0
Your cart

Your cart is empty

Browse All Departments
Price
  • R500+ (162)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Physics > States of matter > Low temperature physics

A Primer on Quantum Fluids (Paperback, 1st ed. 2016): Carlo F. Barenghi, Nick G. Parker A Primer on Quantum Fluids (Paperback, 1st ed. 2016)
Carlo F. Barenghi, Nick G. Parker
R2,177 Discovery Miles 21 770 Ships in 10 - 15 working days

The aim of this primer is to cover the essential theoretical information, quickly and concisely, in order to enable senior undergraduate and beginning graduate students to tackle projects in topical research areas of quantum fluids, for example, solitons, vortices and collective modes. The selection of the material, both regarding the content and level of presentation, draws on the authors analysis of the success of relevant research projects with newcomers to the field, as well as of the students feedback from many taught and self-study courses on the subject matter. Starting with a brief historical overview, this text covers particle statistics, weakly interacting condensates and their dynamics and finally superfluid helium and quantum turbulence. At the end of each chapter (apart from the first) there are some exercises. Detailed solutions can be made available to instructors upon request to the authors.

Theory of Heavy-Fermion Compounds - Theory of Strongly Correlated Fermi-Systems (Paperback, Softcover reprint of the original... Theory of Heavy-Fermion Compounds - Theory of Strongly Correlated Fermi-Systems (Paperback, Softcover reprint of the original 1st ed. 2015)
Miron Ya. Amusia, Konstantin G. Popov, Vasily R. Shaginyan, Vladimir A. Stephanovich
R4,091 Discovery Miles 40 910 Ships in 10 - 15 working days

This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good agreement with experimental facts, offer the reader solid grounds to learn the theory's applications. Finally, the reader will learn that FCQPT develops unexpectedly simple, yet completely good description of HF compounds.

Kinetics and Spectroscopy of Low Temperature Plasmas (Hardcover, 1st ed. 2016): Jorge Loureiro, Jayr Amorim Kinetics and Spectroscopy of Low Temperature Plasmas (Hardcover, 1st ed. 2016)
Jorge Loureiro, Jayr Amorim
R4,350 Discovery Miles 43 500 Ships in 10 - 15 working days

This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students' needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas (LTP) are partially ionized gases with a broad use in many technological applications such as microelectronics, light sources, lasers, biology and medicine. LTPs lead to the production of atomic and molecular excited states, chemically reactive radicals, and activated surface sites, which are in the origin, among others, of the deposition of thin films, advanced nanotechnology products, solar cells, highly efficient combustion motors, and treatment of cancer cells.

Interferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential (Hardcover, 1st ed. 2016): Tarik Berrada Interferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential (Hardcover, 1st ed. 2016)
Tarik Berrada
R3,928 Discovery Miles 39 280 Ships in 10 - 15 working days

This thesis demonstrates a full Mach-Zehnder interferometer with interacting Bose-Einstein condensates confined on an atom chip. It relies on the coherent manipulation of atoms trapped in a magnetic double-well potential, for which the author developed a novel type of beam splitter. Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices, both for technological applications and fundamental tests. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Particle interactions in the Bose-Einstein condensate lead to a nonlinearity, absent in photon optics. This is exploited to generate a non-classical state with reduced atom-number fluctuations inside the interferometer. This state is then used to study the interaction-induced dephasing of the quantum superposition. The resulting coherence times are found to be a factor of three longer than expected for coherent states, highlighting the potential of entanglement as a resource for quantum-enhanced metrology.

Artificial Gauge Fields with Ultracold Atoms in Optical Lattices (Hardcover, 1st ed. 2016): Monika Aidelsburger Artificial Gauge Fields with Ultracold Atoms in Optical Lattices (Hardcover, 1st ed. 2016)
Monika Aidelsburger
R3,728 Discovery Miles 37 280 Ships in 10 - 15 working days

This work reports on the generation of artificial magnetic fields with ultracold atoms in optical lattices using laser-assisted tunneling, as well as on the first Chern-number measurement in a non-electronic system. It starts with an introduction to the Hofstadter model, which describes the dynamics of charged particles on a square lattice subjected to strong magnetic fields. This model exhibits energy bands with non-zero topological invariants called Chern numbers, a property that is at the origin of the quantum Hall effect. The main part of the work discusses the realization of analog systems with ultracold neutral atoms using laser-assisted-tunneling techniques both from a theoretical and experimental point of view. Staggered, homogeneous and spin-dependent flux distributions are generated and characterized using two-dimensional optical super-lattice potentials. Additionally their topological properties are studied via the observation of bulk topological currents. The experimental techniques presented here offer a unique setting for studying topologically non-trivial systems with ultracold atoms.

