![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics > Laser technology
Broadly tunable lasers continue to have a tremendous impact in many and diverse fields of science and technology. From a renaissance in laser spectroscopy to Bose-Einstein condensation, the one nexus is the tunable laser. Tunable Laser Applications describes the physics and architectures of widely applied tunable laser sources. Fully updated and expanded to address important advances in the science and technology, this Third Edition: Contains new chapters on tunable laser microscopy and tunable laser atomic vapor laser isotope separation Offers extended coverage of optical parametric oscillators and their application to atmospheric sensing, biomedicine, defense counter measures, microscopy, and spectroscopy Discusses exciting new applications in astronomy, defense R&D, medicine, and more Featuring fresh contributions from internationally recognized experts-including 100+ new pages and extensive reference listings-Tunable Laser Applications, Third Edition provides a timely account of the most promising tunable laser applications to date.
Additive Manufacturing (AM), popularly known as 3D printing, is playing an increasingly significant role in the manufacturing arena. AM has revolutionized how prototypes are to be made and small batch manufacturing should be carried out. Due to high flexibility and high efficiency of lasers, laser-assisted Manufacturing (LAM) and AM technologies are recently getting much attention over traditional methods.This textbook is a timely information resource for undergraduates, postgraduates and researchers who are interested in this emerging technology. The book will cover the basics of lasers, optics and materials used for manufacturing and 3D printing. It will also include several case studies for readers to apply their understanding of the topics, provide sufficient theoretical background and insights to today's key laser-assisted AM processes and conclude with the future prospects of this exciting technology.This is the first textbook tailored specifically for Lasers in 3D Printing and Manufacturing with detailed explanations. The book will focus on laser-assisted 3D printing and Additive Manufacturing (AM) from basic principles of lasers, optics and AM materials to advanced AM technologies, including in-depth discussion on critical aspects throughout the laser-assisted AM processes, such as optical system design, laser-material interaction and laser parameters' optimization.
Medical practitioners, scientists and graduate students alike will find this exhaustive survey a vital learning tool. It provides a thorough description of the fundamentals and applications in the field of laser-tissue interactions. Basic concepts such as the optical and thermal properties of tissue, the various types of tissue ablation, and optical breakdown and its related effects are treated in detail. The author pays special attention to mathematical tools (Monte Carlo simulations, the Kubelka-Munk theory etc.) and approved techniques (photodynamic therapy, laser-induced interstitial thermotherapy etc.). A section on applications reviews clinically relevant methods in modern medicine using the latest references.
Laser-Based Optical Detection of Explosives offers a comprehensive review of past, present, and emerging laser-based methods for the detection of a variety of explosives. This book: Considers laser propagation safety and explains standard test material preparation for standoff optical-based detection system evaluation Explores explosives detection using deep ultraviolet native fluorescence, Raman spectroscopy, laser-induced breakdown spectroscopy, reflectometry, and hyperspectral imaging Examines photodissociation followed by laser-induced fluorescence, photothermal methods, cavity-enhanced absorption spectrometry, and short-pulse laser-based techniques Describes the detection and recognition of explosives using terahertz-frequency spectroscopic techniques Each chapter is authored by a leading expert on the respective technology, and is structured to supply historical perspective, address current advantages and challenges, and discuss novel research and applications. Readers are left with an in-depth understanding and appreciation of each technology's capabilities and potential for standoff hazard detection.
Dedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentrates on the major topics of laser-induced damage in optical materials and most specifically addresses research in laser damage that occurs in the bulk and on the surface or the coating of optical components. It considers key issues in the field of high-power laser coatings, factoring in the effects of contamination and providing insight into typical application areas. Become Familiar with the Key Areas of Modern Photonics The text first provides a basic understanding of theoretical and experimental methods and then summarizes the current progress, strategies, and improvements occurring within the field of laser-induced damage. Divided into four sections, this book outlines apparent trends in modeling, and discusses measurement and evaluation techniques for laser damage thresholds in the context of international standardization and scaling laws for damage thresholds. This seminal work: Covers the major aspects of laser damage Considers all important aspects in industry and research Reviews laser damage effects in material and surfaces Contains chapters contributed by leading scientists in the field Laser-Induced Damage in Optical Materials details a variety of fundamental investigations in laser-induced damage mechanisms and functions as a valuable reference for researchers and producers of laser components, laser and photonics engineers and scientists, as well as users of laser technology and thin film optics.
