Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Petrology > General
The evolution and differentiation of the continental crust pose fundamental questions that are being addressed by new research concerning melting, melt extraction and transport through the crust, and the effect of melt on crustal rheology. Insights into crustal processes have been triggered by combined field observations and laboratory experiments, supported by developments in numerical modelling. Opening chapters cover the structure of the continents, controls on heat production and the composition, differentiation and evolution of continental crust. The role of arc magmatism in the Phanerozoic and crustal generation in the Archean are addressed. Two regional examples illustrate the modification and differentiation of continental crust. Process-oriented chapters cover melting, melt extraction and migration, and crustal rheology. The final chapters review the emplacement and growth of plutons and outline a modeling approach to the physical controls on crustal differentiation. This is a valuable summary of recent advances for graduate students and research workers.
Much of the world's surface, even under the oceans, is covered in thick deposits of sedimentary particles - gravel, sand, silt and clay. The nature of the deposits and their formation is very much dependent on the distribution of particles of different sizes. However, different instruments measure different attributes of a particle's size, based on how fast a particle settles in water, or the surface area of a particle, or its length. This book provides information on the how and why of particle size analysis in terms of understanding these sediment deposits.
Processes involved in the development of igneous and metamorphic rocks involve some combination of crystal growth, solution, movement and deformation, which is expressed as changes in texture (microstructure). Recent advances in the quantification of aspects of crystalline rock textures, such as crystal size, shape, orientation and position, have opened new avenues of research that extend and complement the more dominant chemical and isotopic studies. This book discusses the aspects of petrological theory necessary to understand the development of crystalline rock texture. It develops the methodological basis of quantitative textural measurements and shows how much can be achieved with limited resources. Typical applications to petrological problems are discussed for each type of measurement. The book has an associated web page with up-to-date information on textural analysis software, both commercial and free. This book will be of great interest to all researchers and graduate students in petrology.
Now fully updated to cover recent developments, this book covers the closely related techniques of electron microprobe analysis (EMPA) and scanning electron microscopy (SEM) specifically from a geological viewpoint. Topics discussed include: principles of electron-target interactions, electron beam instrumentation, X-ray spectrometry, general principles of SEM image formation, production of X-ray 'maps' showing elemental distributions, procedures for qualitative and quantitative X-ray analysis (both energy-dispersive and wavelength-dispersive), the use of both 'true' electron microprobes and SEMs fitted with X-ray spectrometers, and practical matters such as sample preparation and treatment of results. Throughout, there is an emphasis on geological aspects not mentioned in similar books aimed at a more general readership. The book avoids unnecessary technical detail in order to be easily accessible, and forms an up-to-date text on EMPA and SEM for geological postgraduate and postdoctoral researchers, as well as those working in industrial laboratories.
Recent discoveries of diamond and coesite in the upper crustal rocks of the Earth have drastically changed scientists' ideas concerning the limits of crustal metamorphism. This book provides detailed accounts of the discoveries of diamond and coesite in crustal rocks and provides insights regarding their formation at very high pressures. The formation of these minerals is related to subduction and continental collision and the tectonics, petrological and mineralogical conditions of diamond and coesite formation are each discussed. Written by the leading workers in this exciting field, this book attempts to define an entirely new field of metamorphism - ultrahigh pressure metamorphism (UHPM). In doing so, it explains the formation of ultrahigh pressure minerals and explores new ideas regarding the tectonic setting of this style of metamorphism. This book will be of particular interest to researchers and graduate students of metamorphic petrology and global tectonics.
Microscopic organic-walled fossils are found in most sedimentary rocks. The organic particles - spores, pollens and other land and marine derived microfossils, representing animals, plants, fungi and protists - can be extracted and used to date the rock, reveal details of the original sedimentary environment and provide information on the climate of the time. The mix within a sediment of whole organic particles - palynomorphs - and organic fragments - palynodebris - form palynofacies. This book presents research work on the sedimentation of components of palynofacies and details their importance for sequence stratigraphy and the interpretation of ancient biologic and geologic environments. A comprehensive introduction to the subject is presented in the first chapter. Palynosedimentation in modern environments, the reconstruction of terrestrial vegetation and the application of the data to sequence stratigraphy are then considered. Later chapters detail various quantitative methods and their specific applications in the subject. This is a valuable reference work for palynologists and sedimentologists and also for paleobiologists, and for professionals working in the hydrocarbons industries.
In recent years there has been growing recognition that disaster risk cannot be reduced by focusing solely on physical hazards without considering factors that influence socio-economic impact. Vulnerability: the susceptibility to the damaging impacts of hazards, and resilience: the ability to recover, have become popular concepts in natural hazard and risk management. This book provides a comprehensive overview of the concepts of vulnerability and resilience and their application to natural hazards research. With contributions from both physical and social scientists it provides an interdisciplinary discussion of the different types of vulnerability and resilience, the links between them, and concludes with the remaining challenges and future directions of the field. Examining global case studies from the US coast to Austria, this is a valuable reference for researchers and graduate students working in natural hazard and risk reduction from both the natural and social sciences.
