![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > The hydrosphere > General
Mineral scale deposits, corrosion, suspended matter, and microbiological growth are factors that must be controlled in industrial water systems. Research on understanding the mechanisms of these problems has attracted considerable attention in the past three decades as has progress concerning water treatment additives to ameliorate these concerns. The Science and Technology of Industrial Water Treatment provides a comprehensive discussion on the topic from specialists in industry and academia. The book begins with an overview of water chemistry and covers the characteristics of commonly encountered mineral scales. It addresses the formation and control of different scales in various systems and examines new developments in membrane-based separation processes. Next, it provides a detailed account on the operational challenges of reverse osmosis systems and scale control in thermal distillation processes. The text explores corrosion control in cooling, boiler, geothermal, and desalination systems and it discusses the interactions of polyelectrolytes with suspended matter. Includes coverage of a range of bacterial species, including Legionella The book examines bacterial species commonly encountered in water supplies, the mechanisms of biofouling, approaches to control it, and criteria for selecting biocides for water treatment applications. An entire chapter is devoted to Legionella in water systems. Contributors describe various analytical techniques for identifying mineral scales and deposits. They also examine applications of polymers for treating industrial and wastewater systems and give an account of analytical approaches for monitoring various operational parameters and chemicals used to treat industrial water systems. A valuable addition to the library of academic researchers, this volume will also prove useful to those working not only in the water treatment industry, but also to those in petroleum, textiles, pharmaceuticals, and other areas where purity processes are a significant concern.
This book presents the impact of climate change on Mount Baker glaciers, USA, and the rivers surrounding them. Glaciers are natural reservoirs that yield their resource primarily on warm dry summer days when other sources are at their lowest yield. This natural tempering of drought conditions will be reduced as they retreat. Mount Baker, a volcano in the Cascades of Washington, is currently host to 12 principal glaciers with an area of 36.8 km2. The glaciers yield 125 million cubic meters of water each summer that is a resource for salmon, irrigation and hydropower to the Nooksack River and Baker River watersheds. Recent rapid retreat of all 22 glaciers is altering the runoff from the glaciers, impacting both the discharge and temperature of the Nooksack and Baker River. Over the last 30 years we have spent 270 nights camped on the mountain conducting 10,500 observations of snow depth and melt rate on Mount Baker. This data combined with observations of terminus change, area change and glacier runoff over the same 30 years allow an unusually comprehensive story to be told of the effects of climate change to Mount Baker Glaciers and the rivers that drain them.
This book describes essential methods for evaluating groundwater vulnerability to contamination. It analyzes the chemical and dynamic properties of groundwater in detail and proposes the use of cartography to elucidate underground hydrodynamic behavior and scale classification. Supplemented by color illustrations, figures and tables, as well as a comprehensive bibliography for further research on specific issues, the book studies groundwater behavior in different types of plains, such as alluvial, deltaic, piedmont, intermountain and marine, and suggests a methodology for hydrogeological studies.
This book represents different types of progress in hydrogeology, including conceptualization changes, different approaches to simulating groundwater flow and transport new hydrogeophysical methods. Each chapter extends or summarizes a recent development in hydrogeology, with forward-looking statements regarding the challenges and strengths that are faced. While the title and scope is broad, there are several sub-themes that connect the chapters. Themes include theoretical advances in conceptualization and modeling of hydrogeologic problems. Conceptual advances are further tempered by insights arising from observations from both field and laboratory work.
This book seeks to provide a comprehensive reconstruction of the 1667 Dalmatia earthquake phenomenon on the basis of eyewitness testimony. At the same time, one of the distinctive features of this book is that the earthquake observations are treated and arranged in time and space so as to provide earthquake data on the macroseismic intensity, which might be used in seismic hazard and risk studies. On April 6, 1667 a devastating earthquake struck the southernmost region of Dalmatia (Croatia). Most of the affected area at that time belonged to the independent Republic of Ragusa, the capital of which was the town of Ragusa, today Dubrovnik. The 1667 earthquake left behind a lasting scar on the history and life of the Republic, as it was the catalyst of a serious financial crisis. Both the economic and more general consequences of this earthquake have been discussed in historiographical and seismological essays in late 20th-century works. This book seeks to provide a comprehensive reconstruction of the 1667 Dalmatia earthquake phenomenon on the basis of eyewitness testimony. At the same time, one of the distinctive features of this book is that the earthquake observations are treated and arranged in time and space so as to provide earthquake data on the macroseismic intensity, which might be used in seismic hazard and risk studies. The book is also intended as an extensive case history, which allows the author to include some guidelines on how to approach the study of a past earthquake and proceed to its full seismological interpretation. In this respect, a unique feature of the book is the comprehensive and detailed analysis of the original documentary sources in their proper context, effectively combining the interpretative approaches of history and seismology.
Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group "Underground Storage of CO2 and Energy", is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3rd Sino-German conference on the theme "Clean Energy Systems in the Subsurface: Production, Storage and Conversion". This volume is a collection of diverse quality scientific works from different perspectives elucidating on the current developments in CO2 geologic sequestration research to reduce greenhouse emissions including measures to monitor surface leakage, groundwater quality and the integrity of caprock, while ensuring a sufficient supply of clean energy. The contributions herein have been structured into 6 major thematic research themes: Integrated Energy and Environmental Utilization of Geo-reservoirs: Law, Risk Management & Monitoring CO2 for Enhanced Gas and Oil Recovery, Coal Bedded Methane and Geothermal Systems Trapping Mechanisms and Multi-Barrier Sealing Systems for Long-Term CO2 Storage Coupled THMC-Processes and Numerical Modelling Rock Mechanical Behaviour Considering Cyclic Loading, Dilatancy, Damage, Self-sealing and Healing Underground Storage and Supply of Energy "Clean energy systems in the subsurface" will be invaluable to researchers, scientists and experts in both academia and industry trying to find a long lasting solution to the problems of global climate change, energy security and sustainability.
Natural ecosystems are heavily dependent on water, as it is essential to the development of life. The ecology and landscape play an important role in the quality and availability of water. It is no coincidence that exceptional hydrological phenomena are found in protected areas. Such is the case with, for example, the geothermic occurrences (principally, geysers) in America's Yellowstone National Park , the oldest park in the world. The Ramsar wetlands (where the ecosystem's dependency on water is strongly evident), The Iguacu Falls (on the border of Argentina and Brazil), or the Zapata Swamp (the largest of its kind on the Caribbean island of Cuba) further exemplify this point. However, in many cases, the conservation strategies for hydraulic resources in protected areas are ignored, or simply deprived of the attention they require. There are many types of suitable management strategies for planning and protecting our valuable treasures. Hydraulic resource management in protected areas is something that must not be separated from these conservation measures. The first Symposium for the Management of Hydraulic Resources in Protected Areas was intended to be a framework of communication about experiences with water resource management in protected areas. Advances in research and possible solutions to the problems within these areas were discussed. The contributions in this proceedings volume are grouped under seven main themes: Purification and reuse of wastewater in rural communities; Impact of public use on water resources; Vulnerability and risks associated with aquifers, Design and management water resources in protected areas; Research and monitoring of water resources in protected areas; Water and its importance as a source of renewable energy in protected spaces; and Geodiversity and conservation of areas with hydraulic heritage.
The key highlights of the book include an innovative rainfall classification methodology based on stormwater quality to support the planning and design of stormwater treatment systems. Additionally, this book provides a practical approach to effective stormwater treatment design and development of a methodology for rainfall selection to optimize stormwater treatment based on both its quality and quantity. The case study presented in this book evaluates how pollutant buildup on urban surfaces and stormwater runoff quality varies with a range of catchment characteristics based on different rainfall types. The information presented will be of particular interest to practitioners such as stormwater-treatment designers, urban planners and hydrologic and stormwater-quality model developers since the outcomes presented provide practical approaches to and recommendations for urban stormwater-quality improvement. Readers will benefit from a state-of-the-art critical review of literature on urban stormwater quality, an in-depth discussion on stormwater-quality processes providing guidance for engineering practice such as stormwater treatment design and model development, a comprehensive overview on the application of multivariate data analysis techniques and a paradigm of the integrated use of commercial models and mathematical equations to undertake a comprehensive, urban stormwater-quality investigation.
