![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > The hydrosphere > General
Irrigated agriculture and the use of water resources in agriculture face the challenges of sustainable development. Research has advanced our knowledge of water use by crops, soil-water-solutes interactions, and the engineering and managerial tools needed to mobilize, convey, distribute, control and apply water for agricultural production. However, the achievements booked in user practice have revealed the need for new developments in the areas of resource conservation, control of environmental and health impacts, modernisation of technologies and management, economic viability and the social acceptance of changes. The contributions to Sustainability of Irrigated Agriculture cover most of the relevant disciplines. Besides its multidisciplinarity, the different origins, experience, backgrounds and practices of the authors provide a wide, in-depth analysis of the various aspects of water resource utilization in agriculture. The papers review scientific, technical and managerial aspects, highlighting the main problems, issues and future developments. The book covers the different aspects of sustainability, including environmental, technical, economic, institutional and social ones. Advances in irrigation science and engineering are dealt with, both on- and off-farm. Special attention is paid to the different components of water quality management, to the transfer of technology, and to capacity building.
Coastal aquifers serve as major sources for freshwater supply in many countries around the world, especially in arid and semi-arid zones. Many coastal areas are also heavily urbanized, a fact that makes the need for freshwater even more acute. Coastal aquifers are highly sensitive to disturbances. Inappropriate management of a coastal aquifer may lead to its destruction as a source for freshwater much earlier than other aquifers which are not connected to the sea. The reason is the threat of seawater intrusion. In many coastal aquifers, intrusion of seawater has become one of the major constraints imposed on groundwater utilization. As sea water intrusion progresses, existing pumping wells, especially those close to the coast, become saline and have to be abandoned. Also, the area above the intruding seawater wedge is lost as a source of natural replenishment to the aquifer. Despite the importance of this subject, so far there does not exist a book that integrates our present knowledge of seawater intrusion, its occurrences, physical mechanism, chemistry, exploration by geo physical and geochemical techniques, conceptual and mathematical modeling, analytical and numerical solution methods, engineering measures of combating seawater intrusion, management strategies, and experience learned from case studies. By presenting this fairly comprehensive volume on the state-of-the-art of knowledge and ex perience on saltwater intrusion, we hoped to transfer this body of knowledge to the geologists, hydrologists, hydraulic engineers, water resources planners, managers, and governmental policy makers, who are engaged in the sustainable development of coastal fresh ground water resources."
The Brahmaputra River represents nearly 30% of India's water resources potential and 41% of its total hydropower. No sustainable future for this underdeveloped region can occur without a plan combining social, political, economic, cultural, and legal considerations with scientific paradigms. This book pools the talent, knowledge and experience of a wide range of water resource professionals to provide an exhaustive study of the Brahmaputra River basin, present and future.
The last few years have witnessed an enormous interest in application of GIS in hydrology and water resources. This is partly evidenced by organization of sev eral national and international symposia or conferences under the sponsorship of various professional organizations. This increased interest is, in a large measure, in response to growing public sensitivity to environmental quality and management. The GIS technology has the ability to capture, store, manipulate, analyze, and visualize the diverse sets of geo-referenced data. On the other hand, hydrology is inherently spatial and distributed hydrologic models have large data requirements. The integration of hydrology and GIS is therefore quite natural. The integration involves three major components: (1) spatial data construction, (2) integration of spatial model layers, and (3) GIS and model interface. GIS can assist in design, calibration, modification and comparison of models. This integration is spreading worldwide and is expected to accelerate in the foreseeable future. Substantial op portunities exist in integration of GIS and hydrology. We believe there are enough challenges in use of GIS for conceptualizing and modeling complex hydrologic processes and for globalization of hydrology. The motivation for this book grew out of the desire to provide under one cover a range of applications of GIS tech nology in hydrology. It is hoped that the book will stimulate others to write more comprehensive texts on this subject of growing importance."