Classical Pendulum Feels Quantum Back-Action (Hardcover, 1st ed. 2016): Nobuyuki Matsumoto Classical Pendulum Feels Quantum Back-Action (Hardcover, 1st ed. 2016)
Nobuyuki Matsumoto
R2,957 Discovery Miles 29 570 Ships in 10 - 15 working days

In this thesis, ultimate sensitive measurement for weak force imposed on a suspended mirror is performed with the help of a laser and an optical cavity for the development of gravitational-wave detectors. According to the Heisenberg uncertainty principle, such measurements are subject to a fundamental noise called quantum noise, which arises from the quantum nature of a probe (light) and a measured object (mirror). One of the sources of quantum noise is the quantum back-action, which arises from the vacuum fluctuation of the light. It sways the mirror via the momentum transferred to the mirror upon its reflection for the measurement. The author discusses a fundamental trade-off between sensitivity and stability in the macroscopic system, and suggests using a triangular cavity that can avoid this trade-off. The development of an optical triangular cavity is described and its characterization of the optomechanical effect in the triangular cavity is demonstrated. As a result, for the first time in the world the quantum back-action imposed on the 5-mg suspended mirror is significantly evaluated. This work contributes to overcoming the standard quantum limit in the future.

Scattering Theory (Hardcover, 2nd ed. 2016): Harald Friedrich Scattering Theory (Hardcover, 2nd ed. 2016)
Harald Friedrich
R4,091 Discovery Miles 40 910 Ships in 10 - 15 working days

This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.

Stratification, Rollover and Handling of LNG, LPG and Other Cryogenic Liquid Mixtures (Paperback, 1st ed. 2016): Ralph G.... Stratification, Rollover and Handling of LNG, LPG and Other Cryogenic Liquid Mixtures (Paperback, 1st ed. 2016)
Ralph G. Scurlock
R2,354 Discovery Miles 23 540 Ships in 10 - 15 working days

This short, practical book offers advice on the safe storage, handling and transportation of liquid natural gas (LNG), liquid petroleum gas (LPG) and other cryogenic fluid mixtures. It begins with a review of the physical properties of LNG and LPG, and a brief overview of basic handling and storage methods. The chapters that follow address more in-depth topics such as heat flows in LNG and LPG storage systems, insulation techniques and surface evaporation phenomena. Two chapters are then devoted to the specific sequence of problems caused by stratification and rollover, and the techniques used to manage and alleviate these issues. The book then considers the use of vacuum insulated tanks for the storage of pressurised LNG, and the effective transfer of liquids avoiding 2-phase flow. It concludes with a summary of safe storage and handling protocols, and addresses the specific health issues encountered when dealing with cryogenic liquid mixtures. Throughout the book the author presents real-life case studies to illustrate the situation being discussed. Written in a practical style, it will prove an invaluable companion to anyone working with LNG, LPG or other cryogenic liquid mixtures.

Physics of Quantum Fluids - New Trends and Hot Topics in Atomic and Polariton Condensates (Paperback, Softcover reprint of the... Physics of Quantum Fluids - New Trends and Hot Topics in Atomic and Polariton Condensates (Paperback, Softcover reprint of the original 1st ed. 2013)
Alberto Bramati, Michele Modugno
R4,227 Discovery Miles 42 270 Ships in 10 - 15 working days

The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.

New Trends in Atomic and Molecular Physics - Advanced Technological Applications (Paperback, Softcover reprint of the original... New Trends in Atomic and Molecular Physics - Advanced Technological Applications (Paperback, Softcover reprint of the original 1st ed. 2013)
Man Mohan
R4,041 Discovery Miles 40 410 Ships in 10 - 15 working days

The field of Atomic and Molecular Physics (AMP) has reached significant advances in high-precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy, astrophysics, fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, postgraduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighboring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) Tokomak plasma machine, which need accurate AMP data.