Decades of field and microscope studies, and more recent quantitative geochemical analyses have resulted in a vast, and sometimes overwhelming, array of nomenclature and terminology associated with igneous rocks. This book presents a complete classification of igneous rocks based on all the recommendations of the International Union of Geological Sciences (IUGS) Subcommission on the Systematics of Igneous Rocks. The glossary of igneous terms has been fully updated since the first edition and now includes 1637 entries, of which 316 are recommended by the Subcommission. Incorporating a comprehensive bibliography of source references for all the terms included in the glossary, this book is an indispensable reference guide for all geologists studying igneous rocks, either in the field or the laboratory. It presents a standardised and widely accepted naming scheme that will allow geologists to interpret terminology in the primary literature and provide formal names for rock samples based on petrographic analyses. It is also supported by a website with downloadable code for chemical classifications.
Our aim in writing this book is to try to show how igneous rocks can be persuaded to reveal some ofthe secrets of their origins. The data of igneous rocks consist of field relations, texture, mineralogy, and geochemistry. Additionally, experimental petrology tells us how igneous systems might be expected to behave. Working on this material we attempt to show how hypotheses concerning the origins and evolution of magmas are proposed and tested, and thus illuminate the interesting and fundamental problems of petrogenesis. The book assumes a modest knowledge of basic petro graphy, mineralogy, classification, and regional igneous geology. It has a role complementary to various established texts, several of which are descriptively good and give wide coverage and evaluation of petrogenetic ideas in various degrees of detail. Existing texts do not on the whole, however, deal with methodology, though this is one of the more important aspects of the subject. At first sight it may appear that the current work is a guidebook for the prospective research worker and thus has little relevance for the non-specialist student of geology. We hope this will prove to be far from the case. The methodological approach has an inherent interest because it can provide the reader with problems he can solve for himself, and as an almost incidental consequence he will acquire a satisfying understanding."
Salt tectonics is the study of how and why salt structures evolve and the three-dimensional forms that result. A fascinating branch of geology in itself, salt tectonics is also vitally important to the petroleum industry. Covering the entire scale from the microscopic to the continental, this textbook is an unrivalled consolidation of all topics related to salt tectonics: evaporite deposition and flow, salt structures, salt systems, and practical applications. Coverage of the principles of salt tectonics is supported by more than 600 color illustrations, including 200 seismic images captured by state-of-the-art geophysical techniques and tectonic models from the Applied Geodynamics Laboratory at the University of Texas, Austin. These combine to provide a cohesive and wide-ranging insight into this extremely visual subject. This is the definitive practical handbook for professional geologists and geophysicists in the petroleum industry, an invaluable textbook for graduate students, and a reference textbook for researchers in various geoscience fields.
Reading the Soil Archives: Unraveling the Geoecological Code of Palaeosols and Sediment Cores, Volume 19, provides details of new techniques for understanding geological history in the form of quantitative pollen analyses, soil micromorphology, OSL (Optically Stimulated Luminescence) dating, phytolith analysis and biomarker analysis. The book presents the genesis of a cultural landscape, based on multi-proxy analysis of paleosoils and integration of geomorphological, pedological and archaeological research results, which can be a model for geoecological landscape studies. Beginning with analytical methods for interpreting soil archives, the book examines methods for reconstructing the landscape genesis. The book presents strengths and weaknesses of applications, especially in relation to the data from case studies in the Netherlands. The final chapter of the book addresses landscape evolution in different cultural periods. This book offers an integrated approach to geoecological knowledge that is valuable to students and professionals in quaternary science, physical geography, soil science, archaeology, historical geography, and land planning and restructuring.
This is the first authoritative reference on rock mass classification, consolidating into one handy source information once widely scattered throughout the literature. It includes new, previously unpublished material and case histories, presents the fundamental concepts of classification schemes, and critically appraises their practical application in industrial projects such as tunneling and mining.
The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization combines in a single useful handbook the multidisciplinary domains of the petroleum industry, including the fundamental concepts of rock physics, acoustic logging, waveform processing, and geophysical application modeling through graphical examples derived from field data. It includes results from core studies, together with graphics that validate and support the modeling process, and explores all possible facets of acoustic applications in reservoir evaluation for hydrocarbon exploration, development, and drilling support. The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization serves as a technical guide and research reference for oil and gas professionals, scientists, and students in the multidisciplinary field of reservoir characterization through the use of petrosonics. It overviews the fundamentals of borehole acoustics and rock physics, with a focus on reservoir evaluation applications, explores current advancements through updated research, and identifies areas of future growth.
