![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics > Laser technology
Laser systems and advanced optical techniques offer new solutions for conservation scientists, and provide answers to challenges in Conservation Science. Lasers in the Conservation of Artworks comprises selected contributions from the 7th International Conference on Lasers in the Conservation of Artworks (LACONA VII, Madrid, Spain, 17-21 September 2007), and is a comprehensive collection on both emerging and well established applications of laser systems and techniques used to address conservation problems. The topics covered include: Innovative approaches in laser cleaning; Analytical techniques; Developments in portable laser systems for remote and on-site applications; Laser cleaning of monuments and sculptures, paintings and polychromes, metal objects and documents and textiles. Developments on structural diagnosis, monitoring, imaging and documentation of artworks. Lasers in the Conservation of Artworks will be essential reference material for students, professionals and scientists working in heritage and Conservation Science.
Nanoscale Semiconductor Lasers focuses on specific issues relating to laser nanomaterials and their use in laser technology. The book presents both fundamental theory and a thorough overview of the diverse range of applications that have been developed using laser technology based on novel nanostructures and nanomaterials. Technologies covered include nanocavity lasers, carbon dot lasers, 2D material lasers, plasmonic lasers, spasers, quantum dot lasers, quantum dash and nanowire lasers. Each chapter outlines the fundamentals of the topic and examines material and optical properties set alongside device properties, challenges, issues and trends. Dealing with a scope of materials from organic to carbon nanostructures and nanowires to semiconductor quantum dots, this book will be of interest to graduate students, researchers and scientific professionals in a wide range of fields relating to laser development and semiconductor technologies.
Handbook of Visual Optics offers an authoritative overview of encyclopedic knowledge in the field of physiological optics. It builds from fundamental concepts to the science and technology of instruments and practical procedures of vision correction, integrating expert knowledge from physics, medicine, biology, psychology, and engineering. The chapters comprehensively cover all aspects of modern study and practice, from optical principles and optics of the eye and retina to novel ophthalmic tools for imaging and visual testing, devices and techniques for visual correction, and the relationship between ocular optics and visual perception.
Since the invention of the first working laser in 1960, development of these devices has progressed at an unprecedented rate, to the extent that the laser is now a common part of everyday life, from the semiconductor laser used in CD players and telecommunication systems to the high power eximer lasers used in manufacturing processes. This book traces the history of the laser, from the first theoretical predictions of stimulated emission made in the 1920s, through the experimental development of masers and lasers in the 50s and 60s, to the advanced applications of lasers in the present day. Along the way it tells the fascinating and at times controversial story of the people behind the discoveries. Written in a style suitable for the general public, it will be of interest to those working within the laser community, and to anyone with an interest in the history of science.
Diode lasers use nearly microscopic chips of gallium-arsenide or
other exotic semiconductor material to generate coherent light in a
very small package. Their compact size, reliability, and low cost
means that they find applications in all aspects of modern
technology-most importantly they drive modern optical
telecommunication systems.
One of the key advances in photonic technology in recent years is the development of vertical-cavity surface-emitting lasers, or VCSELs. These devices have a huge range of potential applications in areas such as communications, printing, and optical switching. This book, first published in 1999, provides a clear insight into the physics of VCSELs, as well as describing details of their fabrication and applications. All of the book's contributors are at the forefront of VCSEL research and development. Together they provide complete and coherent coverage of the current state-of-the-art. The opening chapters cover VCSEL design, emission from microcavities, growth, fabrication, and characterization. These are followed by chapters on long and short-wavelength VCSELs, optical data links, and free space optical processing. The book will be of great interest to graduate students and researchers in electrical engineering, applied physics, and materials science. It will also be an excellent reference volume for practising engineers in the photonics industry.
This book offers a tutorial on the response of materials to lasers, with an emphasis on simple, intuitive models with analytical and mathematical solutions, using techniques such as Laplace Transformation to solve most complex heat conduction equations. It examines the relationship between existing thermal parameters of simple metals and looks at the characteristics of materials and their properties in order to investigate and perform theoretical analysis from a heat conduction perspective mathematically. Topics discussed include optical reflectivity of metals at infrared (IR) wavelengths, laser-induced heat flow in materials, the effects of melting and vaporization, the impulse generated in materials by pulsed radiation, and the influence of the absorption in the blow-off region in irradiated material. Written for engineers, scientists, and graduate-level engineering and physics students, Thermal Effects of High Power Laser Energy on Materials provides an in-depth look at high energy laser technology and its potential industrial and commercial applications in such areas as precision cutting, LIDAR and LADAR, and communications. The knowledge gained from this allows you to apply spaced-based relay mirror in order to compensate laser beam divergence back to its original coherency by preventing further thermal blooming that takes place during laser beam propagation through the atmosphere. Examines the state-of-the-art in currently available high energy laser technologies; Includes computer codes that deal with the response of materials to laser radiation; Provides detailed mathematical solutions of thermal response to laser radiation.