Since the dissolution of the Soviet Union almost a decade ago, there has been rapid evolution of interactions between the Western nations and individual countries of the former Soviet Union. As part of that interaction, the autonomous independent Republic of Azerbaijan through its scientific arm, the Geological Institute of the Azerbaijan Academy of Sciences under the Directorship of Academician Akif Ali-Zadeh and Deputy Director Ibrahim Guliev, arranged for personnel to be seconded to the University of South Carolina. The idea here was to see to what extent a quantitative understanding could be achieved of the evolution of the Azerbaijan part of the South Caspian Basin from dynamical, thermal and hydrocarbon perspectives. The Azeris brought with them copious amounts of data collected over decades which, together with the quantitative numerical codes available at USC, enabled a concerted effort to be put forward, culminating in two large books (Evolution of the South Caspian Basin: Geological Risks and Probable Hazards, 675 pps; and The South Caspian Basin: Stratigraphy, Geochemistry, and Risk Analysis, of which were published by the Azerbaijan Academy of 472 pps. ) both Sciences, and also many scientific papers. Thus, over the last four to five years an integrated comprehensive start has been made to understand the hydrocarbon proneness of the South Caspian Basin. In the course of the endeavor to understand the basinal evolution, it became clear that a variety of natural hazards occur in the Basin.
There are few books and long review articles on water reservoir induced seismicity, mining induced seismicity and even on volcanic seismicity but the subjects of induced seismicity following fluid extraction and nuclear explosion and seismicity associated with tidal stress in Earth have not received significant attention though there are research papers in relevant literature. Thus an attempt has been made to discuss all the known forms of induced seismicity in the present book and to bring out common features of the different phenomena causing induced seismicity. The book has six main chapters namely 2, 3, 4, 5, 6 and 7, the first and last chapters, namely 1 and 8 being introduction and overview of all forms of induced seismicity. Material in Chapters 2 and 3 is rather recent though water reservoirs and petroleum extraction processes have been in existence over many decades. But, literature on chapters 4 and 5 is available since last one century or so as volcanic process and mining operation affect nearby human habitation and mining severely due to induced seismicity associated with mining in particular. However, literature on possible induced seismicity due to tidal stress is fairly old, the same following nuclear explosion is naturally recent.
"Climatic Change and Water Resources in the Middle East and North Africa" is dedicated to high-priority topics related to the impact of climate change on water resources in a water scarce region. The subject is described and discussed in three main chapters and different case studies. The three main chapters are (1) Climatic changes - sources and effects on the water cycle, (2) Impact of climate change on water resources, (3) Water resources and water management. These chapters are split up into further 26 sections. A total of 64 individuals from many countries have made contributions to this book. All topics in this book are complimentary and contribute to a comprehensive understanding of the interactions between global climate change, world water cycle and water resources. A valuable and meaningful interdisciplinary mixture of topics is combined in this book which will be of great interest to many scientists.
Newly developed and innovative methods are mentioned and outlined so that the book can be used as a source of information for scientists and professionals specialised in the treatment of soils as well as for students in courses of environmental studies. The book offers a short, compressed overview of the important features of this subject and can be used as a reference book of the state of the art. The appendix offers the interested reader a detailed survey of materials, test methods and apparatuses as well as a description of analytical directions and processes.
Leonardo da Vinci, the eminent Renaissance scholar and philosopher said, "water is the driver of nature." Many may have considered it to be an overstatement in the past, but at the beginning of the third millennium, no sane individual would disagree with Leonardo's view. Water is becoming an increasingly scarce resource for most of the world's citizens. The current trends indicate that the overall situation is likely to deteriorate further, at least for the next two decades, unless the water profession eschews its existing "business as usual" practices, which can only allow incremental changes to occur. Somewhat surprisingly, the water profession as a whole neither realised nor appreciated the gravity of the global water situation as late as 1990, even though a few serious scholars have been pointing out the increasing criticality of the situation from around 1982. For example, the seriousness of the crisis was not a major issue, either at the International Conference on W ater and the Environment, which was organised by the UN system in Dublin and also at the UN Conference on Environment and Development at Rio de Janeiro. Held in 1992, both are considered to be important events for the water sector of the past decade. It is now being increasingly recognised that the Dublin Conference was poorly planned and organised, and thus not surprisingly it produced very little, if any, worthwhile and lasting results.
