![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics > Laser technology
This thirteenth volume in the PUILS series covers a broad range of topics from this interdisciplinary research field, focusing on atoms, molecules, and clusters interacting in intense laser field and high-order harmonics generation and their applications. The series delivers up-to-date reviews of progress in ultrafast intense laser science, the interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Typically, each chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.
Head, Eye, and Face Personal Protective Equipment: New Trends, Practice, and Applications presents protective equipment in the context of the latest design trends, materials, and technologies. It informs the reader using basic safety principles to avoid issues with commonly used personal protective equipment (PPE), such as helmets and eye and face protectors. It provides the latest design trends in eye and face protectors to avoid optical hazards and for use in variable lighting conditions. Features: * Fills the gap on current solutions of PPE and occupational safety * Educates in reducing risk connected with using industrial safety gear * Helpful to optometrists in the selection of eye protection for people with visual impairments * Instructs the reader on choosing smart materials and safety products * Provides best practices for checking the technical condition of the equipment This book is essential for the safety professional and medical experts in the field. It provides an interdisciplinary approach to personal protective equipment using new technologies in the field. "The monograph Head, Eye, and Face Personal Protective Equipment - New Trends, Practice and Applications is a complementary and thoughtful but selected compilation of the most relevant information concerning protective helmets as well as eye and face protection. The compilation of these two protection types is the result of the common use of both protective helmets and eye and face protectors. This requires their full compatibility, both in terms of ensuring optimum safety and comfort of use. The authors have chosen the material according to the needs of people directly responsible for safety at work and users of those protectors. The main aim of the work is to popularise knowledge in the field of construction, research methods, selection and use of protective helmets and eye and face protectors. In terms of use, the authors emphasise the necessity of independent control, i.e. checking the technical condition of the equipment used by the end users. The presented monograph includes the current state of knowledge in this scope, extended by the results and summaries of the authors' own research. All requirements and research methods are given based on European (EN), international (ISO) standards and standards operating in different geographical areas. The monograph also encompasses new trends in the design of protective helmets and eye and face protectors. All this allows me to emphasize the uniqueness of this monograph in relation to previous publications in this field, both in terms of the scope and selection of information concerning protective helmets and eye and face protectors." - Ryszard Korycki, Lodz University of Technology
Recently developed organic photovoltaics (OPVs) show distinct advantages over their inorganic counterparts due to their lighter weight, flexible shape, versatile materials synthesis and device fabrication schemes, and low cost in large-scale industrial production. Although many books currently exist on general concepts of PV and inorganic PV materials and devices, few are available that offer a comprehensive overview of recently fast developing organic and polymeric PV materials and devices. Organic Photovoltaics: Mechanisms, Materials, and Devices fills this gap. The book provides an international perspective on the latest research in this rapidly expanding field with contributions from top experts around the world. It presents a unified approach comprising three sections: General Overviews; Mechanisms and Modeling; and Materials and Devices. Discussions include sunlight capture, exciton diffusion and dissociation, interface properties, charge recombination and migration, and a variety of currently developing OPV materials/devices. The book also includes two forewords: one by Nobel Laureate Dr. Alan J. Heeger, and the other by Drs. Aloysius Hepp and Sheila Bailey of NASA Glenn Research Center. Organic Photovoltaics equips students, researchers, and engineers with knowledge of the mechanisms, materials, devices, and applications of OPVs necessary to develop cheaper, lighter, and cleaner renewable energy throughout the coming decades.
The first experiments with relativistic magnetrons (PM), resulted in notable results, in the USA - Massachusetts Institute of Technology and the USSR - Institute of Applied Physics. Academy of Sciences of the USSR (Gorky), and the Nuclear Physics Research Institute at the Tomsk State University, hundreds of megawatts to several gigawatts with an efficiency of 10-30% were obtained. Relativistic high-frequency electronics has now become one of the fastest growing areas of scientific research. This reference is devoted to theoretical and experimental studies of relativistic magnetrons and is written by a leading expert who worked directly on these systems.