The main objective of the Water Framework Directive in the European countries is to achieve a "good status" of all the water bodies, in the integrated management of river basins. In order to assess the impact of improvement measures, water quality models are necessary. During the previous decades the progress in computer technology and computational methods has supported the development of advanced mathematical models for pollutant transport in rivers and streams. This book is intended to provide the fundamental knowledge needed for a deeper understanding of these models and the development of new ones, which will fulfil future quality requirements in water resources management. This book focuses on the fundamentals of computational techniques required in water quality modelling. Advection, dispersion and concentrated sources or sinks of contaminants lead to the formulation of the fundamental differential equation of pollutant transport. Its integration, according to appropriate initial and boundary conditions and with the knowledge of the velocity field, allows for pollutant behaviour to be assessed in the entire water body. An analytical integration is convenient only in one-dimensional approach with considerable simplification. Integration in the numerical field is useful for taking into account particular aspects of water body and pollutants. To ensure their reliability, the models require accurate calibration and validation, based on proper data, taken from direct measurements. In addition, sensitivity and uncertainty analysis are also of utmost importance. All the above items are discussed in detail in the 21 chapters of the book, which is written in a didactic form for professionals and students.
This book discusses arsenic contamination in groundwater, which has emerged as a major health hazard in India. The authors review a generalised scenario of groundwater in the Greater Dhaka Area, focusing on the deterioration of groundwater quality over the years and its impact on the environment. Following this, the chemical composition of rainwater and groundwater from the Mount Cameroon area in May-July 2017 is analysed, and the impact of water-rock interactions on groundwater chemistry is assessed. The concluding study aims to assess the extent of exposure to fluoride in inhabitants of Raebareli district in Uttar Pradesh, India, generating baseline data about the fluoride-contaminated area.
This book takes an in-depth look at the theory and methods inherent in the tracing of riverine sediments. Examined tracers include multi-elemental concentration data, fallout radionuclides (e.g., 210Pb, 137Cs, 7Be), radiogenic isotopes (particularly those of Pb, Sr, and Nd), and novel ("non-traditional") stable isotopes (e.g., Cd, Cu, Hg, and Zn), the latter of which owe their application to recent advances in analytical chemistry. The intended goal is not to replace more 'traditional' analyses of the riverine sediment system, but to show how tracer/fingerprinting studies can be used to gain insights into system functions that would not otherwise be possible. The text, then, provides researchers and catchment managers with a summary of the strengths and limitations of the examined techniques in terms of their temporal and spatial resolution, data requirements, and the uncertainties in the generated results. The use of environmental tracers has increased significantly during the past decade because it has become clear that documentation of sediment and sediment-associated contaminant provenance and dispersal is essential to mitigate their potentially harmful effects on aquatic ecosystems. Moreover, the use of monitoring programs to determine the source of sediments to a water body has proven to be a costly, labor intensive, long-term process with a spatial resolution that is limited by the number of monitoring sites that can be effectively maintained. Alternative approaches, including the identification and analysis of eroded upland areas and the use of distributed modeling routines also have proven problematic. The application of tracers within riverine environments has evolved such that they focus on sediments from two general sources: upland areas and specific, localized, anthropogenic point sources. Of particular importance to the former is the development of geochemical fingerprinting methods that quantify sediment provenance (and to a much lesser degree, sediment-associated contaminants) at the catchment scale. These methods have largely developed independently of the use of tracers to document the source and dispersal pathways of contaminated particles from point-sources of anthropogenic pollution at the reach- to river corridor-scale. Future studies are likely to begin merging the strengths of both approaches while relying on multiple tracer types to address management and regulatory issues, particularly within the context of the rapidly developing field of environmental forensics.
Hydrogeology is a topical and growing subject as the earth's water resources become scarcer and more vulnerable. More than half of the surface area of continents is covered with hard rocks of low permiability. This book deals comprehensively with the fundamental principles for understanding the hydrogeological characteristics of rocks, as well as exploration techniques and assessment. It also provides in depth discussion on structural mapping, remote sensing, geophysical exploration, GIS, groundwater flow modelling and contaminant transport, field hydraulic testing including tracer tests, groundwater quality, geothermal reservoirs, managed aquifer recharge, and resources assessment and management. Hydrogeological aspects of various lithology groups, including crystalline rocks, volcanic rocks, carbonate rocks and clastic formations have been dealt with separately, using and discussing examples from all over the world. It will be an invaluable text book cum reference source for postgraduate students, researchers, exploration scientists and engineers engaged in the field of groundwater development in fractured rocks. Applied Hydrogeology of Fractured Rocks - Second Edition is thoroughly revised and extended with a new chapter, updated sections, many new examples, and expanded and updated references.