Laser Beam Shaping: Theory and Techniques addresses the theory and practice of every important technique for lossless beam shaping. Complete with experimental results as well as guidance on when beam shaping is practical and when each technique is appropriate, the Second Edition is updated to reflect significant developments in the field. This authoritative text: Features new chapters on axicon light ring generation systems, laser-beam-splitting (fan-out) gratings, vortex beams, and microlens diffusers Describes the latest advances in beam profile measurement technology and laser beam shaping using diffractive diffusers Contains new material on wavelength dependence, channel integrators, geometrical optics, and optical software Laser Beam Shaping: Theory and Techniques, Second Edition not only provides a working understanding of the fundamentals, but also offers insight into the potential application of laser-beam-profile shaping in laser system design.
This comprehensive handbook gives a fully updated guide to lasers and laser technologies, including the complete range of their technical applications. This forth volume covers laser applications in the medical, metrology and communications fields. Key Features: * Offers a complete update of the original, bestselling work, including many brand-new chapters. * Deepens the introduction to fundamentals, from laser design and fabrication to host matrices for solid-state lasers, energy level diagrams, hosting materials, dopant energy levels, and lasers based on nonlinear effects. * Covers new laser types, including quantum cascade lasers, silicon-based lasers, titanium sapphire lasers, terahertz lasers, bismuth-doped fiber lasers, and diode-pumped alkali lasers. * Discusses the latest applications, e.g., lasers in microscopy, high-speed imaging, attosecond metrology, 3D printing, optical atomic clocks, time-resolved spectroscopy, polarization and profile measurements, pulse measurements, and laser-induced fluorescence detection. * Adds new sections on laser materials processing, laser spectroscopy, lasers in imaging, lasers in environmental sciences, and lasers in communications. This handbook is the ideal companion for scientists, engineers, and students working with lasers, including those in optics, electrical engineering, physics, chemistry, biomedicine, and other relevant areas.
The use of lasers in the processing of electronic and photonic
material is becoming increasingly widespread, with technological
advances reducing costs and increasing both the quality and range
of novel devices which can be produced. Laser growth and processing
of photonic devices is the first book to review this increasingly
important field.
This comprehensive handbook gives a fully updated guide to lasers and laser systems, including the complete range of their technical applications. The first volume outlines the fundamental components of lasers, their properties and working principles. The second volume gives exhaustive coverage of all major categories of lasers, from solid-state and semiconductor diode to fiber, waveguide, gas, chemical, and dye lasers. The third volume covers modern applications in engineering and technology, including all new and updated case studies spanning telecommunications and data storage to medicine, optical measurement, defense and security, nanomaterials processing and characterization.
This comprehensive handbook gives a fully updated guide to lasers and laser technologies, including the complete range of their technical applications. This third volume covers modern applications in engineering and technology, including all new and updated case studies spanning telecommunications and data storage to medicine, optical measurement, defense and security, nanomaterials processing and characterization. Key Features: * Offers a complete update of the original, bestselling work, including many brand-new chapters. * Deepens the introduction to fundamentals, from laser design and fabrication to host matrices for solid-state lasers, energy level diagrams, hosting materials, dopant energy levels, and lasers based on nonlinear effects. * Covers new laser types, including quantum cascade lasers, silicon-based lasers, titanium sapphire lasers, terahertz lasers, bismuth-doped fiber lasers, and diode-pumped alkali lasers. * Discusses the latest applications, e.g., lasers in microscopy, high-speed imaging, attosecond metrology, 3D printing, optical atomic clocks, time-resolved spectroscopy, polarization and profile measurements, pulse measurements, and laser-induced fluorescence detection. * Adds new sections on laser materials processing, laser spectroscopy, lasers in imaging, lasers in environmental sciences, and lasers in communications. This handbook is the ideal companion for scientists, engineers, and students working with lasers, including those in optics, electrical engineering, physics, chemistry, biomedicine, and other relevant areas.