Bringing together scattered literature from a range of sources, Laser Spectroscopy and ItsApplications clearly elucidates the tools and concepts of this dynamic area, and providesextensive bibliographies for further study.Distinguished experts in their respective fields discuss resonance photoionization, laser absorption,laser-induced breakdown, photodissociation, Raman scattering, remote sensing,and laser-induced fluorescence. The book also incorporates an overview of the semiclassicaltheory of atomic and molecular spectra.Combining background at an intermediate level with an in-depth discussion of specifictechniques, Laser Spectroscopy and Its Applications is essential reading for laser and opticalscientists and engineers; analytical chemists; health physicists; researchers in optical,chemical, pharmaceutical, and metallurgical industries. It will also prove useful for upperlevelundergraduate and graduate students of laser spectroscopy and its applications, andin-house seminars and short courses offered by firms and professional societies.
Praise for the 1st Edition: "well written and up to date.... The problem sets at the end of each chapter reinforce and enhance the material presented, and may give students confidence in handling real-world problems." Optics & Photonics News "rigorous but simple description of a difficult field keeps the reader's attention throughout.... serves perfectly for an introductory-level course." Physics Today This fully revised introduction enables the reader to understand and use the basic principles related to many phenomena in nonlinear optics and provides the mathematical tools necessary to solve application-relevant problems. The book is a pedagogical guide aimed at a diverse audience including engineers, physicists, and chemists who want a tiered approach to understanding nonlinear optics. The material is augmented by numerous problems, with many requiring the reader to perform real-world calculations for a range of fields, from optical communications to remote sensing and quantum information. Analytical solutions of equations are covered in detail and numerical approaches to solving problems are explained and demonstrated. The second edition expands the earlier treatment and includes: A new chapter on quantum nonlinear optics. Thorough treatment of parametric optical processes covering birefringence, tolerances and beam optimization to design and build high conversion efficiency devices. Treatment of numerical methods to solving sets of complex nonlinear equations. Many problems in each chapter to challenge reader comprehension. Extended treatment of four-wave mixing and solitons. Coverage of ultrafast pulse propagation including walk-off effects.
This book provides a step-by-step discussion through each topic of fiber optics. Each chapter explores theoretical concepts of principles and then applies them by using experimental cases with numerous illustrations. The book works systematically through fiber optic cables, advanced fiber optic cables, light attenuation in optical components, fiber optic cable types and installations, fiber optic connectors, passive fiber optic devices, wavelength division multiplexing, optical amplifiers, optical receivers, opto-mechanical switches, and optical fiber communications. It includes important chapters in fiber optic lighting, fiber optics testing, and laboratory safety.
Recent advances in the development of lasers with more energy, power, and brightness have opened up new possibilities for exciting applications. Applications of Laser-Plasma Interactions reviews the current status of high power laser applications. The book first explores the science and technology behind the ignition and burn of imploded fusion fuel, before describing novel particle accelerators. It then focuses on applications of high power x-ray sources and the development of x-ray lasers. The book also discusses how ultrahigh power lasers are used in nuclear and elementary particle physics applications as well as how the high power density of laser-plasma interactions is used to study matter under extreme conditions. The final chapters deal with femtosecond lasers, presenting applications in materials processing and nanoparticles. With contributions from a distinguished team of researchers, this work illustrates the many applications of high power lasers, highlighting their important roles in energy, biology, nanotechnology, and more.
ICOLS features the latest developments in the area of laser spectroscopy and related topics in atomic, molecular, and optical physics and other disciplines. The talks covered a broad range of exciting physics, such as precision tests of fundamental symmetries with atoms and molecules, atomic clocks, quantum many-body physics with ultra-cold atoms, atom interferometry, quantum information science with photons and ions, quantum optics, and ultra-fast atomic and molecular dynamics.The conference program comprised 14 sessions with 9 keynote addresses, 25 invited talks, and 3 hot topic talks. The speakers came from 15 different countries. Ever since the ICOLS conference series originated in 1973, its proceedings have been highly valued by many for capturing important developments in the field and offering the room to represent various aspects of specific research topics. The present volume contains some of the invited talks delivered at the conference.
