![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics > Laser technology
This thesis presents the first successful realization of a compact, low-noise, and few-cycle light source in the mid-infrared wavelength region. By developing the technology of pumping femtosecond chromium-doped II-VI laser oscillators directly with the emission of broad-stripe single-emitter laser diodes, coherent light was generated with exceptionally low amplitude noise - crucial for numerous applications including spectroscopy at high sensitivities. Other key parameters of the oscillator's output, such as pulse duration and output power, matched and even surpassed previous state-of-the-art systems. As a demonstration of its unique capabilities, the oscillator's powerful output was used to drive - without further amplification - the nonlinear generation of coherent mid-infrared light spanning multiple octaves. The resulting table-top system uniquely combines high brilliance and ultrabroad spectral bandwidth in the important mid-infrared spectral range. The rapid development of this technology is comprehensively and lucidly documented in this PhD thesis. Together with a thorough review of literature and applications, and an extensive analysis of the theoretical foundations behind ultrafast laser oscillators, the thesis will serve as a valuable reference for the construction of a new generation of mid-infrared light sources.
Micro-Raman Spectroscopy introduces readers to the theory and application of Raman microscopy. Raman microscopy is used to study the chemical signature of samples with little preperation in a non-destructive manner. An easy to use technique with ever increasing technological advances, Micro-Raman has significant application for researchers in the fields of materials science, medicine, pharmaceuticals, and chemistry.
First and pioneering in the field Presents an authoritative description of a young field of research, with a long life ahead Clearly shows the role of multidisciplinary and team work, particularly addressed by combining theoretical/experimental expertise
A state of the art presentation of important advances in the field of digital holography, detailing advances related to fundamentals of digital holography, in-line holography applied to fluid mechanics, digital color holography, digital holographic microscopy, infrared holography, special techniques in full field vibrometry and inverse problems in digital holography
With the increasing interest in holography for 3D imaging applications, there is a need to develop and use hologram compression techniques for the efficient storage and transmission of holographic data. This book gives a broad overview of the state-of-the-art techniques for the efficient compression and representation of digital holographic data, addressing both still and moving data sequences.
This thesis investigates passively mode-locked semiconductor lasers by numerical methods. The understanding and optimization of such devices is crucial to the advancement of technologies such as optical data communication and dual comb spectroscopy. The focus of the thesis is therefore on the development of efficient numerical models, which are able both to perform larger parameter studies and to provide quantitative predictions. Along with that, visualization and evaluation techniques for the rich spatio-temporal laser dynamics are developed; these facilitate the physical interpretation of the observed features. The investigations in this thesis revolve around two specific semiconductor devices, namely a monolithically integrated three-section tapered quantum-dot laser and a V-shaped external cavity laser. In both cases, the simulations closely tie in with experimental results, which have been obtained in collaboration with the TU Darmstadt and the ETH Zurich. Based on the successful numerical reproduction of the experimental findings, the emission dynamics of both lasers can be understood in terms of the cavity geometry and the active medium dynamics. The latter, in particular, highlights the value of the developed simulation tools, since the fast charge-carrier dynamics are generally not experimentally accessible during mode-locking operation. Lastly, the numerical models are used to perform laser design explorations and thus to derive recommendations for further optimizations.
Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60's as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.
In this book we present a snapshot of the state of the art in photonics in 1994, showing typical applications and emerging new ones; discussing the key technologies behind these applications, their limitations, and prospects. The articles in this book are extended versions of the papers presented at the first International Conference on Applications ofPhotonic Technology (ICAPT'94), held in Toronto, Canada, on June 21-23, 1994. Photonics has been recognized as one of the key technologies for the 21 st century, as electronics was the technology of the 20th centrury and electrical engineering changed the life of people in the 19th century. According to the recent report of the Organization for Economic Cooperation and Development in Paris (OECD), the market for photonics will grow dramatically in the next 10 years with an expected world-wide expenditure of US $230 billion from some US $30 billion in 1992. The explosion of information technology was the largest driving force for the deployment of photonic technology. It created insatiable demand for ever-higher data transmission and processing rates, which cannot be sustained by electronics alone. Boosted by the enonnous investment of the telecommunications and defense industries, the demand for photonics (or optoelectronics) is steadily increasing. It is solidly established in the long haul communications, laser printers and CD-ROMs."