This comprehensive handbook set gives a fully updated guide to lasers and laser systems, including the complete range of their technical applications. The first volume outlines the fundamental components of lasers, their properties and working principles. The second volume gives exhaustive coverage of all major categories of lasers, from solid-state and semiconductor diode to fiber, waveguide, gas, chemical, and dye lasers. The third volume covers modern applications in engineering and technology, including all new and updated case studies spanning telecommunications and data storage to medicine, optical measurement, defense and security, nanomaterials processing and characterization. The forth volume covers laser applications in the medical, metrology and communications fields.
Due to their flexible and efficient capabilities, lasers are often used over more traditional machining technologies, such as mechanical drilling and chemical etching, in manufacturing a wide variety of products, from medical implants, gyroscopes, and drug delivery catheters to aircraft engines, printed circuit boards, and fuel cells. Fundamentals of Laser Micromachining explains how laser technology is applied to precision micromachining. The book combines background on physics, lasers, optics, and hardware with analysis of markets, materials, and applications. It gives sufficient theoretical background for readers to understand basic concepts while including a further reading appendix for those interested in more detailed theoretical discussions. After reviewing laser history and technology, the author compares available laser sources, including CO2, excimer, Nd: YAG, fiber, and short pulse. He also addresses topics crucial to obtaining good processing results, such as IR and UV material-photon interaction, basic optical components, and system integration. The text goes on to cover real-world applications in the medical, microelectronics, aerospace, and other fields. It concludes with details on processing many common materials, such as metals, silicon, ceramics, and glasses. For engineers and project managers, this book provides the foundation to achieve cost-effectiveness, the best edge quality, and the highest resolution in small-scale industrial laser machining. It will help you select the correct kind of laser for your application and identify real opportunities for growth in the marketplace.
This comprehensive handbook gives a fully updated guide to lasers and laser technologies, including the complete range of their technical applications. The first volume outlines the fundamental components of lasers, their properties, and working principles. Key Features: * Offers a complete update of the original, bestselling work, including many brand-new chapters. * Deepens the introduction to fundamentals, from laser design and fabrication to host matrices for solid-state lasers, energy level diagrams, hosting materials, dopant energy levels, and lasers based on nonlinear effects. * Covers new laser types, including quantum cascade lasers, silicon-based lasers, titanium sapphire lasers, terahertz lasers, bismuth-doped fiber lasers, and diode-pumped alkali lasers. * Discusses the latest applications, e.g., lasers in microscopy, high-speed imaging, attosecond metrology, 3D printing, optical atomic clocks, time-resolved spectroscopy, polarization and profile measurements, pulse measurements, and laser-induced fluorescence detection. * Adds new sections on laser materials processing, laser spectroscopy, lasers in imaging, lasers in environmental sciences, and lasers in communications. This handbook is the ideal companion for scientists, engineers, and students working with lasers, including those in optics, electrical engineering, physics, chemistry, biomedicine, and other relevant areas.
As rapid technological developments occur in electronics, photonics, mechanics, chemistry, and biology, the demand for portable, lightweight integrated microsystems is relentless. These devices are getting exponentially smaller, increasingly used in everything from video games, hearing aids, and pacemakers to more intricate biomedical engineering and military applications. Edited by Kris Iniewski, a revolutionary in the field of advanced semiconductor materials, Integrated Microsystems: Electronics, Photonics, and Biotechnology focuses on techniques for optimized design and fabrication of these intelligent miniaturized devices and systems. Composed of contributions from experts in academia and industry around the world, this reference covers processes compatible with CMOS integrated circuits, which combine computation, communications, sensing, and actuation capabilities. Light on math and physics, with a greater emphasis on microsystem design and configuration and electrical engineering, this book is organized in three sections-Microelectronics and Biosystems, Photonics and Imaging, and Biotechnology and MEMs. It addresses key topics, including physical and chemical sensing, imaging, smart actuation, and data fusion and management. Using tables, figures, and equations to help illustrate concepts, contributors examine and explain the potential of emerging applications for areas including biology, nanotechnology, micro-electromechanical systems (MEMS), microfluidics, and photonics.