Superconductivity: Discoveries and Discoverers - Ten Physics Nobel Laureates Tell Their Story (Paperback, 2013 ed.): Kristian... Superconductivity: Discoveries and Discoverers - Ten Physics Nobel Laureates Tell Their Story (Paperback, 2013 ed.)
Kristian Fossheim
R1,984 Discovery Miles 19 840 Ships in 10 - 15 working days

This book is about the work of 10 great scientists; who they were and are, their personal background and how they achieved their outstanding results and took their prominent place in science history. We follow one of physics and science history's most enigmatic phenomena, superconductivity, through 100 years, from its discovery in 1911 to the present, not as a history book in the usual sense, but through close ups of the leading characters and their role in that story, the Nobel laureates, who were still among us in the years 2001-2004 when the main round of interviews was carried out. Since then two of them already passed away. For each one of the 10 laureates, the author tells their story by direct quotation from interviews in their own words. Each chapter treats one laureate. The author first gives a brief account of the laureates' scientific background and main contribution. Then each laureate tells his own story in his own words. This book is unique in its approach to science history.

Polymers at Cryogenic Temperatures (Paperback, 2013 ed.): Susheel Kalia, Shao-Yun Fu Polymers at Cryogenic Temperatures (Paperback, 2013 ed.)
Susheel Kalia, Shao-Yun Fu
R5,358 Discovery Miles 53 580 Ships in 10 - 15 working days

Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

129 Xe Relaxation and Rabi Oscillations (Hardcover, 2015 ed.): Mark E. Limes 129 Xe Relaxation and Rabi Oscillations (Hardcover, 2015 ed.)
Mark E. Limes
R3,640 Discovery Miles 36 400 Ships in 10 - 15 working days

This thesis describes longitudinal nuclear relaxation measurements of solid 129Xe near 77 K with previously unattainable reproducibility, and demonstrates differences in relaxation, dependent upon the way in which the solid is condensed. These results are directly applicable to the generation and storage of large quantities of hyperpolarized 129Xe for various applications, such as lung magnetic resonance imaging (MRI). The thesis features a sophisticated theoretical approach to these data sets, including modifications to a well-established Raman-phonon scattering theory that may explain the larger scatter in and discrepancies with previous work.

Pseudogap and Precursor Superconductivity Study of Zn doped YBCO (Hardcover, 2015 ed.): Ece Uykur Pseudogap and Precursor Superconductivity Study of Zn doped YBCO (Hardcover, 2015 ed.)
Ece Uykur
R2,957 Discovery Miles 29 570 Ships in 10 - 15 working days

In this thesis, the pseudogap and the precursor superconducting state, which are of great importance in clarifying the superconductivity mechanism in high-temperature cuprate superconductors, are investigated with a c-axis optical study in YBa2(Cu1-xZnx)3Oy. Testing was performed over a wide energy range with smaller temperature intervals for several Zn-substituted samples, as well as for several carrier-doping levels. A spectral weight (SW) analysis, in which the pseudogap behavior can be separated from the superconducting condensate with the SW transfer to the high-energy region, revealed that the pseudogap is not the precursor of the superconductivity (carriers moving to the high-energy region with pseudogap opening never contribute to the superconducting condensation). Moreover, the high-energy transfer continues even below Tc for the Zn-substituted samples (in which we weaken the superconductivity), which gives evidence to the coexistence of the pseudogap and the superconducting gap below Tc. On the other hand, the analysis of optical conductivity revealed that a precursor state to superconductivity can be defined at temperatures much higher than Tc. The superconducting carrier density (ns) was calculated for each temperature (above and below Tc) and the results confirmed the existence of ns at temperatures above Tc. The observed real superconducting condensate (ns) above Tc puts a serious constraint on the theory for high- Tc superconductivity. A theory based on an inhomogeneous superconducting state, in which a microscopically phase-separated state in a doped Mott insulator can be observed, is the most plausible candidate. This theory can explain the existence of ns and the observed temperature range for the precursor superconducting state. The results obtained show that the pseudogap coexists with superconductivity below Tc and is not the precursor of superconductivity. On the other hand, it is also possible to define a precursor superconducting state that is different than the pseudogap. The temperature range and the observed superconducting condensate in this state can be explained with the help of the inhomogeneous superconducting state.