Expensive, delicate, and difficult to operate, femtosecond lasers have already won two Nobel Prizes and created multi-billion dollar industries. As these lasers break out of laboratories for use in real-world large-scale applications, the number of people using them increases. This book provides a fresh perspective on femtosecond lasers, discussing how they are soon to become a universal light source, spanning any timescale and generating any wavelength of light. Starting from the basics of light itself, this book presents in an everyday manner, with clear illustrations and without formulas, what makes this class of lasers so versatile and the future of many more applications. Many of the subjects covered in this book are described in plain words for the first time.
Featuring detector technology capable of sensing even a few photons, this valuablereference guide provides criteria for selecting techniques and equipment appropriate tovarious types of faint signals. It highlights many important facets of photoconductivityand photodetection, including the measurement of weak photosignals in the presence ofnoise ... statistics relating to the creation, annihilation, and transport of charge carriers... and time-dependent behavior, photoquenching, negative photoconductivity, andphotosensitivity.Complete with more than 125 diagrams and tables, Photoconductivity: Art,Science, and Technology gives special attention to modem two-dimensionalphotodetectors . . . describes various configurations for experimental techniques inphotoconductivity measurements . . . surveys band structure properties, with usefulreference to such contemporary structures as n-i-p-i and modulation doped materials .. .illustrates the concept of noise in photoconductors and its role in detector technology .. .and observes unusual photoconducting properties in diluted magnetic semiconductors.Photoconductivity: Art, Science, and Technology serves as an indispensableresource for optical, electrical, laser, and aerospace engineers, physicists, materialsscientists, photonic scientists, and graduate students interested in these disciplines.
Advanced Electromagnetic Computation with MATLAB (R) discusses commercial electromagnetic software, widely used in the industry. Algorithms of Finite Differences, Moment method, Finite Element method and Finite Difference Time Domain method are illustrated. Hand-computed simple examples and MATLAB-coded examples are used to explain the concepts behind the algorithms. Case studies of practical examples from transmission lines, waveguides, and electrostatic problems are given so students are able to develop the code and solve the problems. Two new chapters including advanced methods based on perturbation techniques and three dimensional finite element examples from radiation scattering are included.
A comprehensive, up-to-date review of the physics and applications of a major class of laser, the most important example of which is the copper vapour laser. A collection of 50 papers written by the world's leaders in the field. Papers cover: the early history of pulsed metal vapour lasters; the plasma kinetics and excitation mechanisms of self terminating and recombination metal vapour lasers; beam quality issues for applications; frequency harmonic generation for mid-UV applications; high-precision processing of metals, ceramics, glasses and plastics using metal vapour lasers; applications in medicine, including oncology and dermatology; applications in science such as spectroscopy and mass spectrometry. A practical source of information on the physics, engineering and applications of metal vapour lasers. Audience: scientists, teachers and graduate researchers working in the fields of gas lasers, laser optics, gas discharges, optoelectronics and laser applications in industry, science and medicine.
Random Light Beams: Theory and Applications contemplates the potential in harnessing random light. This book discusses light matter interactions, and concentrates on the various phenomena associated with beam-like fields. It explores natural and man-made light fields and gives an overview of recently introduced families of random light beams. It outlines mathematical tools for analysis, suggests schemes for realization, and discusses possible applications. The book introduces the essential concepts needed for a deeper understanding of the subject, discusses various classes of deterministic paraxial beams and examines random scalar beams. It highlights electromagnetic random beams and matters relating to generation, propagation in free space and various media, and discusses transmission through optical systems. It includes applications that benefit from the use of random beams, as well as the interaction of beams with deterministic optical systems. * Includes detailed mathematical description of different model sources and beams * Explores a wide range of man-made and natural media for beam interaction * Contains more than 100 illustrations on beam behavior * Offers information that is based on the scientific results of the last several years * Points to general methods for dealing with random beams, on the basis of which the readers can do independent research It gives examples of light propagation through the human eye, laser resonators, and negative phase materials. It discusses in detail propagation of random beams in random media, the scattering of random beams from collections of scatterers and thin random layers as well as the possible uses for these beams in imaging, tomography, and smart illumination.