This book focuses on pulverized coal particle devolatilization, ignition, alkali metal release behavior, and burnout temperature using several novel optic diagnostic methods on a Hencken multi-flat flame burner. Firstly, it presents a novel multi-filter technique to detect the CH* signal during coal ignition, which can be used to characterize the volatile release and reaction process. It then offers observations on the prevalent transition from heterogeneous ignition to hetero-homogeneous ignition due to ambient temperature based on visible light signal diagnostics. By utilizing the gap between the excitation energies of the gas and particle phases, a new low-intensity laser-induced breakdown spectroscopy (PS-LIBS) is developed to identify the presence of sodium in the particle or gas phase along the combustion process. For the first time, the in-situ verification of the gas phase Na release accompanying coal devolatilization is fulfilled when the ambient temperature is high enough. In fact, particle temperature plays a vital role in the coal burnout process and ash particle formation. The last part of the book uses RGB color pyrometry and the CBK model to study the char particle temperature on a Hencken burner. It offers readers valuable information on the technique of coal ignition and combustion diagnostics as well as coal combustion characteristics.
This book focuses on the development and implementation of the longitudinal, angular and frequency controls of the Advanced Virgo detector, both from the simulation and experimental point of view, which contributed to Virgo reaching a sensitivity that enabled it to join the LIGO-Virgo O2 run in August 2017. This data taking was very successful, with the first direct detection of a binary black hole merger (GW170814) using the full network of three interferometers, and the first detection and localization of a binary neutron star merger (GW170817). The second generation of gravitational wave detector, Advanced Virgo, is capable of detecting differential displacements of the order of 10-21m. This means that it is highly sensitive to any disturbance, including the seismic movement of the Earth. For this reason an active control is necessary to keep the detector in place with sufficient accuracy.
Attosecond optical pulse generation, along with the related process of high-order harmonic generation, is redefining ultrafast physics and chemistry. A practical understanding of attosecond optics requires significant background information and foundational theory to make full use of these cutting-edge lasers and advance the technology toward the next generation of ultrafast lasers. Fundamentals of Attosecond Optics provides the first focused introduction to the field. The author presents the underlying concepts and techniques required to enter the field, as well as recent research advances that are driving the field forward. A stand-alone textbook for courses on attosecond optics and the interaction of matter with ultrafast, high-power lasers, the book begins with basic theory and gradually advances to more complex ideas. Using both semi-classical models and quantum mechanics theories, the author explains foundational concepts and mechanisms including femtosecond lasers, high-order harmonic generation, and the technological leap that inspired attosecond pulse generation. The book introduces techniques for generating attosecond train using the basis of high-order harmonics, followed by an explanation of gating methods for extracting single isolated pulses. Chapters examine the connection between attosecond pulses and high harmonic generation, the use of driving lasers as key tools in attosecond generation, the mechanism of chirped pulse amplification, and the generation of few-cycle pulses. The book looks at carrier-envelope phase stabilization and the theoretical foundations for single atom and dipole phase response. It discusses propagation effects, introducing several approaches for improving phase matching; attosecond pulse generation and characterization, covering attosecond pulse train and single isolated pulses; and several examples of experimental applications for attosecond pulses.
Understanding how the brain works and developing effective therapeutics are important in advancing neuroscience and improving clinical patient care. Neurophotonics and Brain Mapping covers state-of-the-art research and development in optical technologies and applications for brain mapping and therapeutics. It provides a comprehensive overview of various methods developed using light, both microscopic and macroscopic techniques. Recent developments in minimally-invasive endoscopic imaging of deep brain structure and function, as well as light-based therapy are also reviewed.