From Atom Optics to Quantum Simulation - Interacting Bosons and Fermions in Three-Dimensional Optical Lattice Potentials... From Atom Optics to Quantum Simulation - Interacting Bosons and Fermions in Three-Dimensional Optical Lattice Potentials (Paperback, 2013 ed.)
Sebastian Will
R3,756 Discovery Miles 37 560 Ships in 10 - 15 working days

This thesis explores ultracold quantum gases of bosonic and fermionic atoms in optical lattices. The highly controllable experimental setting discussed in this work, has opened the door to new insights into static and dynamical properties of ultracold quantum matter. One of the highlights reported here is the development and application of a novel time-resolved spectroscopy technique for quantum many-body systems. By following the dynamical evolution of a many-body system after a quantum quench, the author shows how the important energy scales of the underlying Hamiltonian can be measured with high precision. This achievement, its application, and many other exciting results make this thesis of interest to a broad audience ranging from quantum optics to condensed matter physics. A lucid style of writing accompanied by a series of excellent figures make the work accessible to readers outside the rapidly growing research field of ultracold atoms.

Physics of Ultra-Cold Matter - Atomic Clouds, Bose-Einstein Condensates and Rydberg Plasmas (Paperback, 2013 ed.): J.T.... Physics of Ultra-Cold Matter - Atomic Clouds, Bose-Einstein Condensates and Rydberg Plasmas (Paperback, 2013 ed.)
J.T. Mendonca, Hugo Tercas
R5,984 Discovery Miles 59 840 Ships in 10 - 15 working days

The advent of laser cooling of atoms led to the discovery of ultra-cold matter, with temperatures below liquid Helium, which displays a variety of new physical phenomena. Physics of Ultra-Cold Matter gives an overview of this recent area of science, with a discussion of its main results and a description of its theoretical concepts and methods. Ultra-cold matter can be considered in three distinct phases: ultra-cold gas, Bose Einstein condensate, and Rydberg plasmas. This book gives an integrated view of this new area of science at the frontier between atomic physics, condensed matter, and plasma physics. It describes these three distinct phases while exploring the differences, as well as the sometimes unexpected similarities, of their respective theoretical methods. This book is an informative guide for researchers, and the benefits are a result from an integrated view of a very broad area of research, which is limited in previous books about this subject. The main unifying tool explored in this book is the wave kinetic theory based on Wigner functions. Other theoretical approaches, eventually more familiar to the reader, are also given for extension and comparison. The book considers laser cooling techniques, atom-atom interactions, and focuses on the elementary excitations and collective oscillations in atomic clouds, Bose-Einstein condensates, and Rydberg plasmas. Linear and nonlinear processes are considered, including Landau damping, soliton excitation and vortices. Atomic interferometers and quantum coherence are also included.

Theory of Heavy-Fermion Compounds - Theory of Strongly Correlated Fermi-Systems (Hardcover): Miron Ya. Amusia, Konstantin G.... Theory of Heavy-Fermion Compounds - Theory of Strongly Correlated Fermi-Systems (Hardcover)
Miron Ya. Amusia, Konstantin G. Popov, Vasily R. Shaginyan, Vladimir A. Stephanovich
R4,341 Discovery Miles 43 410 Ships in 10 - 15 working days

This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good agreement with experimental facts, offer the reader solid grounds to learn the theory's applications. Finally, the reader will learn that FCQPT develops unexpectedly simple, yet completely good description of HF compounds.

