![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics > Laser technology
This book provides a step-by-step guide on how to construct a narrowband single photon source for the integration with atom-based memory systems. It combines the necessary theoretical background with crucial experimental methods and characterisations to form a complete handbook for readers at all academic levels. The future implementation of large quantum networks will require the hybridisation of photonic qubits for communication with quantum memories in the context of information storage. Such an interface requires carefully tailored single photons to ensure compatibility with the chosen memory. The source itself is remarkable for a number of reasons, including being the spectrally narrowest and brightest source of its kind; in addition, it offers a novel technique for frequency stabilisation in an optical cavity, together with exceptional portability. Starting with a thorough analysis of the current literature, this book derives the essential parameters needed to design the source, describes its individual components in detail, and closes with the characterisation of a single photon source.
This book presents studies of complex nanostructures with unique optical responses from both theoretical and experimental perspectives. The theory approaches the optical response of a complex structure from both quantum-mechanical and semiclassical frameworks, and is used to understand experimental results at a fundamental level as well as to form a quantitative model to allow the design of custom nanostructures. The experiments utilize scanning transmission electron microscopy and its associated analytical spectroscopies to observe nanoscale optical effects, such as surface plasmon resonances, with nanometer-scale spatial resolution. Furthermore, there is a focus in the dissertation on the combination of distinct techniques to study the difficult-to-access aspects of the nanoscale response of complex nanostructures: the combination of complementary spectroscopies, the combination of electron microscopy and photonics, and the combination of experiment and theory. Overall, the work demonstrates the importance of observing nanoscale optical phenomena in complex structures, and observing them directly at the nanoscale.
Femto-second Probing of Photoinduced Refractive Index Charges in Semiconductor; H.M. Van Driel, E.C. Fox. Tunneling of Electrons and Holes in Asymmetries Double Quantum Wells; J. Shah, et al. Ultrashort Excitation in Semiconductors; W.E. Bon. Contact-Free Characterization of Electronic and Optoelectronic Devices with Ultrashort Laser Pulses; J. Kuhl. Vibrational Relaxation Studied with Light; A. Lagendijk. Relaxation of Frenkeltype Rotational and Vibrational Excitons in Diatomic Molecular Crystals; E. Goovaertz. Quantum Transient Transport; C. Jacoboni, F. Rossi. Study of Irreversible Processes in Condensed Matter by Nonlinear Time and Space Resolved Techniques; Chr. Flytzanis. Index.
Novel Optical Technologies for Nanofabrication describes recent advances made in micro/nanofabrication with super-resolution laser technologies, which are based on the latest research findings in the authors' groups. It focuses on new techniques and methods as well as applications and development trends in laser nanofabrication, including super-resolution laser direct writing, surface structures composed of laser path-guided wrinkle, three-dimensional laser nanofabrication based on two-photon absorption, and nanofabrication by laser interference and surface plasmon polaritons. This book serves as a reference for academic researchers, engineers, technical professionals and graduate students in the fields of micro/nanotechnology, thin film materials, super-resolution optics and laser techniques. Qian Liu is a Professor at Laboratory for Nanodevice, National Center for Nanoscience and Technology, China. Xuanming Duan is a Professor at the Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China Changsi Peng is a Professor at the Institute of Information Optical Engineering, Soochow University, China.
This book documents the recent vivid developments in the research field of ultrashort intense light pulses for probing and controlling ultrafast dynamics. The recent fascinating results in studying and controlling ultrafast dynamics in ever more complicated systems such as (bio-)molecules and structures of meso- to macroscopic sizes on ever shorter time-scales are presented. The book is written by some of the most eminent experimental and theoretical experts in the field. It covers the new groundbreaking research directions that were opened by the availability of new light sources such as fully controlled intense laser fields with durations down to a single oscillation cycle, short-wavelength laser-driven attosecond pulses and intense X-ray pulses from the upcoming free electron lasers. These light sources allowed the investigation of dynamics in atoms, molecules, clusters, on surfaces and very recently also in nanostructures and solids in new regimes of parameters which, in turn, led to the identification of completely new dynamics and methods for controlling it. Example topics covered by this book include the study of ultrafast processes in large molecules using attosecond pulses, control of ultrafast electron dynamics in solids with shaped femtosecond laser pulses, light-driven ultrafast plasmonic processes on surfaces and in nanostructures as well as research on atomic and molecular systems under intense X-ray radiation. This book is equally helpful for people who would like to step into this field (e.g. young researchers), for whom it provides a broad introduction, as well as for already experienced researchers who may enjoy the exhaustive discussion that covers the research on essentially all currently studied objects and with all available ultrafast pulse sources.