This book gathers a selection of peer-reviewed papers presented at the Tiangong-2 Data Utilization Conference, which was held in Beijing, China, in December 2018. As the first space laboratory in China, Tiangong-2 carries 3 new types of remote sensing payloads - the Wide-band Imaging Spectrometer (WIS), Three-dimensional Imaging Microwave Altimeter (TIMA), and Multi-band Ultraviolet Edge Imaging Spectrometer (MUEIS) - for observing the Earth. The spectrum of the WIS covers 18 bands, from visible to thermal infrared, with a swath of 300km. The TIMA is the first-ever system to use interferometric imaging radar altimeter (InIRA) technology to measure sea surface height and land topography at near-nadir angles with a wide swath. In turn, the MUEIS is the world's first large-field atmospheric detector capable of quasi-synchronously detecting the characteristics of ultraviolet limb radiation in the middle atmosphere. The Earth observation data obtained by Tiangong-2 has attracted many research groups and been applied in such diverse areas as land resources, water resources, climate change, environmental monitoring, agriculture, forestry, ecology, oceanography, meteorology and so on. The main subjects considered in this proceedings volume include: payload design, data processing, data service and application. It also provides a comprehensive introduction to the research results gleaned by engineers, researchers and scientists throughout the lifecycle of the Tiangong-2 Earth observation data, which will improve the payload development and enhance remote sensing data applications.
Since first coming into existence in the early 90s, the vertical-cavity surface-emitting laser (VCSEL) has made several quantum leaps in performance. The performance of VCSELs now exceeds that of edge-emitting lasers in many respects, and offers a superior optical beam and much easier monolithic integrability. As the VCSEL technology improves further, and their number and variety multiply, their potential applications will likely expand at a rapid pace. This title addresses two main objectives. It provides the researcher and device engineer with a reference guide to understanding vertical-cavity surface-emitting lasers: technology, and applications as well as the physical principles and practical design concepts of VCSELs. Furthermore, it provides the system designer or application engineer with a review of the properties of VCSELs, and an overview of some of the applications in which the VCSEL has already played an important role. Featuring contributions from prominent researchers in the field,
This thesis unifies the dissipative dynamics of an atom, particle or structure within an optical field that is influenced by the position of the atom, particle or structure itself. This allows the identification and exploration of the fundamental 'mirror-mediated' mechanisms of cavity-mediated cooling leading to the proposal of a range of new techniques based upon the same underlying principles. It also reveals powerful mechanisms for the enhancement of the radiation force cooling of micromechanical systems, using both active gain and the resonance of a cavity to which the cooled species are external. This work has implications for the cooling not only of weakly-scattering individual atoms, ions and molecules, but also for highly reflective optomechanical structures ranging from nanometre-scale cantilevers to the metre-sized mirrors of massive interferometers.
Recent years have witnessed rapid advances in the development of solid state, fiber, semiconductor, and parametric sources of coherent radiation, which are opening up new opportunities for laser applications. Laser Sources and Applications provides a tutorial introduction to the basic principles of these developments at a level suitable for postgraduate research students and others with a basic knowledge of lasers and nonlinear optics. Encompassing both the physics and engineering aspects of the field, the book covers the nature of nonlinear optical interactions; solid state, fiber, and semiconductor lasers; optical parametric oscillators; and ultrashort pulse generation and applications. It also explores applications of current interest, such as electromagnetically induced transparency, atomic trapping, and soliton optical communications.
This volume discusses the basic principles necessary to understand lasers, explains laser interactions with materials, and surveys the wide variety of industrial applications of the major laser types, covering in detail the operating mechanisms of carbon dioxide, Nd: YAG, and excimer lasers. It presents lasers as manufacturing tools rather than laboratory devices
Fourier analysis is one of the most important concepts when you apply physical ideas to engineering issues. This book provides a comprehensive understanding of Fourier transform and spectral analysis in optics, image processing, and signal processing. Written by a world renowned author, this book looks to unify the readers understanding of principles of optics, information processing and measurement. This book describes optical imaging systems through a linear system theory. The book also provides an easy understanding of Fourier transform and system theory in optics. It also provides background of optical measurement and signal processing. Finally, the author also provides a systematic approach to learning many signal processing techniques in optics. The book is intended for researchers, industry professionals, and graduate level students in optics and information processing.
In spite of the increasing importance of microcavities, device physics or the observable phenomena in optical microcavities such as enhanced or inhibited spontaneous emission and its relation with the laser oscillation has not been systematically well-described-until now.
This book deals specifically with the manipulation of atoms by laser light, describing the focusing, channeling and reflection of atoms by laser fields. It also describes the potential fields required to cause the phase change of the wave function necessary for the atomic interactions to occur.
This book covers recent developments in laser plasma physics such as absorption, instability, energy transport and radiation from the standpoint of theory and simulation for plasma corona, showing how the elements for the high density compression depend on the interaction physics and heat transport.
Best seller for introductory courses in Laser Electronics and Quantum Electronics. This is a practical approach to introductory laser electronics that emphasizes real-world applications and problem-solving skills over theory, providing a clear understanding of both optical and microwave frequencies.
Provides an overview of and introduction to nanoscale materials Explains the features of 0D, 1D, 2D and 3D nanomaterials Exhibits the wide range of applications of nanomaterials in optoelectronics, photonics, biosensing, x-rays and x-ray detectors, medical imaging, visible light photodetectors, etc. Discusses the advances in miniaturized nanoscale devices for biomedical applications Describes the various preparation methods for advanced nanomaterials and their functionalization for fabrication of nanoelectronics devices Enlightens on the challenges and future prospects in nanoscale research |
![]() ![]() You may like...
Nanotechnology - Delivering on the…
H.N. Cheng, Laurence J. Doemeny, …
Hardcover
R5,127
Discovery Miles 51 270
Goodnight Golda - A Handbook For Brave…
Batya Bricker, Ilana Stein
Paperback
Differential Equations with…
Warren Wright, Dennis Zill
Paperback
![]()
Intelligent Processing Algorithms and…
Dewang Chen, Ruijun Cheng
Hardcover
R2,873
Discovery Miles 28 730
|