This book provides a first integrated view of nanophotonics and plasmonics, covering the use of dielectric, semiconductor, and metal nanostructures to manipulate light at the nanometer scale. The presentation highlights similarities and advantages, and shows the common underlying physics, targets, and methodologies used for different materials (optically transparent materials for nanophotonics, vs opaque materials for plasmonics). Ultimately, the goal is to provide a basis for developing a unified platform for both fields. In addition to the fundamentals and detailed theoretical background, the book showcases the main device applications. Ching Eng (Jason) Png is Director of the Electronics and Photonics Department at the Institute of High Performance Computing, Agency for Science Technology and Research, Singapore. Yuriy A. Akimov is a scientist in the Electronics and Photonics Department at the Institute of High Performance Computing, Agency for Science Technology and Research, Singapore.
This dedicated overview of optical compressive imaging addresses implementation aspects of the revolutionary theory of compressive sensing (CS) in the field of optical imaging and sensing. It overviews the technological opportunities and challenges involved in optical design and implementation, from basic theory to optical architectures and systems for compressive imaging in various spectral regimes, spectral and hyperspectral imaging, polarimetric sensing, three-dimensional imaging, super-resolution imaging, lens-free, on-chip microscopy, and phase sensing and retrieval. The reader will gain a complete introduction to theory, experiment, and practical use for reducing hardware, shortening image scanning time, and improving image resolution as well as other performance parameters. Optics practitioners and optical system designers, electrical and optical engineers, mathematicians, and signal processing professionals will all find the book a unique trove of information and practical guidance.
Going beyond the technological building blocks of 3DTV, 3D Television (3DTV) Technology, Systems, and Deployment: Rolling Out the Infrastructure for Next-Generation Entertainment offers an early view of the deployment and rollout strategies of this emerging technology. It covers cutting-edge advances, theories, and techniques in end-to-end 3DTV systems to provide a system-level view of the topic and what it takes to make this concept a commercial reality. The book reflects the full-range of questions being posed about post-production 3D mastering, delivery options, and home screens. It reviews fundamental visual concepts supporting stereographic perception of 3DTV and considers the various stages of a 3DTV system including capture, representation, coding, transmission, and display. * Presents new advances in 3DTV and display techniques * Includes a 24-page color insert * Identifies standardization activities critical to broad deployment * Examines a different stage of an end-to-end 3DTV system in each chapter * Considers the technical details related to 3DTV -- including compression and transmission technologies Discussing theory and application, the text covers both stereoscopic and autostereoscopic techniques -- the latter eliminating the need for special glasses and allowing for viewer movement. It also examines emerging holographic approaches, which have the potential to provide the truest three-dimensional images. The book contains the results of a survey of a number of advocacy groups to provide a clear picture of the current state of the industry, research trends, future directions, and underlying topics.
Atomic Inferometry and Trapping: Quantum Theory of Particle Trapping by Oscillating Fields; R.J. Glauber. Quantum Measurements on Localized Particles; S. Stenholm. Quantum Measurements: PhaseSensitive BackAction on a Microscopic System; V. Bagini, et al. Cavity QED and Classical Antenna Theory; J.P. Dowling. Quantum Noise Reduction and Squeezing: Progress and Perspectives in Squeezing; E. Giacobino, et al. Time-Dependent Invariants and Nonclassical Light; V.I. Man'ko. Optical Propagation, Communication and Imaging: Direct Space Quantum Optics; I. Abram, E. Cohen. Photonic Band Structure; E. Yablonovitch. Photon Interference and Bell's Theorum: What is Two Photons? J.G. Rarity, P.R. Tapster. Quantum Cryptography and Bell's Theorum; A.K. Ekert. Twentyfive additional articles. Index.