High-Temperature Superconductors (Paperback, 2nd ed. 2012): Ajay Kumar Saxena High-Temperature Superconductors (Paperback, 2nd ed. 2012)
Ajay Kumar Saxena
R2,957 Discovery Miles 29 570 Ships in 10 - 15 working days

This book presents the current knowledge about superconductivity in high Tc cuprate superconductors. There is a large scientific interest and great potential for technological applications. The book discusses all the aspects related to all families of cuprate superconductors discovered so far. Beginning with the phenomenon of superconductivity, the book covers: the structure of cuprate HTSCs, critical currents, flux pinning, synthesis of HTSCs, proximity effect and SQUIDs, possible applications of high Tc superconductors and theories of superconductivity. Though a high Tc theory is still awaited, this book describes the present scenario and BCS and RVB theories. The second edition was significantly extended by including film-substrate lattice matching and buffer layer considerations in thin film HTSCs, brick-wall microstructure in the epitaxial films, electronic structure of the CuO2 layer in cuprates, s-wave and d-wave coupling in HTSCs and possible scenarios of theories of high Tc superconductivity.

Optical Cooling Using the Dipole Force (Paperback, 2012 ed.): Andre Xuereb Optical Cooling Using the Dipole Force (Paperback, 2012 ed.)
Andre Xuereb
R2,929 Discovery Miles 29 290 Ships in 10 - 15 working days

This thesis unifies the dissipative dynamics of an atom, particle or structure within an optical field that is influenced by the position of the atom, particle or structure itself. This allows the identification and exploration of the fundamental 'mirror-mediated' mechanisms of cavity-mediated cooling leading to the proposal of a range of new techniques based upon the same underlying principles. It also reveals powerful mechanisms for the enhancement of the radiation force cooling of micromechanical systems, using both active gain and the resonance of a cavity to which the cooled species are external. This work has implications for the cooling not only of weakly-scattering individual atoms, ions and molecules, but also for highly reflective optomechanical structures ranging from nanometre-scale cantilevers to the metre-sized mirrors of massive interferometers.

Collisional Narrowing and Dynamical Decoupling in a Dense Ensemble of Cold Atoms (Paperback, 2012 ed.): Yoav Sagi Collisional Narrowing and Dynamical Decoupling in a Dense Ensemble of Cold Atoms (Paperback, 2012 ed.)
Yoav Sagi
R2,895 Discovery Miles 28 950 Ships in 10 - 15 working days

Ultra-cold atomic ensembles have emerged in recent years as a powerful tool in many-body physics research, quantum information science and metrology. This thesis presents an experimental and theoretical study of the coherent properties of trapped atomic ensembles at high densities, which are essential to many of the aforementioned applications. The study focuses on how inter-particle interactions modify the ensemble coherence dynamics, and whether it is possible to extend the coherence time by means of external control. The thesis presents a theoretical model which explains the effect of elastic collision of the coherence dynamics and then reports on experiments which test this model successfully in the lab. Furthermore, the work includes the first implementation of dynamical decoupling with ultra-cold atomic ensembles. It is demonstrated experimentally that by using dynamical decoupling the coherence time can be extended 20-fold. This has a great potential to increase the usefulness of these ensembles for quantum computation.

Exciton Polaritons in Microcavities - New Frontiers (Paperback, 2012 ed.): Daniele Sanvitto, Vladislav Timofeev Exciton Polaritons in Microcavities - New Frontiers (Paperback, 2012 ed.)
Daniele Sanvitto, Vladislav Timofeev
R5,289 Discovery Miles 52 890 Ships in 10 - 15 working days

In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.

Flux Pinning in Superconductors (Hardcover, 2nd ed. 2014): Teruo Matsushita Flux Pinning in Superconductors (Hardcover, 2nd ed. 2014)
Teruo Matsushita
R6,207 Discovery Miles 62 070 Ships in 10 - 15 working days

The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc. are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion.

The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of superconductor, specimen size and electric field strength. Recent developments of critical current properties in various high-Tc superconductors and MgB2 are introduced.

Other topics are: singularity in the case of transport current in a parallel magnetic field such as deviation from the Josephson relation, reversible flux motion inside pinning potentials which causes deviation from the critical state model prediction, the concept of the minimization of energy dissipation in the flux pinning phenomena which gives the basis for the critical state model, etc. Significant reduction in the AC loss in AC wires with very fine filaments originates from the reversible flux motion which is dominant in the two-dimensional pinning. The concept of minimum energy dissipation explains also the behavior of flux bundle size which determines the irreversibility line under the flux creep.