The KDP family of single crystals is composed of compounds of alkali metals with light or heavy (hydro, deutero) water and oxides of phosphate or arsenate, including ammonium, potassium, rubidium and caesium dihydro- and dideutero-phosphates, and similar arsenates. While not occurring in nature, their production exceeds that of any other water-soluble crystals and the demand for bigger and more optically pure crystals is ever increasing. KDP-Family Single Crystals is a comprehensive investigation of the crystallization mechanism for these systems. The first part of the book collects the majority of the available data on the physico-chemical analysis of these systems. This is complemented by a review of contemporary concepts related to the crystal growth dislocation mechanism under the influence of impurities, changing supersaturation, and temperature. This is not only relevant to the growth of KDP single crystals but to the majority of crystals grown from low- and high-temperature solutions. Finally, attention is given to the important problem of speeding up the production processes for the growth of these crystals while maintaining the quality of the crystals. The in-depth coverage that KDP-Family Single Crystals provides to the art of crystal growth techniques makes it an essential reference work for all those working in the field of crystal growth and to those using KDP-family crystals in quantum electronics devices.
Charged Particle Optics Theory: An Introduction identifies the most important concepts of charged particle optics theory, and derives each mathematically from the first principles of physics. Assuming an advanced undergraduate-level understanding of calculus, this book follows a logical progression, with each concept building upon the preceding one. Beginning with a non-mathematical survey of the optical nature of a charged particle beam, the text: Discusses both geometrical and wave optics, as well as the correspondence between them Describes the two-body scattering problem, which is essential to the interaction of a fast charged particle with matter Introduces electron emission as a practical consequence of quantum mechanics Addresses the Fourier transform and the linear second-order differential equation Includes problems to amplify and fill in the theoretical details, with solutions presented separately Charged Particle Optics Theory: An Introduction makes an ideal textbook as well as a convenient reference on the theoretical origins of the optics of charged particle beams. It is intended to prepare the reader to understand the large body of published research in this mature field, with the end result translated immediately to practical application.
The millimetre-wavelength region of the electromagnetic spectrum is increasingly exploited for a wide range of commercial, industrial, and military applications. Conventionally, this region is considered as lying "above" microwaves and "below" the infrared. Hence, in practice, millimetre-wave scientists have tended to pick and mix useful techniques on an empirical basis from both these areas. Millimetre-Wave Optics, Devices and Systems describes the fundamental physics of the quasi-optical techniques, devices, and system design for instruments processing millimetre-wave signals. Relevant ideas from Gaussian beam mode theory and antenna and transmission line theory are brought together to show the underlying unity of optics and electronics. Aimed at advanced undergraduates and postgraduates as well as millimetre-wave, laser optics, antenna, and microwave engineers, this book will also be of interest to manufacturers of millimetre-wave and microwave equipment.
This book is devoted to research in the actual field of mathematical modeling in modern problems of plasma physics associated with vibrations and wake waves excited by a short high-power laser pulse. The author explores the hydrodynamic model of the wake wave in detail and from different points of view, within the framework of its regular propagation, a development suitable for accelerating electrons, and the final tipping effect resulting in unregulated energy transfer to plasma particles. Key selling features: Presents research directly related to the propagation of super-power short laser pulses (subject of the 2018 Nobel Prize in Physics). Presents mathematical modeling of plasma physics associated with vibrations and wake waves excited by a short high-power laser pulse. Includes studies of large-amplitude plasma oscillations. Most of the presented results are of original nature and have not appeared in the domestic and foreign scientific literature Written at a level accessible for researchers, academia, and engineers.
