![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Applied optics > Laser technology
At the heart of this thesis is the young field of free electron laser science, whose experimental and theoretical basics are described here in a comprehensible manner. Extremely bright and ultra short pulses from short wavelength free-electron lasers (FELs) have recently opened the path to new fields of research. The x-ray flashes transform all matter into highly excited plasma states within femtoseconds, while their high spatial and temporal resolution allows the study of fast processes in very small structures. Even imaging of single molecules may be within reach if ultrafast radiation damage can be understood and brought under control. Atomic clusters have proven to be ideal model systems for light-matter interaction studies in all wavelength regimes, being size scalable, easy-to-produce gas phase targets with a simple structure. With FELs, "single cluster imaging and simultaneous ion spectroscopy" makes possible experiments under extremely well defined initial conditions, because the size of the cluster and the FEL intensity can be extracted from the scattering images. For the first time large xenon clusters up to micron radius were generated. Their single cluster scattering images were analyzed for cluster morphology and traces of the ultrafast plasma built-up during the femtosecond FEL pulse. The simultaneously measured single cluster ion spectra yield unprecedented insight into the ion dynamics following the interaction. The results will feed both future experimental effort and theoretical modeling.
This is the third edition of a well-known classic on ultrafast nonlinear and linear processes responsible for supercontinuum generation. Part I of the book reviews the progress achieved in experimental and theoretical understanding of the field, and goes over the applications developed since the discovery of the supercontinuum effect. The second part of the book covers recent research activity on supercontinuum phenomena and advances achieved since the publication of the previous edition. The new chapters specifically focus on: normal dispersion photonic band gap fibers; coherence in the supercontinuum; supercontinuum in the UV, NIR, and IR; and supercontinuum in XUV and X-rays for attosecond pulses. The Supercontinuum Laser Source is a definitive work by one of the discoverers of the white light effect. It is indispensable reading for any researcher or student working in the field of ultrafast laser physics.
This book is volume III of a series of books on silicon photonics. It reports on the development of fully integrated systems where many different photonics component are integrated together to build complex circuits. This is the demonstration of the fully potentiality of silicon photonics. It contains a number of chapters written by engineers and scientists of the main companies, research centers and universities active in the field. It can be of use for all those persons interested to know the potentialities and the recent applications of silicon photonics both in microelectronics, telecommunication and consumer electronics market.
This book provides a comprehensive overview of the theory and practical development of metamaterial-based perfect absorbers (MMPAs). It begins with a brief history of MMPAs which reviews the various theoretical and experimental milestones in their development. The theoretical background and fundamental working principles of MMPAs are then discussed, providing the necessary background on how MMPAs work and are constructed. There then follows a section describing how different MMPAs are designed and built according to the operating frequency of the electromagnetic wave, and how their behavior is changed. Methods of fabricating and characterizing MMPAs are then presented. The book elaborates on the performance and characteristics of MMPAs, including electromagnetically-induced transparency (EIT). It also covers recent advances in MMPAs and their applications, including multi-band, broadband, tunability, polarization independence and incidence independence. Suitable for graduate students in optical sciences and electronic engineering, it will also serve as a valuable reference for active researchers in these fields.
This book presents the basics and applications of superconducting devices in quantum optics. Over the past decade, superconducting devices have risen to prominence in the arena of quantum optics and quantum information processing. Superconducting detectors provide unparalleled performance for the detection of infrared photons in quantum cryptography, enable fundamental advances in quantum optics, and provide a direct route to on-chip optical quantum information processing. Superconducting circuits based on Josephson junctions provide a blueprint for scalable quantum information processing as well as opening up a new regime for quantum optics at microwave wavelengths. The new field of quantum acoustics allows the state of a superconducting qubit to be transmitted as a phonon excitation. This volume, edited by two leading researchers, provides a timely compilation of contributions from top groups worldwide across this dynamic field, anticipating future advances in this domain.