The Rhine is one of Europe's most researched rivers and this book presents a compilation of that research in one volume. Topics include the river's catchment area, its hydrology, the development of water protection requirements and early warning systems on the Rhine. Additionally the book describes many aspects of water quality from the Rhine but also from alpine lakes, tributaries, estuary and adjacent coastal waters connected with the river.
ACKNOWLEDGEMENTS xvii LIST OF PARTICIPANTS xix PLENARY SESSIQNS KRIGE D.G., GUARASCIO M. and CAMISANI-CALZOLARI F.A. Early South African qeostatistical techniques in today's perspective ...1 MATHERON G. The internal consistency of models in qeostatistics...21 MONESTIEZ P., HABIB R. and AUDERGON J.M. Estimation de la covariance et du varioqramme pour une fonction aleatoire a support arborescent : application a l'etude des arbres fruitiers ...39 CHILES J.P. Modelisation qeostatistique de reseaux de fractures...57 BRUNO R. and RASPA G. Geostatistical characterization of fractal models of surfaces 17 RIVOIRARD J. Models with orthoqonal indicator residuals...91 OMRE H., HALVORSEN K.B. and BERTEIG V. A Bayesian approach to kriqinq ...109 THEQRY I SWITZER P. Non-stationary spatial covariances estimated from monitorinq data ...127 CHAUVET P. Quelques aspects de l'analyse structurale des FAI-k a 1 dimension...139 vi TABLE OF CONTENTS DOWD P.A. Generalised cross-covariances ...151 CRESSIE N. The many faces of spatial prediction ..**...*...**.*.*..*. 163 OBLED C. & BRAUD I. Analogies entre geostatistique et analyse en composantes principales de processus ou analyse EOFs...1 77 THEORY II JEULIN D. Sequential random functions models...189 CHAUTRU J.M. The use of Boolean random functions in geostatistics *.**.**...201 SOARES A.O. Use of a mathematical morphology tool in characterizing covariance& of indicator data...213 ALLISON H.J. Regularization in geostatistics and in ill-posed inversed problems ...* . . * . * . . * ...* * ...225 DONG A.
This book presents results of scientific studies ranging from hydrological modelling to water management and policy issues in the Nile River basin. It examines the physical, hydrometeorological and hydrogeological description of the basin along with analysis in understanding the hydrological processes of the basin under the changing land-use stemming from population pressure and increased natural resources tapping. The book discusses the increased impact of climate change on the river flows, and such issues as water availability and demand, management and policy to offset the imbalance between demand and available resources. This book will be of interest to researchers, practitioners, water resources mangers, policy makers as well as graduate and undergraduate students. It is a useful reference text for ecohydrology, arid zone hydrology, hydrology of transboundary rivers and similar courses.
Headwaters are fragile environments threatened by anthropogenic actions. The regeneration of headwaters calls for a practical approach through integrated environmental management. This book discusses various issues concerning headwater regions of the world under wide-ranging themes: climate change impacts, vegetal cover, sub-surface hydrology, catchment and streamflow hydrology, pollution, water quality and limnology, remote sensing and GIS, environmental impact assessment and mitigation, socio-economic impacts, public participation, education and management, and integrated watershed management. This book aims to bring about an awareness in sustainable regeneration of headwater regions and particularly highlighting the problems of environmental management in highlands and headwaters. These regions consist of great reserves of natural resources which need to be exploited and managed sustainably.
This book gives a unique portrait of the water resources in the Arab region dealing with climate and hydrology. It provides a historical introduction, physiographic features and geological settings of the region and its climate. The book deals with storage of water and impacts of water scarcity on the region's future. There are reviews of topics coupled with case studies, data analyses, discussions and conclusions.
Metrology and its applications e.g. in chemical or food analysis or in environmental monitoring are entering our daily life. This book provides a basic overview over the relevant metrological concepts like traceability, ISO uncertainties or cause-and-effect diagrams. The applications described in great detail range from progression-of-error type evaluation of the measurement uncertainty budget to complex applications like pH measurement or speciation calculations for aqueous solutions. The consequences of a measurement uncertainty concept for chemical data are outlined for geochemical modeling applied to transport in the subsurface and to nuclear waste disposal. Special sections deal with the deficits of existing thermodynamic data for these applications and with the current position of chemical metrology in respect to other quality assurance measures, e.g. ISO 900x, GLP, European and U.S.-American standards.
