies from around the globe. Methods and Applications in Petroleum and Mineral Exploration and Engineering Geology is a key resource for both academics and professionals, offering both practical and applied knowledge in resources exploration and engineering geology.
Showcases the excellent data science environment in Python. Provides examples for readers to replicate, adapt, extend, and improve. Covers the crucial knowledge needed by geographic data scientist.
This book is a compilation of selected papers from the 1st Belt and Road Webinar Series on Geotechnics, Energy and Environment, March - May 2021. The book comprises selected research related to advances in geo-environmental engineering. Topics covered include rock mechanics, sustainable materials, frozen soils, geotechnical innovations in megacities. The research is related to the sustainable infrastructure development for countries in China's Belt and Road Initiative. The contents of the volume will prove useful to researchers and professionals working in geotechnical and geological engineering domains.
Our realisation of how profoundly glaciers and ice sheets respond to climate change and impact sea level and the environment has propelled their study to the forefront of Earth system science. Aspects of this multidisciplinary endeavour now constitute major areas of research. This book is named after the international summer school held annually in the beautiful alpine village of Karthaus, Northern Italy, and consists of twenty chapters based on lectures from the school. They cover theory, methods, and observations, and introduce readers to essential glaciological topics such as ice-flow dynamics, polar meteorology, mass balance, ice-core analysis, paleoclimatology, remote sensing and geophysical methods, glacial isostatic adjustment, modern and past glacial fluctuations, and ice sheet reconstruction. The chapters were written by thirty-four contributing authors who are leading international authorities in their fields. The book can be used as a graduate-level textbook for a university course, and as a valuable reference guide for practising glaciologists and climate scientists.
It is now nearly 25 years since the first textbook on geostatistics ("Traitj de gjostatistique appliquje" by G. Matheron) appeared in print in 1962. In that time geostatis tics has grown from an arcane theory regarded with scepticism by statisticians and miners alike, to a reputable scientific disci pline which is routinely used in the geosciences. In the mining industry, in particularly, comparisons between predicted reserve estimates and actual production figures have proved its worth. Few now doubt its usefulness as a statistical tool in the earth sciences. Over the past quarter of a century, many geostatistical case studies have been published but the vast majority of these are routine applications of kriging. Our objective with this volume is to present a series of innovative applications of geostatistics. These range from a careful variographic analysis on uranium data, through detailed studies on geologically complex deposits right up to the latest nonlinear methods applied to deposits with highly skew data distributions. Applications of new techniques such as the external drift method for combining well data with seismic information have also been included. Throughout the volume the accent has been put on how to apply geostatistics in practice. Notation has been kept to a mininmum and mathematical details have been relegated to annexes. We hope that this will encourage readers to put the more sophis ticated techniques into practice in their own fields."
estimate tsunami potential by computing seismic moment. This system holds promise for a new generation of local tsunami warning systems. Shuto (Japan) described his conversion of !ida's definition of tsunami magnitude to local tsunami efforts. For example, i l = 2 would equal 4 m local wave height, which would destroy wooden houses and damage most fishing boats. SimOes (Portugal) reported on a seamount-based seismic system that was located in the tsunami source area for Portugal. In summary, the risk of tsunami hazard appears to be more widespread than the Pacific Ocean Basin. It appears that underwater slumps are an important component in tsunami generation. Finally, new technologies are emerging that would be used in a new generation of tsunami warning systems. These are exciting times for tsunami researchers. OBSERVATIONS TSUNAMI DISPERSION OBSERVED IN THE DEEP OCEAN F. I. GONZALEZl and Ye. A. KULIKOV2 Ipacific Marine Environmental Laboratory, NOAA 7600 Sand Point Way, N. E. , Seattle, W A 98115 USA 2State Oceanographic Institute Kropotkinskey per. 6 Moscow 119034, Russia CIS The amplitude and frequency modulation observed in bottom pressure records of the 6 March 1988 Alaskan Bight tsunami are shown to be due to dispersion as predicted by linear wave theory. The simple wave model developed for comparison with the data is also consistent with an important qualitative feature of the sea floor displacement pattern which is predicted by a seismic fault plane deformation model, i. e. the existence of a western-subsidence/eastern-uplift dipole.
This is a detailed introduction to the statistical analysis of geophysical time series, using numerous examples and exercises to build proficiency. The exercises lead the reader to explore the meaning of concepts such as the estimation of the linear time series (AMRA) models or spectra. The book also serves as a guide to using the open-source "R" program for statistical analysis of time series.
An ancient and long-extinct volcano lies at the heart of Scotland's capital. It roared into life some 350 million years ago and has been a source of fascination since it was first studied in earnest during the Enlightenment by James Hutton, one of the most significant geologists of all time. Many of Hutton's ground-breaking ideas of how the world works were predicated on the rocks and landscapes of his home city and surrounding area. This book is a fascinating exploration into Edinburgh's geological history over millions of years - including the passage of ice during a great freeze that has left an indelible stamp on Edinburgh's cityscape, the use rocks quarried locally from ancient, now long disappeared seas to create the stunning elegance of Edinburgh's New Town, and the coal deposits and oil shale which were exploited from the Industrial Revolution to the present day.