A comprehensive device model considering both spatial distributions of the terahertz field and the field-effect self-mixing factor has been constructed for the first time in the thesis. The author has found that it is the strongly localized terahertz field induced in a small fraction of the gated electron channel that plays an important role in the high responsivity. An AlGaN/GaN-based high-electron-mobility transistor with a 2-micron-sized gate and integrated dipole antennas has been developed and can offer a noise-equivalent power as low as 40 pW/Hz1/2 at 900 GHz. By further reducing the gate length down to 0.2 micron, a noise-equivalent power of 6 pW/Hz1/2 has been achieved. This thesis provides detailed experimental techniques and device simulation for revealing the self-mixing mechanism including a scanning probe technique for evaluating the effectiveness of terahertz antennas. As such, the thesis could be served as a valuable introduction towards further development of high-sensitivity field-effect terahertz detectors for practical applications.
This book provides a comprehensive introduction into photonics, from the electrodynamic and quantum mechanic fundamentals to the level of photonic components and building blocks such as lasers, amplifiers, modulators, waveguides, and detectors.The book will serve both as textbook and as a reference work for the advanced student or scientist. Theoretical results are derived from basic principles with convenient, yet state-of-the-art mathematical tools, providing not only deeper understanding but also familiarization with formalisms used in the relevant technical literature and research articles. Among the subject matters treated are polarization optics, pulse and beam propagation, waveguides, light-matter interaction, stationary and transient behavior of lasers, semiconductor optics and lasers (including low-dimensional systems such as quantum wells), detector technology, photometry, and colorimetry. Nonlinear optics are elaborated comprehensively.The book is intended for both students of physics and electronics and scientists and engineers in fields such as laser technology, optical communications, laser materials processing, and medical laser applications who wish to gain an in-depth understanding of photonics.
This book presents the basics and applications of photonic materials. It focuses on the utility of these devices for sensing, biosensing, and displays. The book includes fundamental aspects with a particular focus on the application of photonic materials. The field of photonic materials is both a burgeoning, and mature field. There are new advances being made on a daily basis, all based on the fundamental roots set by work by those like Ozin, Thomas, Asher, and others.
This book presents original findings on tunable microwave metamaterial structures, and describes the theoretical and practical issues involved in the design of metamaterial devices. Special emphasis is given to tunable elements and their advantages in terms of feeding network simplification. Different biasing schemes and feeding network topologies are presented, together with extensive prototype measurements and simulations. The book describes a novel, unique solution for beam steering and beam forming applications, and thus paves the way for the diffusion of new agile communication system components. At the same time, it provides readers with an outstanding and timely review of wave propagation in periodic structures, tunability of metamaterials and the technological constraints that need to be considered in the design of reconfigurable microwave components.
This concise and accessible book provides a detailed introduction to the fundamental principles of atomic physics at an undergraduate level. Concepts are explained in an intuitive way and the book assumes only a basic knowledge of quantum mechanics and electromagnetism. With a compact format specifically designed for students, the first part of the book covers the key principles of the subject, including the quantum theory of the hydrogen atom, radiative transitions, the shell model of multi-electron atoms, spin-orbit coupling, and the effects of external fields. The second part provides an introduction to the four key applications of atomic physics: lasers, cold atoms, solid-state spectroscopy and astrophysics. This highly pedagogical text includes worked examples and end of chapter problems to allow students to test their knowledge, as well as numerous diagrams of key concepts, making it perfect for undergraduate students looking for a succinct primer on the concepts and applications of atomic physics.