The book addresses various approaches to television projection imaging on large screens using lasers. Results of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse are presented. Characteristic features of image formation and requirements for individual components are discussed. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. The feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers is studied.
The first experiments with relativistic magnetrons (PM), resulted in notable results, in the USA - Massachusetts Institute of Technology and the USSR - Institute of Applied Physics. Academy of Sciences of the USSR (Gorky), and the Nuclear Physics Research Institute at the Tomsk State University, hundreds of megawatts to several gigawatts with an efficiency of 10-30% were obtained. Relativistic high-frequency electronics has now become one of the fastest growing areas of scientific research. This reference is devoted to theoretical and experimental studies of relativistic magnetrons and is written by a leading expert who worked directly on these systems.
Motivates students by challenging them with real-life applications of the somtimes esoteric aspects of quantum mechanics that they are learning. Offers completely original excerices developed at teh Ecole Polytechnique in France, which is know for its innovative and original teaching methods. Problems from modern physics to help the student apply just-learnt theory to fields such as molecular physics, condensed matter physics or laser physics.
This book deals with theoretical bases of the modern optics division concerned with coherent light fields with singularities characterized by phase uncertainty. Singular light fields include laser vortex beams or beams that carry orbital angular momentum. Laser vortex beams that have been introduced in optics in recent years are discussed in detail. Among them, of special notice are families of asymmetric laser vortex beams that, while being devoid of radial symmetry, remain unchanged upon propagation. What makes the laser vortex beams especially interesting is the ability to preserve their structure while propagating in a scattering medium or through a turbulent atmosphere. The orbital angular momentum is an extra degree of freedom of laser vortices because beams with different topological charge can be utilized as independent channels for data transmission in wireless communications. Laser vortex beams are generated from conventional Gaussian beams using liquid crystal light modulators, which are now readily available at any optical laboratory. Provide a framework for the comparative analysis of the efficiency of different vortex beams for micromanipulation. Includes detailed illustrations, enabling the vortex structure to be easily understood even by non-experts. Presents detailed descriptions of more than a dozen most popular types of vortex laser beams. Explores how optical vortices have been used in many practical applications including conventional and quantum wireless communications, micromanipulation, optical measurements with super-resolution, spiral interferometry, microscopy, and atom cooling. Presents in a systematic and detailed form many analytical and numerical results for the propagation vortex optical beams (chiefly in the linear propagation regime).
The aim of this NATO Advanced Study Institute was to bring together scientists and students working in the field of laser matter interactions in order to review and stimulate developmentoffundamental science with ultra-short pulse lasers. New techniques of pulse compression and colliding-pulse mode-locking have made possible the construction of lasers with pulse lengths in the femtosecond range. Such lasers are now in operation at several research laboratories in Europe and the United States. These laser facilities present a new and exciting research direction with both pure and applied science components. In this ASI the emphasis is on fundamental processes occurring in the interaction of short laser pulses with atoms, molecules, solids, and plasmas. In the case of laser-atom (molecule) interactions, high power lasers provide the first access to extreme high-intensity conditions above 10'8 Watts/em', a new frontier for nonlinear interaction of photons with atoms and molecules. New phenomena observed include multiphoton ionization processes, atomic collisions in the presence of a strong laser field, Coulomb explosion following rapid ionization of a molecule and the production of high harmonics of the laser source. Another important topic reviewed in this ASI is the lasercooling ofatoms.
- Approachable and comprehensive book that strikes a good balance between textual explanations and math. It also covers a large area of applications. - Chapter end problems and over 300 figures to help aid the learning process.
Discusses the topological charge of an optical vortex is equal to the number of screw dislocations or the number of phase singularities in the beam cross-section Presents a single approach based on the M. Berry formula Describes the topological competition between different optical vortices in a superposition Demonstrates the stability of the topological charge to random phase distortions and insensitivity to amplitude distortions Contains many numerical examples, which clearly show how the phase of optical vortices changes during propagation in free space and the topological charge is preserved |
![]() ![]() You may like...
|