A multidecadal cooling is known to have occurred in Europe in the final decades of the sixteenth-century. It is still open to debate as to what might have caused the underlying shifts in atmospheric circulation and how these changes affected societies. This book is the fruit of interdisciplinary cooperation among 37 scientists including climatologists, hydrologists, glaciologists, dendroclimatologists, and economic and cultural historians. The known documentary climatic evidence from six European countries is compared to results of tree-ring studies. Seasonal temperature and precipitation are estimated from this data and monthly mean surface pressure patterns in the European area are reconstructed for outstanding anomalies. Results are compared to fluctuations of Alpine glaciers and to changes in the frequency of severe floods and coastal storms. Moreover, the impact of climate change on grain prices and wine production is assessed. Finally, it is convincingly argued that witches at that time were burnt as scapegoats for climatic change.
This book deals with the concept of moments, and how they find application in subsurface hydrologic problems-particularly those dealing with solute transport. Both temporal and spatial moments are dealt with in some detail for a wide variety of problems. Several examples using experimental data, both from laboratory columns and field experiments, are provided to give the readers a clear idea about the scope of this method.
Climatic Change is a rapidly evolving domain that has prompted the publication of numerous scientific works in recent years, reflecting both the public and scientific interest in the topic. This book focuses upon climate processes, variability and change and applies the general principles related to these issues, particularly in Switzerland. Although a small country, Switzerland is characterized by complex topography where climatic processes are often enhanced due to the presence of the Alps. In addition, there is a remarkable density of observational data in both the natural and social sciences that enable a comprehensive assessment of climate processes, their long-term trends and their impacts. This book draws upon recent scientific work by the author, as well as by close colleagues working within scientific networks both in Switzerland and Europe, in order to provide the reader with up-to-date information on climate processes in the course of the 20th and 21st centuries. This book is intended for students from the undergraduate level onwards and researchers interested in climate issues specific to the alpine region.
These proceedings are a continuation of the series of International Conferences in Germany entitled "Mechanics of Unsaturated Soils." The objective is to discuss and understand unsaturated soil behaviour, so that engineered activities are improved in terms of judgement and quality. In addition to knowledge of classical concepts, it is a challenge to adapt convincing new concepts and present them in such a way that they can be used in engineering practices.
This textbook develops the basic ideas of transport models in hydrogeology, including diffusion-dispersion processes, advection, and adsorption or reaction. The book serves as an excellent text or supplementary reading in courses in applied mathematics, contaminant hydrology, ground water modeling, or hydrogeology.
stable or falling water levels, and permit differen tiation between gradual and sudden transgression The level of Lake Ontario was long assumed to of the shoreline. Vegetational succession reflects have risen at an exponentially decreasing rate shoreline transgression and increasing water solely in response to differential isostatic rebound depth as upland species are replaced by emergent of the St. Lawrence outlet since the Admiralty aquatic marsh species. If transgression continues, Phase (or Early Lake Ontario) 11 500 years B. P. these are in turn replaced by floating and sub (Muller & Prest, 1985). Recent work indicates merged aquatic species, commonly found in water that the Holocene water level history of Lake to 4 m depth in Ontario lakes, below which there Ontario is more complex than the simple rebound is a sharp decline in species richness and biomass model suggests. Sutton et al. (1972) and (Crowder et al., 1977). This depth varies with Anderson & Lewis (1982, 1985) indicate that physical limnological conditions in each basin. periods of accelerated water level rise followed by Because aquatic pollen and plant macrofossils are temporary stabilization occurred around 5000 to locally deposited, an abundance of emergent 4000 B. P. The accelerated water level rise, called aquatic fossils reflects sedimentation in the littoral the 'Nipissing Flood', was attributed to the cap zone, the part of the basin shallow enough to ture of Upper Great Lakes drainage. support rooted vegetation."