The Proceedings of First International Conference on Opto-Electronics and Applied Optics 2014, IEM OPTRONIX 2014 presents the research contributions presented in the conference by researchers from both India and abroad. Contributions from established scientists as well as students are included. The book is organized to enable easy access to various topics of interest. The first part includes the Keynote addresses by Phillip Russell, Max Planck Institute of the Light Sciences, Erlangen, Germany and Lorenzo Pavesi, University of Trento, Italy. The second part focuses on the Plenary Talks given by eminent scientists, namely, Azizur Rahman, City University London, London; Bishnu Pal, President, The Optical Society of India; Kamakhya Ghatak, National Institute of Technology, Agartala; Kehar Singh, Former Professor, India Institute of Technology Delhi; Mourad Zghal, SUPCOM, University of Carthage, Tunisia; Partha Roy Chaudhuri, IIT Kharagpur; S K. Bhadra, CSIR-Central Glass and Ceramic Research Institute, Kolkata; Sanjib Chatterjee, Raja Ramanna Centre for Advanced Technology, Indore; Takeo Sasaki, Tokyo University, Japan; Lakshminarayan Hazra, Emeritus Professor, University of Calcutta, Kolkata; Shyam Akashe, ITM University, Gwalior and Vasudevan Lakshminarayanan, University of Waterloo, Canada. The subsequent parts focus on topic-wise contributory papers in Application of Solar Energy; Diffraction Tomography; E.M. Radiation Theory and Antenna; Fibre Optics and Devices; Photonics for Space Applications; Micro-Electronics and VLSI; Nano-Photonics, Bio-Photonics and Bio-Medical Optics; Non-linear Phenomena and Chaos; Optical and Digital Data and Image Processing; Optical Communications and Networks; Optical Design; Opto-Electronic Devices; Opto-Electronic Materials and Quantum Optics and Information Processing.
The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.
The book bridges the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is therefore presumed. Starting from fundamental physics, the book enables the reader derive the theory of optical coatings and to apply it to practically important spectroscopic problems. Both classical and semiclassical approaches are included. Examples describe the full range of classical optical coatings in various spectral regions as well as highly specialized new topics such as rugate filters and resonant grating waveguide structures. The second edition has been updated and extended with respect to probing matter in different spectral regions, homogenous and inhomogeneous line broadening mechanisms and the Fresnel formula for the effect of planar interfaces.
Tutorial lectures given by world-renowned researchers have become one of the important traditions of the Nano and Giga Challenges (NGC) conference series. 1 Soon after preparations had begun for the rst forum, NGC2002, in Moscow, Russia, the organizers realized that publication of the lectures notes would be a va- able legacy of the meeting and a signi cant educational resource and knowledge base for students, young researchers, and senior experts. Our rst book was p- lished by Elsevier and received the same title as the meeting itself-Nano and Giga 2 Challenges in Microelectronics. Our second book, Nanotechnology for Electronic 3 4 Materials and Devices, based on the tutorial lectures at NGC2004 in Krakow, 5 Poland, the third book from NGC2007 in Phoenix, Arizona, and the current book 6 from joint NGC2009 and CSTC2009 meeting in Hamilton, Ontario, have been published in Springer's Nanostructure Science and Technology series. Hosted by McMaster University, the meeting NGC/CSTC 2009 was held as a joint event of two conference series, Nano and Giga Challenges (Nano & Giga Forum) and Canadian Semiconductor Technology Conferences (CSTC), bringing together the networks and expertise of both professional forums. Informational (electronics and photonics), renewable energy (solar systems, fuel cells, and batteries), and sensor (nano and bio) technologies have reached a new stage in their development in terms of engineering limits to cost-effective impro- ment of current technological approaches. The latest miniaturization of electronic devices is approaching atomic dimensions.
This book provides a thorough account of the current status of achievements made in the area of soft X-Ray laser source development and of the increasingly diverse applications being demonstrated using such radiation sources. There is significant effort worldwide to develop very bright, short duration radiation sources in the X-Ray spectral region - driven by the multitude of potential applications in all branches of science. This book contains updates on several different approaches for comparative purposes but concentrates on developments in the area of laser-produced plasmas, whereby transient population inversion and gain between ion states is pumped by optical lasers interacting with pre-formed plasmas. Topics covered will include Laser-driven XRLs, Collisional XRLs, Recombination XRLs, Transient Inversion Collisional XRLs, Optical Field Ionization XRLs, Alternative XRL, pumping schemes Theory and simulations of XRL gain media and beam properties High order harmonic sources of XUV radiation, Free-electron lasers and other accelerator based X-Ray sources, X-Ray Laser drives, X-Ray optics and instrumentation Spectroscopy, and other diagnostics of laser media Applications of XRLs.