Granites are emblematic rocks developed from a magma that crystallized in the Earth's crust. They ultimately outcrop at the surface of every continent. This book offers a modern presentation of granitic rocks. It considers granites in their geological spatial and temporal frame, and in relation to plate tectonics and Earth history. The book - translated, edited, and updated from the original French edition Petrologie des Granites published by Vuibert in 2011 - gives a modern presentation of granitic rocks, or granites, from magma genesis to their emplacement into the crust and their crystallization. Mineralogical, petrological, physical, and economical aspects are explored and developed in a succession. The text is supported throughout by a large number of illustrations, descriptions of modern techniques, and additional boxes holding further discussions for those wishing to deepen their knowledge of the subject.
All Earth Science students need to understand the origins, environments, and basic processes that produce igneous and metamorphic rocks. This concise introductory textbook provides students with the essential knowledge needed to understand how petrology relates to other topics in the geologic sciences, and has been written specifically for one-semester courses. Throughout, the emphasis is on interpreting the mineralogy and petrology of rock suites in terms of origin and environment, with the first half of the book concentrating on igneous rocks, and the second half on metamorphic rocks. This Second Edition has been thoroughly revised and brought completely up-to-date. It now includes a new chapter on the application of stable and radiogenic isotopes in petrology, introducing students to the concept of isotopic fractionation and describing the process of radioactive decay. The discussions of phase diagrams, connections between igneous and metamorphic rock suites, and convergent margin magmatism have also been expanded. There is a new glossary of terms, updated end-of-chapter exercises, and updated further readings.
Ranging across the 4.6 billion year history of the planet, geology is the subject that encompasses almost all that we see around us, in one way or another, and also much that we cannot see, beneath our feet, and on other planets. The fruits of geology provide most of the materials that give us shelter, and most of the energy that drives our modern lives. Within the study of geology lie some of the clues to the extraordinary impact our species is going to play out on the planet, in centuries and millennia to come. In this Very Short Introduction Jan Zalasiewicz gives a brief introduction to the fascinating field of geology. Describing how the science developed from its early beginnings, he looks at some of the key discoveries that have transformed it, before delving into its various subfields, such as sedimentology, tectonics, and stratigraphy. Analysing the geological foundations of the Earth, Zalasiewicz explains the interlocking studies of tectonics, geophysics, and igneous and metamorphic petrology and geochemistry; and describes how rocks are dated by radiometric dating. Considering the role and importance of geology in the finding and exploitation of resources (including fracking), he also discusses its place in environmental issues, such as foundations for urban structures and sites for landfill, and in tackling issues associated with climate change. Zalasiewicz concludes by discussing the exciting future and frontiers of the field, such as the exploration of the geology of Mars. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Geosequestration involves the deep geological storage of carbon dioxide from major industrial sources, providing a potential solution for reducing the rate of increase of atmospheric concentrations of carbon dioxide and mitigating climate change. This volume provides an overview of the major geophysical techniques and analysis methods for monitoring the movement and predictability of carbon dioxide plumes underground. Comprising chapters from eminent researchers, the book is illustrated with practical examples and case studies of active projects and government initiatives, and discusses their successes and remaining challenges. A key case study from Norway demonstrates how governments and other stake-holders could estimate storage capacity and design storage projects that meet the requirements of regulatory authorities. Presenting reasons for embracing geosequestration, technical best practice for carbon management, and outlooks for the future, this volume provides a key reference for academic researchers, industry practitioners and graduate students looking to gain insight into subsurface carbon management.
This book represents a detailed introduction to the geology, structure, and stratigraphy of Kutch Basin, known for its rich fossilized megafauna and the wide range of condensed sections exposing Bathonian to Pleistocene. With its vast assortment of geological features, geomorphology, and geoheritage, the Kutch Basin shows geology, stratigraphy, and paleontology almost as a textbook. Besides the beautiful illustrations given in the book, in the form of good field photographs depicting the landscape, and geological and geomorphological features, this guidebook serves as an inspiring reading reference. Furthermore, this guidebook will be a handy reference book for the tourists visiting Kutch Basin in planning their visit to explore the beautiful Kutch region. The guidebook is intended to interest scientists, researchers, students from schools and universities, tourists, and geoscience professionals of the mining and oil industry working in Kutch.