These proceedings are a continuation of the series of International Conferences in Germany entitled "Mechanics of Unsaturated Soils." The primary objective is to discuss and understand unsaturated soil behaviour such that engineered activities are made better with times in terms of judgment and quality. The proceedings contain recent research by leading experts in Mechanics of Unsaturated Soils.
Glaciers or ice sheets are natural accumulations of ice possessing in trinsic motion, which have appeared on the Earth's land surface as a result of the accumulation and transformation of precipitation 2]. Only a very small portion of the surface of the land is now covered by glaciers, and at low latitudes they are found justat high elevations, on mountain slopes. However, glaciers are known to play very important roles in shaping the topography of the Earth, in determiningits past, present, and future climate, and in creating the state of the world Ocean. Recently there has also been a marked increase in the practical value of our knowledge about glaciers, as a part of the human habitat and as a factor affecting the economy. Interest in glaciers on other planets is also growing. Voyages of spacecraft to Jupiter, for instance, have shown that some Jovian satellites possess ice sheets tens of kilometers in thickness."
Volume 1: (edited by Keith W. Hipel) In this landmark collection of papers, highly respected scientists and engineers from around the world present the latest research results in extreme value analyses for floods and droughts. Two approaches that are commonly employed in flood frequency analyses are the maximum annual flood and partial duration series or peak over threshold procedures. Recent theoretical advances as well as illustrative applications are described in detail for each of these approaches. Additionally, droughts and storms are systematically studied using appropriate probabilistic models. A major part of the volume is devoted to frequency analyses and fitting extreme value distributions to hydrological data. Other thought-provoking topics include regionalization techniques, distributed models, entropy and fractal analysis. Volume 1 is of interest to researchers, teachers, students and practitioners who wish to place themselves at the leading edge of flood frequency and drought analyses. Volume 2: (edited by Keith W. Hipel) World renowned scientists present valuable contributions to stochastic and statistical modelling of groundwater and surface water systems. The philosophy of probabilistic modelling in the hydrological sciences is put into proper perspective and the importance of stochastic differential equations in the environmental sciences is explained and illustrated. The new research ideas put forward in groundwater modelling will assist decision makers in tackling challenging problems such as controlling pollution of underground aquifers and obtaining adequate water supplies. Additionally, different types of stochastic models are used in modelling a range of interesting surface water problems. Other topics covered in this landmark volume include stochastic optimization, moment analysis, carbon dioxide modelling and rainfall prediction. Volume 2 is of interest to researchers, teachers, students and practitioners who wish to be at the leading edge of stochastic and statistical modelling in the environmental sciences. Volume 3: (edited by Keith W. Hipel; A. Ian McLeod; U.S. Panu; Vijay P. Singh) International experts from around the globe present a rich variety of intriguing developments in time series analysis in hydrology and environmental engineering. Climatic change is of great concern to everyone and significant contributions to this challenging research topic are put forward by internationally renowned authors. A range of interesting applications in hydrological forecasting are given for case studies in reservoir operation in North America, Asia and South America. Additionally, progress in entropy research is described and entropy concepts are applied to various water resource systems problems. Neural networks are employed for forecasting runoff and water demand. Moreover, graphical, nonparametric and parametric trend analyses methods are compared and applied to water quality time series. Other topics covered in this landmark volume include spatial analyses, spectral analyses and different methods for stream-flow modelling. Volume 3 constitutes an invaluable resource for researchers, teachers, students and practitioners who wish to be at the forefront of time series analysis in the environmental sciences. Volume 4: (edited by Keith W. Hipel; Liping Fang) In this landmark set of papers, experts from around the world present the latest and most promising approaches to both the theory and practice of effective environmental management. To achieve sustainable development, organizations and individual citizens must comply with environmental laws and regulations. Accordingly, a major contribution of this book is the presentation of original techniques for designing effective environmental policies, regulations, inspection procedures and monitoring systems. Interesting methods for modelling risk and decision making problems are discussed from an environmental management perspective. Moreover, knowledge-based techniques for handling environmental problems are also investigated. Finally, the last main part of the book describes optimal approaches to reservoir operation and control that take into account appropriate multiple objectives. Volume 4 is of direct interest to researchers, teachers, students and practitioners concerned with the latest developments in environmental management and sustainable development.
