![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > General
This book combines field, laboratory and modelling methods to identify, characterize and quantify sources and fluxes within and between the different compartments: water, rock and air. Inorganic carbon plays an important role in shaping karst features. In the unsaturated zone, the percolating water consumes soil-derived carbon dioxide while dissolving carbonate bedrock and then releases it again while degassing and precipitating calcite in caves. A portion of the released CO2 is returned to the atmosphere through the natural ventilation of caves. This book is an important reference source for all those interested in the global carbon budget, karst geochemistry, cave climate and paleoclimate studies using cave speleothem as proxies.
Transports in fluids can be approached from two complementary perspectives. In the Eulerian view of mixing, the focus is on the concentration field. In the Langrangian view, fluid parcels are followed around as they move with the flow, experiencing chaotic or stochastic motion. This book examines both pictures, presenting a number of theoretical and experimental lectures on various aspects of transport and mixing of active and passive particles in geophysical flows.
The development of the base-load capable, climate-friendly, and practically inexhaustible source of "geothermal energy" represents an important pillar of the energy supply of the future. If it were possible to expand geothermal energy production accordingly, Germany could generate 100% of its energy in a climate-neutral manner by 2050. The joint research project "Dolomitkluft," funded by the German Federal Ministry for Economic Affairs and Energy from 2016 to 2018, aims to establish a new and improved reservoir model for the Upper Jurassic carbonates of the Northern Alpine Foreland Basin for deep geothermal energy. Emerged from this project, the dissertation by Mr. Stockinger geomechanically and numerically characterizes the deep geothermal reservoir in carbonate rocks-limestones and dolomites-of the Upper Jurassic in the Northern Alpine Foreland Basin in over 4000 m depth. This book specifically addresses fracture initiation, propagation, and hydraulic conductivity around a borehole and their controlling factors such as the in situ stress, the existing discontinuity network, and the geomechanical rock properties. Mr. Stockinger has thus successfully addressed the most important aspects for the retrievability of deep geothermal energy at its point of origin-namely the (deep) borehole.
Fossil fuels will remain the backbone of the global energy economy for the foreseeable future. The contribution of nuclear energy to the global energy supply is also expected to increase. With the pressing need to mitigate climate change and reduce greenhouse gas emissions, the fossil energy industry is exploring the possibility of carbon dioxide disposal in geological media. Geological disposal has been studied for decades by the nuclear industry with a view to ensuring the safe containment of its wastes. Geological disposal of carbon dioxide and that of radioactive waste gives rise to many common concerns in domains ranging from geology to public acceptance. In this respect, comparative assessments reveal many similarities, ranging from the transformation of the geological environment and safety and monitoring concerns to regulatory, liability and public acceptance issues. However, there are profound differences on a broad range of issues as well, such as the quantities and hazardous features of the materials to be disposed of, the characteristics of the targeted geological media, the site engineering technologies involved and the timescales required for safe containment at the disposal location. There are ample opportunities to learn from comparisons and to derive insights that will assist policymakers responsible for national energy strategies and international climate policies.
Thermodynamically constrained averaging theory provides a consistent method for upscaling conservation and thermodynamic equations for application in the study of porous medium systems. The method provides dynamic equations for phases, interfaces, and common curves that are closely based on insights from the entropy inequality. All larger scale variables in the equations are explicitly defined in terms of their microscale precursors, facilitating the determination of important parameters and macroscale state equations based on microscale experimental and computational analysis. The method requires that all assumptions that lead to a particular equation form be explicitly indicated, a restriction which is useful in ascertaining the range of applicability of a model as well as potential sources of error and opportunities to improve the analysis.
This book is a compilation of selected papers from the 1st Belt and Road Webinar Series on Geotechnics, Energy and Environment, March - May 2021. The book comprises selected research related to advances in geo-environmental engineering. Topics covered include rock mechanics, sustainable materials, frozen soils, geotechnical innovations in megacities. The research is related to the sustainable infrastructure development for countries in China's Belt and Road Initiative. The contents of the volume will prove useful to researchers and professionals working in geotechnical and geological engineering domains.
The CADIC's Geological Resources Program will soon turn 40 years of fruitful development. During this period many projects were carried out and others remain to be implemented. In the course of time three generations of researchers have been formed. Mentioning names would be unfair to those that could be involuntarily omitted. There is still a long way to go. The eagerness for knowledge should not stop. This book is a tribute to all those people who have worked in the different projects of pure and applied science, and educational, and human resources training, granted to this founding program and associated laboratories of the regional center of CONICET in Ushuaia, Tierra del Fuego, Argentina. The twenty papers which constitute this book have a genuine Latin appeal, having been written by 50 authors based in Argentina and Spain. All this contributions are concerned with Fuegian geological resources. Everyone concerned with this work hopes that it will prove a fitting and lasting memorial to Nacho Subias, whose personal contribution to our knowledge of this geology was outstanding.