As demonstrated by five Nobel Prizes in physics, radio astronomy has contributed greatly to our understanding of the Universe. Yet for too long, there has been no comprehensive textbook on radio astronomy for undergraduate students. This two-volume set of introductory textbooks is exclusively devoted to radio astronomy, with extensive discussions of telescopes, observation methods, and astrophysical processes that are relevant for this exciting field. The first volume, Fundamentals of Radio Astronomy: Observational Methods, discusses radio astronomy instrumentation and the techniques to conduct successful observations. The second volume, Fundamentals of Radio Astronomy: Astrophysics, discusses the physical processes that give rise to radio emission, presents examples of astronomical objects that emit by these mechanisms, and illustrates how the relevant physical parameters of astronomical sources can be obtained from the radio observations. Requiring no prior knowledge of astronomy, the two volumes are ideal textbooks for radio astronomy courses at the undergraduate or graduate level, particularly those that emphasize radio wavelength instrumentation and observational techniques or the astrophysics of radio sources. The set enables instructors to pick and choose topics from the two volumes that best fit their courses. Features: Explores radio astronomy instruments and techniques that are important to enable observations Describes astrophysical processes that produce the radio emissions observed in different types of astronomical objects Includes numerous worked examples to demonstrate how the methods are used to solve problems, in addition to advanced material for students with more extensive physics and mathematics backgrounds
"a detailed, cognizant account of numerous crucial aspects of optical microring resonators" - Amr S. Helmy, Professor of Electrical & Computer Engineering, University of Toronto "an excellent choice for gaining an insight into the vast potential of microring resonators" - Jalil Ali, Professor, Laser Center ISI-SIR, University of Technology, Malaysia "a thorough treatment... appeal[s] to a wide range of audiences" - L. Jay Guo, Professor of Electrical Engineering & Computer Science, The University of Michigan The field of microring resonator research has seen tremendous growth over the past decade, with microring resonators now becoming a ubiquitous element in integrated photonics technology. This book fills the need for a cohesive and comprehensive treatment of the subject, given its importance and the proliferation of new research in the field. The expert author has as an introductory guide for beginners as well as a reference source for more experienced researchers. This book aims to fulfill this need by providing a concise and detailed treatment of the fundamental concepts and theories that underpin the various applications. To appeal to as wide a readership as possible, major areas of applications of microring resonators will also be covered in depth.
"This engagingly written text provides a useful pedagogical introduction to an extensive class of geometrical phenomena in the optics of polarization and phase, including simple explanations of much of the underlying mathematics." -Michael Berry, University of Bristol, UK "The author covers a vast number of topics in great detail, with a unifying mathematical treatment. It will be a useful reference for both beginners and experts...." -Enrique Galvez, Charles A. Dana Professor of Physics and Astronomy, Colgate University "a firm and comprehensive grounding both for those looking to acquaint themselves with the field and those of us that need reminding of the things we thought we knew, but hitherto did not understand: an essential point of reference." -Miles Padgett, Kelvin Chair of Natural Philosophy and Vice Principal (Research), University of Glasgow This book focuses on the various forms of wavefield singularities, including optical vortices and polarization singularities, as well as orbital angular momentum and associated applications. It highlights how an understanding of singular optics provides a completely different way to look at light. Whereas traditional optics focuses on the shape and structure of the non-zero portions of the wavefield, singular optics describes a wave's properties from its null regions. The contents cover the three main areas of the field: the study of generic features of wavefields, determination of unusual properties of vortices and wavefields that contain singularities, and practical applications of vortices and other singularities. |
![]() ![]() You may like...
Schwarz Methods and Multilevel…
Ernst P. Stephan, Thanh Tran
Hardcover
R4,967
Discovery Miles 49 670
Continuum Mechanics, Applied Mathematics…
Gennadii V. Demidenko, Evgeniy Romenski, …
Hardcover
R2,938
Discovery Miles 29 380
Optimal Methods for Ill-Posed Problems…
Vitalii P Tanana, Anna I. Sidikova
Hardcover
R3,369
Discovery Miles 33 690
Orthogonal Polynomials: Current Trends…
Francisco Marcellan, Edmundo J. Huertas
Hardcover
R4,391
Discovery Miles 43 910
Nonlinear Functional Analysis and…
Jesus Garcia-Falset, Khalid Latrach
Hardcover
R5,303
Discovery Miles 53 030
Applications in Engineering, Life and…
Dumitru Baleanu, Antonio Mendes Lopes
Hardcover
R4,978
Discovery Miles 49 780
Nonlinear Problems with Lack of…
Giovanni Molica Bisci, Patrizia Pucci
Hardcover
R4,144
Discovery Miles 41 440
|