"This is undoubtedly a major contribution to the field. David Burdige's scholarship is cutting edge."--Bernard P. Boudreau, Dalhousie University "Burdige has written a wonderfully exhaustive review spanning all aspects of marine sedimentary geochemistry. Generous background welcomes the newcomer, while ample depth and breadth stimulate the savvy expert. The discussions are built from the latest work in biogeochemistry and microbial ecology. And in the tradition of Robert Berner's classic treatment of early diagenesis, Burdige handles reaction pathways and transport processes rigorously and quantitatively. This nicely written, well-illustrated survey suits both the reference shelf and the classroom."--Timothy W. Lyons, University of California, Riverside "This book fills a gaping hole in our field. While certain to be used by specialists, it also provides background and ancillary information so as to reach allied fields. Burdige has done a remarkable job in providing the right balance of background theory, real-world implementation, and examples from the literature."--Rick Murray, Boston University "David Burdige's book reviews and develops the ideas that emerged in the field of geochemistry over the last twenty-five years. It is a significant contribution. The scholarship is clearly sound, with excellent and comprehensive references to the latest work. I have no doubt it will be useful to any students who wish to learn the subject."--Michael Krom, Leeds University Earth and Biosphere Institute
All Earth Science students need to understand the origins, environments, and basic processes that produce igneous and metamorphic rocks. This concise introductory textbook provides students with the essential knowledge needed to understand how petrology relates to other topics in the geologic sciences, and has been written specifically for one-semester courses. Throughout, the emphasis is on interpreting the mineralogy and petrology of rock suites in terms of origin and environment, with the first half of the book concentrating on igneous rocks, and the second half on metamorphic rocks. This Second Edition has been thoroughly revised and brought completely up-to-date. It now includes a new chapter on the application of stable and radiogenic isotopes in petrology, introducing students to the concept of isotopic fractionation and describing the process of radioactive decay. The discussions of phase diagrams, connections between igneous and metamorphic rock suites, and convergent margin magmatism have also been expanded. There is a new glossary of terms, updated end-of-chapter exercises, and updated further readings.
For courses in Optical Mineralogy, Mineralogy, Crystallography, Petrology, and Petrography; and for routine petrographic work in the lab. This clear and concise text assists students as they look at thin sections. It focuses on the practical, need-to-know information absolutely necessary for work in the laboratory.
Quantifying the timescales of current geological processes is critical for constraining the physical mechanisms operating on the Earth today. Since the Earth's origin 4.55 billion years ago magmatic processes have continued to shape the Earth, producing the major reservoirs that exist today (core, mantle, crust, oceans and atmosphere) and promoting their continued evolution. But key questions remain. When did the core form and how quickly? How are magmas produced in the mantle, and how rapidly do they travel towards the surface? How long do magmas reside in the crust, differentiating and interacting with the host rocks to yield the diverse set of igneous rocks we see today? How fast are volcanic gases such as carbon dioxide released into the atmosphere? This book addresses these and other questions by reviewing the latest advances in a wide range of Earth Science disciplines: from the measurement of short-lived radionuclides to the study of element diffusion in crystals and numerical modelling of magma behaviour. It will be invaluable reading for advanced undergraduate and graduate students, as well as igneous petrologists, mineralogists and geochemists involved in the study of igneous rocks and processes.
A clear understanding of the processes responsible for observed rock microstructures is essential for making reliable petrogenetic interpretations, including inferences made from chemical and isotopic analyses of minerals. This volume presents a comprehensive survey of rock microstructures, emphasising basic concepts and the latest methods, while highlighting potential pitfalls in the interpretation of the origin of rock microstructure. Richly illustrated with over 250 colour photographs, including more than 10 percent new photomicrographs and several mesoscopic images, it demonstrates the basic processes responsible for the wide variety of microstructures in igneous, metamorphic and sedimentary rocks. This second edition includes extensive updates to the coverage of igneous rocks as well as recent ideas on physical processes in migmatites and partial melting of sedimentary rocks. This practical guide will continue to be an invaluable resource to advanced students and early-career researchers of mineralogy, petrology and structural geology, as well as professional geologists and material scientists.
The role of hydrothermal fluids during the crystallization of layered intrusions and the ore deposits they contain has long been debated. This book summarizes the evidence for fluid-crystal-liquid (hydromagmatic) interactions and their importance for the understanding of the formation of platinum-group deposits in layered intrusions. It discusses the composition of igneous fluids in mafic magmatic systems, the generation and movement of these fluids in layered intrusions, their impact in altering the mineralogy and composition of the originally precipitated assemblages, and their role in the transport of the platinum-group elements (PGE). Using examples from the Bushveld complex of South Africa and other intrusions, this book provides a comprehensive overview of the hydromagmatic model for the origin of various features of layered intrusions. It is a useful reference for academic researchers and professional geologists working on economic mineral exploration, layered igneous intrusions, and hydrothermal metallogenesis. |
You may like...
Energy Potential of the Russian Arctic…
Alexey Piskarev, Mikhail Shkatov
Hardcover
R4,374
Discovery Miles 43 740
Petrophysics - Theory and Practice of…
Djebbar Tiab, Erle C. Donaldson
Hardcover
R5,210
Discovery Miles 52 100
Geochemical Modelling of Igneous…
Vojtech Janousek, Jean-Francois Moyen, …
Hardcover
R3,969
Discovery Miles 39 690
|