This volume is entirely devoted to the life and work of the
world's most famous geomorphologist, William Morris Davis
(1850-1934). It contains a treatment in depth of Davis' many
contributions to the study of landforms including:
The planned construction of traffic routes through the European Alps represents a challenge for science and technology. In the past decades, Austria has gained a leading position in the field of tunnelling. This has been verified by many successful projects all over the world, which have been realised with the well-known "New Austrian Tunnelling Method". However, further development and economic success of modern tunnelling methods, which are still partly based on empirical assumptions, can only be assured if their scientific basis is improved. The book discusses the application of numerical simulation methods to assist tunnel engineers. Numerical simulation tools for the estimation of the required tunnel support and the required construction measures are described in this book. By using them, it is possible to study the impact on construction and environment during the planning stage and during construction. This will result in an improvement of the safety and economy of tunnels.
This book explores the original discovery of lithium and its development from a mineral to various applications that culminate in its present use in the electromotive industry
This book presents the latest experimental and numerical analysis work in the field of ground deformation and base instability of deep excavations in soft clay subjected to hydraulic uplift. The authors' latest research findings, based on dimensional analyses, well-instrumented full-scale field tests, systematic coupled-consolidation finite element analyses and centrifuge tests are reported. This book shows how to systematically approach a complex geotechnical problem, from identifying existing problems, reviewing literature, to dimensional and numerical analyses, validation through full-scale testing and centrifuge model testing. The methodologies are also introduced as major tools adopted in geotechnical research.
This book is the outcome of more than a decade of research and technical development activities at Spain's Geological Survey (IGME) concerning shallow geothermal energy, which were pursued in collaboration with other public bodies and European entities. It presents a compilation of papers on the theoretical foundations of, and practical aspects needed to understand the thermal regime of the topmost subsoil, up to 400 m deep, and the exceptional properties that this underground environment offers, which make it the ideal thermal reservoir for heating, ventilation, and air conditioning (HVAC). In the book's first section, the basic theory of thermodynamics as applied to shallow geothermal energy, heat transfer and fluid mechanics in the geological porous medium is developed. The nature of the subsoil's thermal regime in general and in the urban environment in particular is described. The second section introduces readers to the fundamental aspects of thermal installations equipped with geothermal heat pumps, describes the types of geothermal exchangers most commonly used, and reviews the techniques used to obtain the thermal parameters of the terrain. It also discusses the potential environmental impacts of shallow geothermal activity and corresponding management strategies, as well as the legal aspects of its regulation for the governance of shallow geothermal resources in the EU in general and Spain in particular. In closing, the book highlights examples of the methodologies' applications, developed by IGME in the city of Zaragoza and the Canary Islands. The theoretical foundations, systematics and concrete applications make the book a valuable reference source for hydrogeologists, engineers and specialized technicians alike.
San Francisco Bay is a shallow estuary surrounded by a large population center. The forces that built it began with plate tectonics and involved the collision of the Pacific and North American plates and the subduction of the Juan de Fuka plate. Changes in the climate resulting from the last ice age yielded lower and then higher sea levels. Human activity influenced the Bay. Gold mining during the California gold rush sent masses of slit into the Bay. Humans have also built several major cities and filled significant parts of the Bay. This book describes the natural history and evolution of the SF Bay Area over the last 50 million years through the present and into the future. Key selling features: Summarizes a complex geological, geographical and ecological history Reviews how the San Francisco Bay has changed and will likely change in the future Examines the different roles and various drivers of Bay ecosystem function Includes the role of humans - both first peoples and modern populations - on the Bay Explores San Francisco Bay as an example of general bay ecolgical and environmental issues
This book comprehensively identifies most reservoir rock properties using a very simple approach. It aids junior and senior reservoir and geology engineers to understand the main fundamentals of rock properties. The book provides examples and solutions that can help the readers to quickly understand the topic. This book covers reservoir rock properties and their relationship to each other. The book includes many figures, tables, exercises, and flow diagrams to simplify the topics in different approaches.