This book systematically introduces the most important aspects of organic semiconductor heterojunctions, including the basic concepts and electrical properties. It comprehensively discusses the application of organic semiconductor heterojunctions as charge injectors and charge generation layers in organic light-emitting diodes (OLEDs). Semiconductor heterojunctions are the basis for constructing high-performance optoelectronic devices. In recent decades, organic semiconductors have been increasingly used to fabricate heterojunction devices, especially in OLEDs, and the subject has attracted a great deal of attention and evoked many new phenomena and interpretations in the field. This important application is based on the low dielectric constant of organic semiconductors and the weak non-covalent electronic interactions between them, which means that they easily form accumulation heterojunctions. As we know, the accumulation-type space charge region is highly conductive, which is an important property for highly efficient charge generation in their application as charge injector and charge generation layer in OLEDs. This book serves as a valuable reference for researchers and as a textbook for graduate students focusing on the study and development of OLED for display and lighting.
This book offers a tutorial on the response of materials to lasers, with an emphasis on simple, intuitive models with analytical and mathematical solutions, using techniques such as Laplace Transformation to solve most complex heat conduction equations. It examines the relationship between existing thermal parameters of simple metals and looks at the characteristics of materials and their properties in order to investigate and perform theoretical analysis from a heat conduction perspective mathematically. Topics discussed include optical reflectivity of metals at infrared (IR) wavelengths, laser-induced heat flow in materials, the effects of melting and vaporization, the impulse generated in materials by pulsed radiation, and the influence of the absorption in the blow-off region in irradiated material. Written for engineers, scientists, and graduate-level engineering and physics students, Thermal Effects of High Power Laser Energy on Materials provides an in-depth look at high energy laser technology and its potential industrial and commercial applications in such areas as precision cutting, LIDAR and LADAR, and communications. The knowledge gained from this allows you to apply spaced-based relay mirror in order to compensate laser beam divergence back to its original coherency by preventing further thermal blooming that takes place during laser beam propagation through the atmosphere. Examines the state-of-the-art in currently available high energy laser technologies; Includes computer codes that deal with the response of materials to laser radiation; Provides detailed mathematical solutions of thermal response to laser radiation.
A Comprehensive overview of the theory and applications of laser welding This complete and up-to-date overview examines both the state of the art and likely future directions of laser welding technology. Paying particular attention to manufacturing, where applications of laser welding range from vehicle assembly to the joining of microelectric components, this comprehensive volume reviews the fundamentals, examines the latest research data, and offers detailed coverage of practical applications. The emphasis is on optimizing laser welding techniques to achieve defect-free results at high speed and under reproducible conditions. Author Walter W. Duley also discusses design issues, material properties, and the efficient delivery of laser radiation in welding applications, as well as the practical aspects of joint design. Other important features of this book include:
Laser Welding is an indispensable resource for engineers and scientists using laser welding technology and a useful text for students in physics, material science, and mechanical engineering. It is also a valuable reference for researchers and designers developing new laser welding systems and studying the laser welding process. Walter W. Duley is a professor at the University of Waterloo in Ontario, Canada, and is the founder and former chairman of Powerlasers Limited. His previous books include UV Lasers: Effects and Applications in Materials Science, Laser Processing and Analysis of Materials, and CO2 Lasers: Effects and Applications.
Over the past two decades, the use of fiber lasers in engineering applications has gradually become established as an engineering discipline on its own. The development of fiber lasers is mainly the result of studies from various domains like photonics, optical sensing, fiber optics, nonlinear optics, and telecommunication. Though many excellent books exist on each of these subjects, and several have been written specifically to address lasers and fiber lasers, it is still difficult to find one book where the diverse core of subjects that are central to the study of fiber laser systems are presented in simple and straight forward way.