This is the only handbook available on X-ray data. In a concise and informative manner, the most important data connected with the emission of characteristic X-ray lines are tabulated for all elements up to Z = 95 (Americium). The tabulated data are characterized and, in most cases, evaluated. Furthermore, all important processes and phenomena connected with the production, emission and detection of characteristic X-rays are discussed.
The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This eleventh volume covers a broad range of topics from this interdisciplinary research field, focusing on ultrafast dynamics of molecules in intense laser fields, pulse shaping techniques for controlling molecular processes, high-order harmonics generation and attosecond Photoionization, femtosecond laser induced filamentation and laser particle acceleration.
Attophysics is an emerging field in physics devoted to the study and characterization of matter dynamics in the sub-femtosecond time scale. This book gives coverage of a broad set of selected topics in this field, exciting by their novelty and their potential impact. The book is written review-like. It also includes fundamental chapters as introduction to the field for non-specialist physicists. The book is structured in four sections: basics, attosecond pulse technology, applications to measurements and control of physical processes and future perspectives. It is a valuable reference tool for researchers in the field as well as a concise introduction to non-specialist readers.
The unique feature of laser beams to deliver intense light at a specific photon energy makes lasers useful and enabling in the processing of advanced materials. The availability of high-intensity laser sources over a wide spectral and temporal range has inspired advances in both the fundamental understanding of laser-solid interactions and the application of lasers in materials processing and characterization. This progress has resulted in a growing acceptance of lasers in material and device synthesis. For instance, pulsed-laser deposition has emerged as an important process for growing high-quality metal-oxide thin films, including high-Tc superconductors, dielectric materials, magnetoresistive materials and semiconducting oxides. This book, first published in 2001, brings together materials science and technology communities to discuss recent progress of laser ablation both in fundamental studies and applications. Topics include: fundamentals of laser desorption and ablation; laser-driven nanoparticle formation; laser direct writing; lasers in micromachining and surface modification; laser-based deposition of oxides and pulsed-laser deposition.
The reader will find here a timely update on new THz sources and detection schemes as well as concrete applications to the detection of Explosives and CBRN. Included is a method to identify hidden RDX-based explosives (pure and plastic ones) in the frequency domain study by Fourier Transformation, which has been complemented by the demonstration of improvement of the quality of the images captured commercially available THz passive cameras. The presented examples show large potential for the detection of small hidden objects at long distances (6-10 m). Complementing the results in the short-wavelength range, laser spectroscopy with a mid-infrared, room temperature, continuous wave, DFB laser diode and high performance DFB QCL have been demonstrated to offer excellent enabling sensor technologies for environmental monitoring, medical diagnostics, industrial and security applications. From the new source point of view a number of systems have been presented - From superconductors to semiconductors, e.g. Detection of Terahertz Waves from Superconducting Bi2Sr2CaCu2O8+ Intrinsic Josephson Junctions.The quest for a compact room temperature THz source and the recent advances in high power mid-IR QCLs lead to the development of a semiconductor THz source based on intracavity difference frequency generation. Furthermore, alternative electrically pumped THz sources based on the high emission efficiency predicted for polaritonic states in the ultra-strong coupling regime led to the demonstration of electroluminescent devices. Finally, antipolaritons in dispersive media were discussed and different aspects of the interaction of THz radiation with biomatter were presented."