This book offers essential, systematic information on the assessment of the spatial association between two processes from a statistical standpoint. Divided into eight chapters, the book begins with preliminary concepts, mainly concerning spatial statistics. The following seven chapters focus on the methodologies needed to assess the correlation between two or more processes; from theory introduced 35 years ago, to techniques that have only recently been published. Furthermore, each chapter contains a section on R computations to explore how the methodology works with real data. References and a list of exercises are included at the end of each chapter. The assessment of the correlation between two spatial processes has been tackled from several different perspectives in a variety of applications fields. In particular, the problem of testing for the existence of spatial association between two georeferenced variables is relevant for posterior modeling and inference. One evident application in this context is the quantification of the spatial correlation between two images (processes defined on a rectangular grid in a two-dimensional space). From a statistical perspective, this problem can be handled via hypothesis testing, or by using extensions of the correlation coefficient. In an image-processing framework, these extensions can also be used to define similarity indices between images.
Snow and Ice-Related Hazards, Risks, and Disasters, Second Edition, provides you with the latest scientific developments in sea level rise, permafrost degradation, rock/ice avalanches, glacier surges, glacial lake outburst floods, ice shelf collapses, climate change implications, causality, impacts, preparedness and mitigation. The book takes a geo-scientific approach to the topic while also covering current thinking about directly related social scientific issues that can affect ecosystems and global economies. Special emphasis is placed on the rapidly progressing effects from global warming on the cryosphere, perspectives for the future and latest scientific advances, and technological developments.
This book is the outcome of more than a decade of research and technical development activities at Spain's Geological Survey (IGME) concerning shallow geothermal energy, which were pursued in collaboration with other public bodies and European entities. It presents a compilation of papers on the theoretical foundations of, and practical aspects needed to understand the thermal regime of the topmost subsoil, up to 400 m deep, and the exceptional properties that this underground environment offers, which make it the ideal thermal reservoir for heating, ventilation, and air conditioning (HVAC). In the book's first section, the basic theory of thermodynamics as applied to shallow geothermal energy, heat transfer and fluid mechanics in the geological porous medium is developed. The nature of the subsoil's thermal regime in general and in the urban environment in particular is described. The second section introduces readers to the fundamental aspects of thermal installations equipped with geothermal heat pumps, describes the types of geothermal exchangers most commonly used, and reviews the techniques used to obtain the thermal parameters of the terrain. It also discusses the potential environmental impacts of shallow geothermal activity and corresponding management strategies, as well as the legal aspects of its regulation for the governance of shallow geothermal resources in the EU in general and Spain in particular. In closing, the book highlights examples of the methodologies' applications, developed by IGME in the city of Zaragoza and the Canary Islands. The theoretical foundations, systematics and concrete applications make the book a valuable reference source for hydrogeologists, engineers and specialized technicians alike.
This book comprehensively identifies most reservoir rock properties using a very simple approach. It aids junior and senior reservoir and geology engineers to understand the main fundamentals of rock properties. The book provides examples and solutions that can help the readers to quickly understand the topic. This book covers reservoir rock properties and their relationship to each other. The book includes many figures, tables, exercises, and flow diagrams to simplify the topics in different approaches.
This book introduces a fresh perspective on the conditions for the genesis of the first cell. An important possible environment of the prehistoric Earth has long been overlooked as a host to the perfect biochemical conditions for this process. The first complexes of continental crust on the early Earth must have already contained systems of interconnected cracks and cavities, which were filled with volatiles like water, carbon dioxide and nitrogen. This book offers insights into how these conditions may have provided the ideal physical and chemical setting for the formation of protocells and early stages of life. The authors support their hypothesis with a number of astonishing findings from laboratory experiments focusing on a variety of organic compounds, and on the formation of key cellular ingredients and of primitive cell-like structures. Moreover, they discuss the principles of prebiotic evolution regarding the aspects of order and complexity. Guiding readers through various stages of hypotheses and re-created evolutionary processes, the book is enriched with personal remarks and experiences throughout, reflecting the authors' personal quest to solve the mystery surrounding the first cell.
|
You may like...
Operational Research - IO 2018, Aveiro…
Maria Joao Alves, Joao Paulo Almeida, …
Hardcover
R4,030
Discovery Miles 40 300
FOCAPD-19/Proceedings of the 9th…
Salvador Garcia-Munoz, Carl D. Laird, …
Hardcover
R10,989
Discovery Miles 109 890
29th European Symposium on Computer…
Anton A Kiss, Edwin Zondervan, …
Hardcover
R11,317
Discovery Miles 113 170
Operational Tools in the Management of…
Constantin Zopounidis
Hardcover
R4,195
Discovery Miles 41 950
|