An ancient and long-extinct volcano lies at the heart of Scotland's capital. It roared into life some 350 million years ago and has been a source of fascination since it was first studied in earnest during the Enlightenment by James Hutton, one of the most significant geologists of all time. Many of Hutton's ground-breaking ideas of how the world works were predicated on the rocks and landscapes of his home city and surrounding area. This book is a fascinating exploration into Edinburgh's geological history over millions of years - including the passage of ice during a great freeze that has left an indelible stamp on Edinburgh's cityscape, the use rocks quarried locally from ancient, now long disappeared seas to create the stunning elegance of Edinburgh's New Town, and the coal deposits and oil shale which were exploited from the Industrial Revolution to the present day.
The study of heat transfer mechanisms in hydrothermal systems is important for understanding the basic physics behind orebody formation and mineralization in the upper crust (Bickle and Mckenzie 1987; Bjorlykke et al. 1988; Brady 1988; England and Thompson 1989; Hoisch 1991; Connolly 1997). Generally, heat energy may be transferred within the crust in the following forms: conduction, advection (including forced convection) where the heat is carried by a moving mass of rock during def- mation or by a moving uid, convection (i. e. , free convection, natural convection, buoyancy driven convection, temperature gradient driven convection) and a com- nation of these processes. Since advective ow is usually generated by a pore- uid pressure gradient, heat transfer due to advective ow is largely dependent on the pore- uid pressure gradient distribution in hydrothermal systems. A typical ex- ple of this advective ow is the upward through ow caused by lithostatic pore- uid pressure gradients within the lower crust. Extensive studies (Connolly and Ko 1995; Etheridge et al. 1983; England et al. 1987; Fyfe et al. 1978; Walther and Orville 1982; Peacock 1989; Yardley and Bottrell 1992; Hanson 1992; Yardley and Lloyd 1995; Norton and Knapp 1970) have shown that lithostatic pore- uid pressure can be built up by metamorphic uids arising from devolatilization and dehydration - actions, if the permeability is low enough to control uid ow in the lower crust.
This book introduces a fresh perspective on the conditions for the genesis of the first cell. An important possible environment of the prehistoric Earth has long been overlooked as a host to the perfect biochemical conditions for this process. The first complexes of continental crust on the early Earth must have already contained systems of interconnected cracks and cavities, which were filled with volatiles like water, carbon dioxide and nitrogen. This book offers insights into how these conditions may have provided the ideal physical and chemical setting for the formation of protocells and early stages of life. The authors support their hypothesis with a number of astonishing findings from laboratory experiments focusing on a variety of organic compounds, and on the formation of key cellular ingredients and of primitive cell-like structures. Moreover, they discuss the principles of prebiotic evolution regarding the aspects of order and complexity. Guiding readers through various stages of hypotheses and re-created evolutionary processes, the book is enriched with personal remarks and experiences throughout, reflecting the authors' personal quest to solve the mystery surrounding the first cell.
Museums, Art and Inclusion in a Climate Emergency considers the impact of the Anthropocene on history and memory, approaches to objects and agency, and the incommensurability of western and Indigenous ontologies. Drawing on Indigenous knowledge, humanities and museological literature, continental philosophy, contemporary art and popular culture, Baker acknowledges the autonomous agency of geological forms, including soils, minerals and fossil fuels. Demonstrating that this has implications for an expanded idea of an 'inclusive' museum and its relationship to entities beyond 'life' and living species, the book argues that the 'inclusion' paradigm needs to include non-life actors. Gesturing to a geontological 'turn' through developing notions of geo-inclusion, the mineralhuman, and approaches to object agency that connect with Aboriginal 'heritage', Baker exposes the ongoing destruction of Country by mining interests in Western Australia and elsewhere. By addressing the need for urgent change through the artifice of the museum, the book identifies an expanded approach to inclusion beyond the limits imposed by the politics of identity. Museums, Art and Inclusion in a Climate Emergency theorises the potential of an expanded idea of the museum and will be of interest to scholars and students engaged in the study of museums and heritage, environmental humanities and geo-humanities, ecological art history and contemporary art.
Showcases the excellent data science environment in Python. Provides examples for readers to replicate, adapt, extend, and improve. Covers the crucial knowledge needed by geographic data scientist.