Water is vital for life. Since the dawn of civilization, much effort has been made to harness sources of fresh water. Recent years have raised global awareness of the need for increasing demand of water worldwide, largely because of growing population, rising standard of living, higher demand for energy, and greater appreciation for environmental quality. As an example, the world population has increased threefold in the past five decades. In order to meet the rising water demand, water resources are being developed by building large dams, reservoirs, barrages and weirs across rivers worldwide. The guiding principle for water resources development has been to ensure adequate supply of water for agriculture, domestic use (including fine drinking water), waste disposal, industries, and energy production, with due attention to maintain the ecosystem functions. This development, however, depends on a holistic, cooperative and scientific approach. The basic inputs in the assessment of water resources for a given region are from hydrological data and the subject of hydrology forms the core in achieving sustainable development of water resources. Barring a few exceptions, hydrological data for most river basins are sparse and therefore it is difficult to comprehensively assess their water resources. The major source of water is rainfall which occurs as a result of condensation of atmospheric moisture governed by the science of meteorology.
Since its establishment as a policy research institute in 1990, the Institute for In- grated Development Studies (IIDS) has been engaged in promoting public awa- ness and understanding of issues of national importance by undertaking studies and research on contemporary themes. It has been disseminating findings of its studies to policymakers in the public and private sectors and ultimately to the public at large. Water resources is one of the areas of strong public interest in Nepal. It is cons- ered a potent engine of economic growth. Its optimal use is dependent on, among other things, the cooperation among the riparian countries, especially India and Bangladesh. Water resources development is one of the subjects in which the Ins- tute has been engaged since its beginning by undertaking studies through national professionals and joint studies on the water resources of the Ganges, Brahmaputra and Meghna river basins with policy research institutes from India and Bangladesh. In order to help policymakers to develop long-term perspectives of the need for cooperation for optimal use of water available in the tributaries of the Ganges, the Institute was involved in a major track-two exercise for over five years during the 1990s. The Institute has been undertaking a series of exercises in the form of p- lication and dissemination of study findings in the field since the early 1990's. In that series, this book is the latest one and is published in collaboration with Springer Science + Business Media BV, Dordrecht, The Netherlands.
Triggerd primarily byill effects of polluted air, soil and water resources on living species, public concern for environmental quality has been growing during the past four decades or so. One manifestation of this concern is found in occurrence of public debates as well as in the demand for full environmental impact assessment before a water-resources project is approved. Engineering soundness and economic feasibility are no longer sufficient criteria for construction of hydraulic works. As a result, environmental considerations have become very much a part of hydraulic analyses. In response to growing environmental concerns, the field of hydraulics has expanded and a new branch, called Environmental Hydraulics, has emerged. The focus of this branch is on hydraulic analyses of those environmental issues that are important for protection, restoration, and managementof environmental quality. The motivation for this book grew out of the desire to provide a hydraulic discussion of some of the key environmental issues.It is hoped that the book would serve to stimulate others to write more comprehensive texts on this subject of growing importance.
Terrain has a profound effect upon the strategy and tactics of any military engagement and has consequently played an important role in determining history. In addition, the landscapes of battle, and the geology which underlies them, has helped shape the cultural iconography of battle certainly within the 20th century. In the last few years this has become a fertile topic of scientific and historical exploration and has given rise to a number of conferences and books. The current volume stems from the international Terrain in Military History conference held in association with the Imperial War Museum, London and the Royal Engineers Museum, Chatham, at the University of Greenwich in January 2000. This conference brought together historians, geologists, military enthusiasts and terrain analysts from military, academic and amateur backgrounds with the aim of exploring the application of modem tools of landscape visualisation to understanding historical battlefields. This theme was the subject of a Leverhulme Trust grant (F/345/E) awarded to the University of Greenwich and administered by us in 1998, which aimed to use the tools of modem landscape visualisation in understanding the influence of terrain in the First World War. This volume forms part of the output from this grant and is part of our wider exploration of the role of terrain in military history. Many individuals contributed to the organisation of the original conference and to the production of this volume.