A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on 'Fundamentals of Luminescence' elucidates the theoretical background and fundamental properties of luminescence as applied to solid-state phosphor materials. The book includes the chapters that cover: Basic principles of luminescence, the principal phosphor materials, and their optical properties New developments in principal phosphors in nitrides, perovskite, and silicon carbide Revised lanthanide level locations and its impact on phosphor performance Detailed descriptions of energy transfer and upconversion processes in bulk and nanoscaled particles and core-shell structures Rapid developing organic and polymer luminescent materials and devices
This book summarizes the most recent and compelling experimental results for complex oxide interfaces. The results of this book were obtained with the cutting-edge photoemission technique at highest energy resolution. Due to their fascinating properties for new-generation electronic devices and the challenge of investigating buried regions, the book chiefly focuses on complex oxide interfaces. The crucial feature of exploring buried interfaces is the use of soft X-ray angle-resolved photoemission spectroscopy (ARPES) operating on the energy range of a few hundred eV to increase the photoelectron mean free path, enabling the photons to penetrate through the top layers - in contrast to conventional ultraviolet (UV)-ARPES techniques. The results presented here, achieved by different research groups around the world, are summarized in a clearly structured way and discussed in comparison with other photoemission spectroscopy techniques and other oxide materials. They are complemented and supported by the most recent theoretical calculations as well as results of complementary experimental techniques including electron transport and inelastic resonant X-ray scattering.
This book systematically introduces readers to laser imaging target detection principles and techniques. It covers the fundamentals of laser imaging and presents an extensive, up-to-date analysis of how to best use laser imaging to detect targets. This is followed by a comprehensive discussion of laser imaging target detection principles, laser imaging generation, and target detection methods. The book offers an invaluable resource for researchers, especially those who are engaged in the fields including target detection based on a laser imaging system, target detection and identification, remote sensing imaging and image processing. Additionally, it can be used as a reference book for advanced undergraduates and postgraduates of relevant majors.
The U.S. laser industry is a major player in the country's economy, with its products used in factories, laboratories, offices, homes and motor vehicles around the country. The issues addressed by the laser industry during the past several decades - patent litigation, worker education, export controls, international standardization, and others - are those that any emerging high-tech industry will have to face. Offering a roadmap for future technology development and commercialization, this book chronicles the laser and electro-optics industry and its issues for business executives, scientists and technicians, attorneys, journalists, historians, and others.
This book computes the first- and second-order derivative matrices of skew ray and optical path length, while also providing an important mathematical tool for automatic optical design. This book consists of three parts. Part One reviews the basic theories of skew-ray tracing, paraxial optics and primary aberrations - essential reading that lays the foundation for the modeling work presented in the rest of this book. Part Two derives the Jacobian matrices of a ray and its optical path length. Although this issue is also addressed in other publications, they generally fail to consider all of the variables of a non-axially symmetrical system. The modeling work thus provides a more robust framework for the analysis and design of non-axially symmetrical systems such as prisms and head-up displays. Lastly, Part Three proposes a computational scheme for deriving the Hessian matrices of a ray and its optical path length, offering an effective means of determining an appropriate search direction when tuning the system variables in the system design process.
This text discusses the fundamental physical concepts involved in understanding charged particle and photon beams. The presentation is unified; particle dynamics in linear and circular accelerators are discussed in common language, as are the evolution of particle and laser beams. This book is aimed at the advanced undergraduate student, and contains numerous illustrative exercises.