The Danube River Basin is shared by 19 countries and there is no river basin in the world shared by so many nations. Europe's second largest river basin with a total 2 area of about 800,000 km is also home to 83 million people of different cultures, languages and historical backgrounds. Management of common water sources and overcoming dif?culties caused by droughts and ?oods requires co-operation between the countries. In 1971 these c- mon interests stimulated the hydrologists of - at that time - eight Danube countries to begin regional co- operation in the framework of the International Hydrological Decade of UNESCO. The result of this research was The Hydrological Monograph of the Danube and its Catchment, which was published in 1986. Since 1975 this co-operation has continued under the umbrella of the International Hydrological Programme (IHP) of UNESCO. In the past 20 years political turbulence has caused an increase in the number of countries, making the co-operation dif?cult at times.
The remote mountain loch of Lochnagar is one of the most studied freshwater bodies in Europe. This book brings together knowledge gained over two decades of multi-disciplinary scientific study, with the results of lake sediment research covering millennia, to show how the loch has developed both naturally and as a result of human impact. Particular emphasis is placed on how this fragile ecosystem, and others like it, may be affected by future climate change.
This newly-translated book takes the reader from the basic principles and conservation laws of hydrodynamics to the description of general atmospheric circulation. Among the topics covered are the Kelvin, Ertel and Rossby-Obukhov invariants, quasi-geostrophic equation, thermal wind, singular Helmholtz vortices, derivation of the Navier-Stokes equation, Kolmogorov's flow, hydrodynamic stability, and geophysical boundary layers. Generalizing V. Arnold's approach to hydrodynamics, the author ingeniously brings in an analogy of Coriolis forces acting on fluid with motion of the Euler heavy top and shows how this is used in the analysis of general atmospheric circulation. This book is based on popular graduate and undergraduate courses given by F.V.Dolzhansky at the Moscow Institute of Physics and Technology, and is the result of the author's highly acclaimed work in Moscow's Laboratory of Geophysical Hydrodynamics. Each chapter is full of examples and figures, exercises and hints, motivating and illustrating both theoretical and experimental results. The exposition is comprehensive yet user-friendly in engaging and exploring the broad range of topics for students and researchers in mathematics, physics, meteorology and engineering.
As individual topics, the terms "satellite rainfall" and "surface hydrology" have beenmuchwidelystudiedoverthelastfewdecades.Eversincerainfallproducts beguntobedevelopedusingspace-borneinfraredsensorsingeostationaryorbitin theseventies,satelliteremotesensingofrainfallexperiencedtremendousprogress. Microwavesensorsonlowearthorbitscamealongduringtheeightiestoprovide more accurate estimates of rainfall at the cost of limited sampling. As the c- trastingbutcomplementarypropertiesofmicrowaveandinfraredsensorsbecame apparent,mergedrainfallproductsstartedtoappearduringthefollowingdecade.In 1997,theTropicalRainfallMeasuringMission(TRMM)withthe?rstspace-borne active microwave precipitation radar (TRMM-PR), was launched. The success of TRMMinimprovingourunderstandingonTropicalandSub-tropicalrainfalld- tribution and precipitation structures consequently spurred a larger scale mission aimed at the study of global distribution of precipitation. Today, we now eagerly anticipatetheGlobalPrecipitationMeasurement(GPM)mission,whichenvisions aglobalconstellationofmicrowavesensorsthatwillprovidemoreaccurateglobal rainfallproductsathighresolutionfrom2013onwards. Itisthereforesafetoclaimthreedecadesofresearchheritageonsatelliteremote sensing of rainfall. Similarly, the topic of "surface hydrology" requires no int- duction for readers of environmental sciences and geosciences either. But what happens if we connect all the individual terms and name it - "satellite rainfall applications for surface hydrology"? A new topic is created. But little is known aboutthistopicbecausesatelliteremotesensingofrainfallandsurfacehydrology have evolved rather independently of each other. Even though the potential for a space-bornesourceofrainfalldatawasalwaysrecognizedforavarietyofappli- tions(suchas?oodforecastinginungaugedregions,transboundarywaterresources, global/regionaldroughtandagriculturalplanning),the?eldsofsatelliterainfalland surfacehydrologyhavehardlyintersectedduringtheirdevelopmentalstagesduring thelastfewdecades.Wearenowfacedwithamyriadofquestionsrangingfrom commonoperationalissuestodetailedscienti?cinquiries.Someofthesequestions are: There are so many satellite rainfall products currently available - which one does one use for a speci?c application to get the best results? What is the optimum scaleofapplication ofsatelliterainfalldataforagiven surfaceapplication? Whatis the level of uncertainty in each satellite rainfall product and what is the implication v vi Preface for a given surface hydrologic prediction? Where do I acquire the data for research or for operational applications? How are these satellite rainfall products developed and how do they differ from one another? This book by Springer on "Satellite Rainfall Applications for Surface Hydrology" is a contribution to both scienti?c and practical questions regarding