During the past decade many countries in the world have experienced droughts, with severe impacts on water urban supply systems. Because droughts are natural phenomena, water utilities must design and implement drought management plans. This topic was selected for the International Course on Drought Management Planning in Water Supply Systems, which took place in Valencia, Spain, on 9-12 December 1997, and was hosted by the Universidad Internacional Men ndez y Pelayo (UIMP). The contributions in this book have been carefully selected and presented in four sections: Introduction Water Supply Systems Modernization Drought Management in an Urban Context Practical Cases (Israel, USA, Italy, Spain) To achieve a well-balanced approach, authors were invited from academia as well as from consultancies and water utilities, and have wide experience in the subject. The book is mainly aimed at water supply engineers, working in utilities and consultancies.
Bangladesh faces many challenges. So long it has been mainly the traditional ones of socio economic development and eradication of poverty. Environment as a major factor in this process has only recently entered the scene. But even before environmental considerations in the development process has become the normal practice, the spectre of climate change has reared its ugly head. While Bangladesh is not unique among developing countries in being at the receiving end regarding the causes and consequences of climate change, both in the literal and allegorical sense of the term, the fact remains that it has made the prospects for sustainable socio-economic development in the country much more complex and formidable than before. Both for her own sake and the sake of the global community at large, therefore, Bangladesh has to initiate actions at various levels to face the challenge from now on. The present study is a part of that process. In 1996, the Governments of USA and Bangladesh together decided to initiate a comprehensive study on climate change in Bangladesh. A unique consortium of public and non-governmental research organisations with support from the relevant administrative arms of the Government carried out the study over 1996 and 1997. The report has been accepted by the Government and several of its recommendations are in the process of implementation. While the direction of climate change is broadly certain, its details leave much scope for speculation and interpretation."
It is an honour and pleasure to write a foreword to this useful and interesting book. Authors are very well known researchers who pioneered percolation modelling of transport in porous media in Russia from the early 80-th till nowadays. The main scope of the work presented in the book was developed when bright papers by A. Aharony, H.T. Davis, F.A.L. Dullien, A.A. Heiba, R.G. Larson, R. Lenormand, M.Sahimi, L.E. Scriven, D. Stauffer, M. Yanuka, Y.C.Yortsos were not available at the "other" side of the Iron Curtain. Nowadays hundreds of works and papers with the "percolation" keywords ap pear in petroleum and related applied research areas. The book will take a re markable place in the "petroleum percolation" bibliography. There are two important features of novelty in the monograph presented. First of all the authors developed a generalization of percolation clusters theory for grids with varying conductivity. Technique of representation of an infinite cluster as an hierarchial set of trees (so called r-chain model) allows to present conductivity of a stochastic grid in a closed form of explicit formulae. This method differs from those known in the West, such as effective media theory, solutions for the Bethe-lattice, etc. It has his own area of successful appli cations." |
You may like...
From Catchment Management to Managing…
M. Dinesh Kumar, Ratna Reddy V, …
Paperback
R2,578
Discovery Miles 25 780
Integrated Approaches to Sustainable…
V. Ratna Reddy, Geoff Syme, …
Paperback
R3,507
Discovery Miles 35 070
Lakes of Africa - Microbial Diversity…
Mostafa El-Sheekh, Hosam Easa Elsaied
Paperback
R3,151
Discovery Miles 31 510
Stream Flow Recors for the Water Year…
Pennsylvania Dept of Forests and Wa, Geological Survey (U .S.)
Hardcover
R761
Discovery Miles 7 610
Stream Flow Recors for the Water Year…
Pennsylvania Dept of Forests and Wa, Geological Survey (U .S.)
Hardcover
R741
Discovery Miles 7 410
|