This monograph provides an introductory discussion of evanescent waves and plasmons, describes their properties and uses, and shows how they are fundamental when operating with nanoscale optics. Far field optics is not suitable for the design, description, and operation of devices at this nanometre scale. Instead one must work with models based on near-field optics and surface evanescent waves. The new discipline of plasmonics has grown to encompass the generation and application of plasmons both as a travelling excitation in a nanostructure and as a stationary enhancement of the electrical field near metal nanosurfaces. The book begins with a brief review of the basic concepts of electromagnetism, then introduces evanescent waves through reflection and refraction, and shows how they appear in diffraction problems, before discussing the role that they play in optical waveguides and sensors. The application of evanescent waves in super-resolution devices is briefly presented, before plasmons are introduced. The surface plasmon polaritons (SPPs) are then treated, highlighting their potential applications also in ultra-compact circuitry. The book concludes with a discussion of the quantization of evanescent waves and quantum information processing. The book is intended for students and researchers who wish to enter the field or to have some insight into the matter. It is not a textbook but simply an introduction to more complete and in-depth discussions. The field of plasmonics has exploded in the last ten years, and most of the material treated in this book is scattered in original or review papers. A short comprehensive treatment is missing; this book is intended to provide just that.
This book presents recent advances, new ideas and novel techniques related to the field of nonlinear dynamics, including localized pattern formation, self-organization and chaos. Various natural systems ranging from nonlinear optics to mechanics, fluids and magnetic are considered. The aim of this book is to gather specialists from these various fields of research to promote cross-fertilization and transfer of knowledge between these active research areas. In particular, nonlinear optics and laser physics constitute an important part in this issue due to the potential applications for all-optical control of light, optical storage, and information processing. Other possible applications include the generation of ultra-short pulses using all-fiber cavities.
This book lies at the interface of machine learning - a subfield of computer science that develops algorithms for challenging tasks such as shape or image recognition, where traditional algorithms fail - and photonics - the physical science of light, which underlies many of the optical communications technologies used in our information society. It provides a thorough introduction to reservoir computing and field-programmable gate arrays (FPGAs). Recently, photonic implementations of reservoir computing (a machine learning algorithm based on artificial neural networks) have made a breakthrough in optical computing possible. In this book, the author pushes the performance of these systems significantly beyond what was achieved before. By interfacing a photonic reservoir computer with a high-speed electronic device (an FPGA), the author successfully interacts with the reservoir computer in real time, allowing him to considerably expand its capabilities and range of possible applications. Furthermore, the author draws on his expertise in machine learning and FPGA programming to make progress on a very different problem, namely the real-time image analysis of optical coherence tomography for atherosclerotic arteries.
This is a guide to the physics and engineering of semiconductor lasers - from basic physics to modern design applications for optical communications and photonic switching. It offers descriptions of bistability, ultrashort optical pulse generation and the two-section laser diode. The text is aimed at engineers and system designers in the fields of communication, switching, measurement systems and information processing. It should also be useful for scientists and engineers studying laser diodes; and for graduate students in electronics and electrical engineering.
Digital holography is an emerging field of new paradigm in general imaging applications. The book presents an introduction to the theoretical and numerical principles and reviews the research and development activities in digital holography, with emphasis on the microscopy techniques and applications. Topics covered include the general theory of diffraction and holography formations, and practical instrumentation and experimentation of digital holography. Various numerical techniques are described that give rise to the unique and versatile capabilities of digital holography. Representative special techniques and applications of digital holography are discussed. The book is intended for researchers interested in developing new techniques and exploring new applications of digital holography.
This thesis presents the fundamental research and latest findings on novel flexible/wearable photovoltaic technology, and comprehensively summarizes the rapid developments in flexible photovoltaics, from traditional planar solar cells to fiber solar cells. It discusses the rational design of fiber solar cell materials, electrodes and devices, as well as critical factors including cost, efficiency, flexibility and stability . Furthermore, it addresses fundamental theoretical principles and novel fabrication technologies and their potential applications. The book provides practical information for university researchers and graduate students interested in flexible fiber photovoltaics, and inspires them to design other novel flexible/wearable electronics and textiles.