The new edition has been thoroughly updated, with new sections on the progress in enhancing the critical current density in high temperature superconductors by introduction of artificial pinning centers, the effect of packing density on the critical current density and irreversibility field in MgB2 and derivation of the force-balance equation from the minimization of the free energy including the pinning energy.

Strength and Deformation in Nonuniform Temperature Fields / Prochnost' I Deformatsiya V Neravnomernykh Temperaturnykh... Strength and Deformation in Nonuniform Temperature Fields / Prochnost' I Deformatsiya V Neravnomernykh Temperaturnykh Polyakh / | H T - A collection of scientific papers (Paperback, Softcover reprint of the original 1st ed. 1964)
Ya B. Fridman
R1,557 Discovery Miles 15 570 Ships in 10 - 15 working days
Unconventional Superconductors - Anisotropy and Multiband Effects (Paperback, 2012 ed.): Iman Askerzade Unconventional Superconductors - Anisotropy and Multiband Effects (Paperback, 2012 ed.)
Iman Askerzade
R2,925 Discovery Miles 29 250 Ships in 10 - 15 working days

This book presents the anisotropy and multiband effects in newly discovered unconventional superconductors: cuprate superconductors, borocarbides, magnezium-diboride and oxypnictides. The physical properties of these unconventional superconductors and the application of the two-band Ginzburg-Landau theory to these superconducting compounds are explained. Temperature dependencies of fundamental superconducting parameters are calculated using the GL theory taking into account multiband-and anisotropy effects. A comparision of theoretical results and experimental data is conducted. Additionally, the analytical solution of the microscopical Eliashberg theory and of the BCS theory is developed for two-band and anisotropic superconductors. Fluctuation effects in newly discovered superconductors are also discussed.

Hidden Order and Exotic Superconductivity in the Heavy-Fermion Compound URu2Si2 (Hardcover, 2013 ed.): Ryuji Okazaki Hidden Order and Exotic Superconductivity in the Heavy-Fermion Compound URu2Si2 (Hardcover, 2013 ed.)
Ryuji Okazaki
R2,957 Discovery Miles 29 570 Ships in 10 - 15 working days

In this thesis, the author investigates hidden-order phase transition at" T"0 = 17.5 K in the heavy-fermion URu2Si2. The four-fold rotational symmetry breaking in the hidden order phase, which imposes a strong constraint on the theoretical model, is observed through the magnetic torque measurement. The translationally invariant phase with broken rotational symmetry is interpreted as meaning that the hidden-order phase is an electronic "nematic" phase. The observation of such nematicity in URu2Si2 indicates a ubiquitous nature among the strongly correlated electron systems.

The author also studies the superconducting state of URu2Si2 below" T"c = 1.4 K, which coexists with the hidden-order phase. A peculiar vortex penetration in the superconducting state is found, which may be related to the rotational symmetry breaking in the hidden-order phase. The author also identifies a vortex lattice melting transition. This transport study provides essential clues to the underlying issue of quasiparticle dynamics as to whether a quasiparticle Bloch state is realized in the periodic vortex lattice.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Miniature Sorption Coolers - Theory and…
Lucio Piccirillo, Gabriele Coppi, … Paperback R1,471 Discovery Miles 14 710
A Journey into Reciprocal Space (Second…
Anthony Michael Glazer Hardcover R3,431 Discovery Miles 34 310
Non-equilibrium Dynamics of…
Marine Pigneur Paperback R2,930 Discovery Miles 29 300
Superconductivity - Basics and…
R.G. Sharma Paperback R6,637 Discovery Miles 66 370
Transport and Turbulence in…
Gauthier Guillaume Paperback R2,927 Discovery Miles 29 270
Superconductivity and Electromagnetism
Teruo Matsushita Paperback R3,697 Discovery Miles 36 970
Basic Superfluids
Tony Guenault Paperback R1,851 Discovery Miles 18 510
Cryogenic Helium Refrigeration for…
Guy Gistau Baguer Hardcover R4,911 Discovery Miles 49 110
Magnetic Monopole Noise
Ritika Dusad Paperback R2,894 Discovery Miles 28 940
Physics and Chemistry of Ice
Werner Kuhs Hardcover R3,540 Discovery Miles 35 400

 

Partners