Generally a laser (light amplification by stimulated emission of radiation) is defined as "a device which uses a quantum mechanical effect, stimulated emission, to generate a coherent beam of light from a lasing medium of controlled purity, size, and shape." Laser material processing represents a great number of methods, which are rapidly growing in current and different industrial applications as new alternatives to traditional manufacturing processes. Nowadays, the use of lasers in manufacturing is an emerging area with a wide variety of applications, for example, in electronics, molds and dies, and biomedical applications.The purpose of this book is to present a collection of examples illustrating the state of the art and research developments to lasers in manufacturing, covering laser rapid manufacturing, lasers in metal forming applications, laser forming of metal foams, mathematical modeling of laser drilling, thermal stress analysis, modeling and simulation of laser welding, and the use of lasers in surface engineering.This book can be used as a research book for a final undergraduate engineering course or as a subject on lasers in manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, laser researchers, mechanical, manufacturing, materials or physics engineers, or professionals in any related modern manufacturing technology. Contents 1. Laser Rapid Manufacturing: Technology, Applications, Modeling and Future Prospects, Christ P. Paul, Pankaj Bhargava, Atul Kumar, Ayukt K. Pathak and Lalit M. Kukreja.2. Lasers in Metal Forming Applications, Stephen A. Akinlabi, Mukul Shukla, Esther T. Akinlabi and Tshilidzi Marwala.3. Laser Forming of Metal Foams, Fabrizio Quadrini, Denise Bellisario, Erica A. Squeo and Loredana Santo.4. Mathematical Modeling of Laser Drilling, Maturose Suchatawat and Mohammad Sheikh.5. Laser Cutting a Small Diameter Hole: Thermal Stress Analysis, Bekir S. Yilbas, Syed S. Akhtar and Omer Keles.6. Modeling and Simulation of Laser Welding, Karuppudaiyar R. Balasabramanian, Krishnasamy Sankaranarayanasamy and Gangusami N. Buvanashekaran.7. Lasers in Surface Engineering, Alberto H. Garrido, Ruben Gonzalez, Modesto Cadenas, Chin-Pei Wang and Farshid Sadeghi.
This volume includes a collection of papers presented in Symposium TT, Laser-Material Interactions at Micro/Nanoscales, at the Spring 2011 Materials Research Society Meeting held April 2011 in San Francisco, California. Laser-material interactions are of fundamental importance in a wide range of materials-related research and areas of technology, including green energy, photonics, electronics, environmental studies, biomedical imaging, medical treatment, and optical spectroscopy. This symposium provided an interdisciplinary forum for scientists and engineers from different fields to discuss the physical, chemical, thermal, and mechanical phenomena that occur during laser-material interactions at micro and nano scales. Research addressing new materials, processes, structures, and surfaces synthesized by these methods for emerging fields was discussed. The symposium was well attended and received a large number of abstract submissions in the areas of ultrafast laser processing, laser ablation and deposition, process controls, nanomaterials, surface modification, laser materials interactions, polymerization, lithography, and novel approaches in laser processing.
Explains in detail the basics, theory, design, fabrication, and operation of vertical-cavity surface-emitting lasers. All the chapters are written by pioneers and key experts who have exclusive access to the most up-to-date innovations in the respective fields.
Rather different problems can be lumped together under the general term 'laser control of atoms and molecules'. They include the laser selection of atomic and molecular velocities for the purpose of Doppler-free spectroscopy, laser control of the position and velocity of atoms (i.e. laser trapping and cooling of atoms), and laser control of atomic and molecular processes (ionization, dissociation) with a view of detecting single atoms and molecules and particularly separating isotopes and nuclear isomers. Over the last decades the principal problems posed have been successfully solved, and many of them have evolved remarkably in the subsequent investigations of the international research community. For example, the solution of the problem of laser cooling and trapping of atoms has given birth to the new field of the physics of ultracold matter, i.e. quantum atomic and molecular gases. The laser non-coherent control of uni-molecular processes has found an interesting extension in the field of laser coherent control of molecules. The concept of laser control of position has been successfully demonstrated with microparticles (optical tweezers), concurrently with investigations into atomic control. The laser photo-ionization of molecules on surfaces has led to the development of novel techniques of laser-assisted mass spectrometry of macromolecules, and so on. The aim of this book is to review these topics from a unified or 'coherent' point of view. It will be useful for many readers in various fields of laser science and its applications.
The three volumes VIII/1A, B, C document the state of the art of laser physics and applications. According to the actual trends in laser research and development, Vol. VIII/1 is split into three parts: Vol. VIII/1A with its two sub-volumes 1A1 and 1A2 covers laser fundamentals, Vol. VIII/1B deals with laser systems and Vol. VIII/1C gives an overview on laser applications. |
You may like...
|