This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.
A survey of monolithic tunable semiconductor lasers, including applications in optical communication systems. The text discusses the underlying physics, operational principles and performance and applications of tunable laser diodes, covering tuning mechanisms, properties and laser structures.
Written by the inventor of Raman lasers, this reference describes their developments, fundamentals, operation characteristics and application methods. It is for optoelectronic researchers, system engineers and researchers in nonlinear optics, crystal optics and metrology.
Recent studies have shown that novel processing and modeling techniques may be used to create patient-specific prostheses, artificial tissues, and other implants using data obtained from magnetic resonance imaging, computed tomography, or other imaging techniques. For example, customized prostheses may be fabricated that possess suitable features, including geometry, size, and weight, for a given medical condition. Many advances have been made in the development of patient-specific implants in the past decade, yet this information is not readily available to scientists and students. Printed Biomaterials: Novel Processing and Modeling Techniques for Medicine and Surgery provides the biomaterials scientist and engineer, as well as advanced undergraduate or graduate students, with a comprehensive discussion of contemporary medical implant research and development. The development of printed biomaterials is multidisciplinary, and includes concepts traditionally associated with engineering, materials science, medicine, and surgery. This text highlights important topics in these core fields in order to provide the fundamentals necessary to comprehend current processing and modeling technologies and to develop new ones.
This dissertation provides the first systematic analysis of the dynamic energy efficiency of vertical-cavity surface-emitting lasers (VCSELs) for optical interconnects, a key technology to address the pressing ecological and economic issues of the exponentially growing energy consumption in data centers. Energy-efficient data communication is one of the most important fields in "Green Photonics" enabling higher bit rates at significantly reduced energy consumption per bit. In this thesis the static and dynamic properties of GaAs-based oxide-confined VCSELs emitting at 850 nm and 980 nm are analyzed and general rules for achieving energy-efficient data transmission using VCSELs at any wavelength are derived. These rules are verified in data transmission experiments leading to record energy-efficient data transmission across a wide range of multimode optical fiber distances and at high temperatures up to 85 DegreesC. Important trade-offs between energy efficiency, temperature stability, modulation bandwidth, low current-density operation and other VCSEL properties are revealed and discussed.
This thesis presents optical methods to split the energy levels of electronic valleys in transition-metal dichalcogenides (TMDs) by means of coherent light-matter interactions. The electronic valleys found in monolayer TMDs such as MoS2, WS2, and WSe2 are among the many novel properties exhibited by semiconductors when thinned down to a few atomic layers, and have have been proposed as a new way to carry information in next generation devices (so-called valleytronics). These valleys are, however, normally locked in the same energy level, which limits their potential use for applications. The author describes experiments performed with a pump-probe technique using transient absorption spectroscopy on MoS2 and WS2. It is demonstrated that hybridizing the electronic valleys with light allows one to optically tune their energy levels in a controllable valley-selective manner. In particular, by using off-resonance circularly polarized light at small detuning, one can tune the energy level of one valley through the optical Stark effect. Also presented within are observations, at larger detuning, of a separate contribution from the so-called Bloch--Siegert effect, a delicate phenomenon that has eluded direct observation in solids. The two effects obey opposite selection rules, enabling one to separate the two effects at two different valleys.
Semiconductor heterostructures represent the backbone for an increasing variety of electronic and photonic devices, for applications including information storage, communication and material treatment, to name but a few. Novel structural and material concepts are needed in order to further push the performance limits of present devices and to open up new application areas. This thesis demonstrates how key performance characteristics of three completely different types of semiconductor lasers can be tailored using clever nanostructure design and epitaxial growth techniques. All aspects of laser fabrication are discussed, from design and growth of nanostructures using metal-organic vapor-phase epitaxy, to fabrication and characterization of complete devices.