Existing views on geodynamics (recharge, migration, discharge) of uids at deep layers of petroliferous basins are summarized. The in ltration and elision th- ries explaining development of uid pressures in deep formations are called into question based on quantitative estimates available for some artesian (petroliferous) basins. Using the West Siberian, Pechora, Terek-Kuma, Bukhara-Karshi, and other petroliferous basins as examples, the stratum-block structure of deep formations is substantiated for strati ed systems of platform in inter- and intramontane depr- sions. It is shown that petroliferous reservoirs at great depths are characterized, regardless of lithology, by largely ssure-related capacity and permeability (clayey rocks included) changeable in space and through geological time. Much attention is paid to development of abnormally high formation pressures. Peculiarities in heat and mass transfer at deep levels are considered for different regions. The energetic formation model substantiated for deep uids explains different anomalies (baric, thermal, hydrogeochemical, mineralogical, and others) at deep levels of platforms. Based on hydrogeodynamic considerations, the theory of oil origin and formation of hydrocarbon elds is proposed. The book is of interest for oilmen, hydrogeo- gists, geologists, and specialists dealing with prospecting of petroliferous deposits as well as industrial, mineral, and thermal waters in deep formations of strati ed sedimentary basins. vii Contents 1 Existing Views on Fluidodynamics in Petroliferous Formations . . 1 References ...11 2 Investigation Methods of Deep Fluidodynamics ...15 2. 1 Methods of Formation Pressure Reducing ...16 2. 2 Assessment of Directions of Density-Variable Fluid Flows by the "Filtration Force" Method ...
These proceedings contain the papers presented at the Fourth International Conference on Finite Elements in Water Resources, held in June, 1982, at the University of Hannover, Federal Re public of Germany. This Conference continued the successful series of previous conferences held at Princeton University in 1976, at Imperial College in 1978, and at the University of Mississippi in 1980. Since Finite Elements have proved to be a powerful means for analysing water resource problems, the principal objective of the Conference was to provide an exchange of experiences in practical applications of the finite element method and to establish a forum for discussion regarding accuracy, economy, limitations and improvements. Related discretization methods were included within the scope of the Conference. New develop ments in numerical and computational techniques, basic mathe matical formulations, and soft- and hardware aspects were considered to be equally important topics for an exchange of ideas between both theoretically and practically oriented re searchers. The Conference Organizing Committee is very grateful to the many distinguished scientists who attended the Conference, and for their contributions towards the proceedings. This collection of papers in being made available to a wider audience of en gineers and scientists by CML Publications in Southampton, U.K.
The contributions in this book were presented at the Fourth International Geostatistics Congress held in Troia, Portugal, in September 1992. They provide a comprehensive account of the current state of the art of geostatistics, including recent theoretical developments and new applications. In particular, readers will find descriptions and applications of the more recent methods of stochastic simulation together with data integration techniques applied to the modelling of hydrocabon reservoirs. In other fields there are stationary and non-stationary geostatistical applications to geology, climatology, pollution control, soil science, hydrology and human sciences. The papers also provide an insight into new trends in geostatistics particularly the increasing interaction with many other scientific disciplines. This book is a significant reference work for practitioners of geostatistics both in academia and industry. |
![]() ![]() You may like...
Extreme Hydrology and Climate…
Assefa M. Melesse, Wossenu Abtew, …
Paperback
R4,203
Discovery Miles 42 030
Urban Hydroinformatics - Data, Models…
Zoran Vojinovic, Sarah Thorne, …
Hardcover
R3,813
Discovery Miles 38 130
Environmental Assessment of Patagonia's…
Americo Iadran Torres, Verena Agustina Campodonico
Hardcover
R3,230
Discovery Miles 32 300
|