This handbook provides an insight into the advancements in surface engineering methods, addressing the microstructural features, properties, mechanisms of surface degradation failures, and tribological performance of the components. Emphasis is on laser cladding methods because by using laser cladding a new class of materials like nano-composites, nano-tubes, and smart materials can be easily deposited. Handbook of Laser-Based Sustainable Surface Modification and Manufacturing Techniques discusses the main mechanism behind the surface degradation of structural components in strenuous environments. It highlights the capacity of laser cladding to operate on a wide range of substrate materials and shapes as well as presents how laser cladding can offer new possibilities in the reconditioning of components and how in many cases, these approaches are the only solution for economical efficiency. The handbook illustrates how if the type of power of the laser, laser optics, and the parameters of the process are efficiently selected, the number of applications of laser cladding can be large. The standard methods of testing used for various types of biomedical devices and tools, as well as the advantages of combining laser cladding with simultaneous induction heating, are described as well within this handbook. Features: Discusses the main mechanism behind the surface degradation of structural components in strenuous environments Highlights the capacity of laser cladding needed to operate on a wide range of substrate materials and shapes Presents how laser cladding can offer new possibilities in the reconditioning of components and how in many cases, these approaches are the only possible solution and are economically efficient Illustrates how if the type and power of the laser, laser optics, and the parameters of the process are efficiently selected, the number of applications of laser cladding can be large Offers the standard methods of testing used for various types of biomedical devices and tools Goes over the advantages of combining laser cladding with simultaneous induction heating The technical outcomes of these surface engineering methods are helpful for academics, students, and professionals who are working in this field as this enlightens their understanding of the performance of these latest processes. The audience is broad and multidisciplinary.
This volume contains selected and expanded contributions presented at the 3rd Symposium on Space Optical Instruments and Applications in Beijing, China June 28 - 29, 2016. This conference series is organised by the Sino-Holland Space Optical Instruments Laboratory, a cooperation platform between China and the Netherlands. The symposium focused on key technological problems of optical instruments and their applications in a space context. It covered the latest developments, experiments and results regarding theory, instrumentation and applications in space optics. The book is split across five topical sections. The first section covers space optical remote sensing system design, the second advanced optical system design, the third remote sensor calibration and measurement. Remote sensing data processing and information extraction is then presented, followed by a final section on remote sensing data applications.
Examining distributed feedback (DFB) laser diodes, this title covers the underlying theory, commercial applications, necessary design criteria and future direction of this technology. The authors offer a description of the various effects that determine DFB laser diode behaviour, and also present modelling approaches, describe DFB laser performance aspects, lay out critical guidelines for DFB laser devices and their use in emerging, high-capacity optical transmission systems.
This book gives a readable introduction to the important, rapidly developing, field of nanophotonics. It provides a quick understanding of the basic elements of the field, allowing students and newcomers to progress rapidly to the frontiers of their interests. Topics include: The basic mathematical techniques needed for the study of the materials of nanophotonic technology; photonic crystals and their applications as laser resonators, waveguides, and circuits of waveguides; the application of photonic crystals technology in the design of optical diodes and transistors; the basic properties needed for the design and understanding of new types of engineered materials known as metamaterials; and a consideration of how and why these engineered materials have been formulated in the lab, as well as their applications as negative refractive index materials, as perfect lens, as cloaking devices, and their effects on Cherenkov and other types of radiation. Additionally, the book introduces the new field of plasmonics and reviews its important features. The role of plasmon-polaritons in the scattering and transmission of light by rough surfaces and the enhanced transmission of light by plasmon-polariton supporting surfaces is addressed. The important problems of subwavelength resolution are treated with discussions of applications in a number of scientific fields. The basic principles of near-field optical microscopy are presented with a number of important applications. The basics of atomic cavity physics, photonic entanglement and its relation to some of the basic properties of quantum computing, and the physics associated with the study of optical lattices are presented. |
You may like...
Indiana Jones And The Dial Of Destiny
Harrison Ford, Phoebe Waller-Bridge, …
DVD
R275
Discovery Miles 2 750
Sanctuary - African Americans and Empire
Nicole A. Waligora-Davis
Hardcover
R2,729
Discovery Miles 27 290
High Places - Cultural Geographies of…
Denis Cosgrove, Veronica della Dora
Hardcover
R4,638
Discovery Miles 46 380
|