The Proceedings of First International Conference on Opto-Electronics and Applied Optics 2014, IEM OPTRONIX 2014 presents the research contributions presented in the conference by researchers from both India and abroad. Contributions from established scientists as well as students are included. The book is organized to enable easy access to various topics of interest. The first part includes the Keynote addresses by Phillip Russell, Max Planck Institute of the Light Sciences, Erlangen, Germany and Lorenzo Pavesi, University of Trento, Italy. The second part focuses on the Plenary Talks given by eminent scientists, namely, Azizur Rahman, City University London, London; Bishnu Pal, President, The Optical Society of India; Kamakhya Ghatak, National Institute of Technology, Agartala; Kehar Singh, Former Professor, India Institute of Technology Delhi; Mourad Zghal, SUPCOM, University of Carthage, Tunisia; Partha Roy Chaudhuri, IIT Kharagpur; S K. Bhadra, CSIR-Central Glass and Ceramic Research Institute, Kolkata; Sanjib Chatterjee, Raja Ramanna Centre for Advanced Technology, Indore; Takeo Sasaki, Tokyo University, Japan; Lakshminarayan Hazra, Emeritus Professor, University of Calcutta, Kolkata; Shyam Akashe, ITM University, Gwalior and Vasudevan Lakshminarayanan, University of Waterloo, Canada. The subsequent parts focus on topic-wise contributory papers in Application of Solar Energy; Diffraction Tomography; E.M. Radiation Theory and Antenna; Fibre Optics and Devices; Photonics for Space Applications; Micro-Electronics and VLSI; Nano-Photonics, Bio-Photonics and Bio-Medical Optics; Non-linear Phenomena and Chaos; Optical and Digital Data and Image Processing; Optical Communications and Networks; Optical Design; Opto-Electronic Devices; Opto-Electronic Materials and Quantum Optics and Information Processing.
This book displays the physics and design of high-power molecular lasers. The lasers described are self-controlled volume-discharge lasers. The book explains self-sustained discharge lasers, self-initiated discharge lasers and technical approaches to laser design. Important topics discussed are laser efficiency, laser beam quality and electric field homogeneity. The book contains many new innovative applications.
This thesis establishes an exciting new beginning for Laser Plasma Accelerators (LPAs) to further develop toward the next generation of compact high energy accelerators. Design, installation and commissioning of a new experimental setup at LBNL played an important role and are detailed through three critical components: e-beam production, reflection of laser pulses with a plasma mirror and large wake excitation below electron injection threshold. Pulses from a 40 TW peak power laser system were split into a 25 TW pulse and a 15 TW pulse. The first pulse was used for e-beam production in the first module and the second pulse was used for wake excitation in the second module to post-accelerate the e-beam. As a result, reliable e-beam production and efficient wake excitation necessary for the staged acceleration were independently demonstrated. These experiments have laid the foundation for future staging experiments at the 40 TW peak power level.
This thesis examines laser generation from the ultraviolet to the short edge of the mid-infrared band by exploiting the nonlinear effects in photonic crystal fibers (PCFs). Several different physical mechanisms are investigated by using homemade PCFs with elaborately customized dispersion profiles. A particular focus is on the development of fiber optical parametric amplifiers (FOPAs) and oscillators (FOPOs) based on the PCFs with a zero-dispersion wavelength of ca.1.06 m. In particular, several schemes are proposed for solving the key problems involved in the application of FOPOs. These oscillators can be made more convenient to use by optimizing the wavelength-tuning mechanisms and made more energy-efficient with the help of specially designed cavity structures. Today's oscillators are more reliable, powerful and maneuverable than ever. This thesis provides a systematic road map in connection with the study of nonlinear wavelength generation in PCFs, from their fiber design and technical fabrication, to their physical mechanism and experimental investigation.
Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.
In recent decades, cosmetic science has found new high-potency,
bioactive ingredients that produce visibly superior skin benefits
to the consumer. Light-based devices, including lasers and
intense-pulsed light systems, have been used for years in the
treatment of cutaneous vascular and pigmented lesions, yet have
only recently appeared in cosmetic applications, beauty salons and
spas. Meanwhile, ever more research and development is being
performed with the intent of bringing them to the home-use market.
|
You may like...
Fundamentals of Femtosecond Optics
S. A. Kozlov, V.V. Samartsev
Hardcover
R3,072
Discovery Miles 30 720
Optical Holography - Materials, Theory…
Pierre-Alexandre Blanche
Paperback
R3,776
Discovery Miles 37 760
The Fundamentals and Applications of…
Govind B. Nair, Sanjay J. Dhoble
Paperback
R4,172
Discovery Miles 41 720
Micro-Raman Spectroscopy - Theory and…
Jurgen Popp, Thomas Mayerhoefer
Hardcover
R3,541
Discovery Miles 35 410
Metal Oxides for Optoelectronics and…
Suresh Sagadevan, Jiban Podder, …
Paperback
R4,663
Discovery Miles 46 630
|