"Highlights in Mineralogical Crystallography" presents a collection of review articles with the common topic: structural properties of minerals and synthetic analogues. It is a valuable resource for mineralogists, materials scientists, crystallographers, and earth scientists. This book includes: An introduction to the RRUFF database for structural, spectroscopic, and chemical mineral identification. A systematic evaluation of structural complexity of minerals. ab initio computer modelling of mineral surfaces. Natural quasicrystals of meteoritic origin. The potential role of terrestrial ringwoodite on the water content of the Earth's mantle. Structural characterization of nanocrystalline bio-related minerals by electron-diffraction tomography. The uniqueness of mayenite-type compounds as minerals and high-tech ceramics.
estimate tsunami potential by computing seismic moment. This system holds promise for a new generation of local tsunami warning systems. Shuto (Japan) described his conversion of !ida's definition of tsunami magnitude to local tsunami efforts. For example, i l = 2 would equal 4 m local wave height, which would destroy wooden houses and damage most fishing boats. SimOes (Portugal) reported on a seamount-based seismic system that was located in the tsunami source area for Portugal. In summary, the risk of tsunami hazard appears to be more widespread than the Pacific Ocean Basin. It appears that underwater slumps are an important component in tsunami generation. Finally, new technologies are emerging that would be used in a new generation of tsunami warning systems. These are exciting times for tsunami researchers. OBSERVATIONS TSUNAMI DISPERSION OBSERVED IN THE DEEP OCEAN F. I. GONZALEZl and Ye. A. KULIKOV2 Ipacific Marine Environmental Laboratory, NOAA 7600 Sand Point Way, N. E. , Seattle, W A 98115 USA 2State Oceanographic Institute Kropotkinskey per. 6 Moscow 119034, Russia CIS The amplitude and frequency modulation observed in bottom pressure records of the 6 March 1988 Alaskan Bight tsunami are shown to be due to dispersion as predicted by linear wave theory. The simple wave model developed for comparison with the data is also consistent with an important qualitative feature of the sea floor displacement pattern which is predicted by a seismic fault plane deformation model, i. e. the existence of a western-subsidence/eastern-uplift dipole.
Originally published in 1995, Early Creationist Journals is the ninth volume in the Creationism in Twentieth-Century America series, reissued in 2021. The book is a concise primary source collection containing a selection of journal articles from the early twentieth century outlining discoveries in biology, geology, physiology and archaeology and their relation to Christianity. The aim of the journals was to provide a platform for creationists of the 1920s to voice their theories on new science and how more recent discoveries fit within creationist beliefs, including flood theory. These interesting and unique journals will be of interest to academics working in the field of religion and natural history and provide a unique snapshot into the debates between evolutionists and Christianity during a period of great scientific change.
Originally published in 1995, Creation and Evolution in the Early American Scientific Affiliation is the tenth volume in the series, Creationism in Twentieth Century America, reissued in 2021. The volume comprises of original primary sources from the American Science Affiliation, a group formed following an invitation from the president of the Moody Bible Institute in Chicago, in answer to the perceived need for an academic society for American Evangelical Scientists to explicate the relationship between science and faith. The society confronted the debate between creation and evolution head on, leaving a paper trail documenting their thoughts and struggles. This diverse and expansive collection includes 53 selections that appeared during the organisation’s first two decades and focuses on the encounter between science and American evangelicalism in the twentieth century, in particular the debates surrounding the ever-increasing preference for evolutionary theory. The collection will be of especial interest to natural historians, and theologians as well as academics of philosophy, and history.
It is now nearly 25 years since the first textbook on geostatistics ("Traitj de gjostatistique appliquje" by G. Matheron) appeared in print in 1962. In that time geostatis tics has grown from an arcane theory regarded with scepticism by statisticians and miners alike, to a reputable scientific disci pline which is routinely used in the geosciences. In the mining industry, in particularly, comparisons between predicted reserve estimates and actual production figures have proved its worth. Few now doubt its usefulness as a statistical tool in the earth sciences. Over the past quarter of a century, many geostatistical case studies have been published but the vast majority of these are routine applications of kriging. Our objective with this volume is to present a series of innovative applications of geostatistics. These range from a careful variographic analysis on uranium data, through detailed studies on geologically complex deposits right up to the latest nonlinear methods applied to deposits with highly skew data distributions. Applications of new techniques such as the external drift method for combining well data with seismic information have also been included. Throughout the volume the accent has been put on how to apply geostatistics in practice. Notation has been kept to a mininmum and mathematical details have been relegated to annexes. We hope that this will encourage readers to put the more sophis ticated techniques into practice in their own fields." |
![]() ![]() You may like...
Proceedings of the American Association…
Assoc for the Advancement of Science
Hardcover
R689
Discovery Miles 6 890
United States Circuit Court of Appeals…
U S Court of Appeals Ninth Circuit
Paperback
R789
Discovery Miles 7 890
Annual Report of the Board of Regents of…
Smithsonian Institution
Hardcover
R826
Discovery Miles 8 260
United States Circuit Court of Appeals…
U S Court of Appeals Ninth Circuit
Paperback
R768
Discovery Miles 7 680
Water Well Standards: Ventura County…
California Department of Water Resources
Paperback
R413
Discovery Miles 4 130
|