Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > States of matter > Low temperature physics
This thesis describes significant advances in experimental capabilities using ultracold polar molecules. While ultracold polar molecules are an idyllic platform for quantum chemistry and quantum many-body physics, molecular samples prior to this work failed to be quantum degenerate, were plagued by chemical reactions, and lacked any evidence of many-body physics. These limitations were overcome by loading molecules into an optical lattice to control and eliminate collisions and hence chemical reactions. This led to observations of many-body spin dynamics using rotational states as a pseudo-spin, and the realization of quantum magnetism with long-range interactions and strong many-body correlations. Further, a 'quantum synthesis' technique based on atomic insulators allowed the author to increase the filling fraction of the molecules in the lattice to 30%, a substantial advance which corresponds to an entropy-per-molecule entering the quantum degenerate regime and surpasses the so-called percolations threshold where long-range spin propagation is expected. Lastly, this work describes the design, construction, testing, and implementation of a novel apparatus for controlling polar molecules. It provides access to: high-resolution molecular detection and addressing; large, versatile static electric fields; and microwave-frequency electric fields for driving rotational transitions with arbitrary polarization. Further, the yield of molecules in this apparatus has been demonstrated to exceed 10^5, which is a substantial improvement beyond the prior apparatus, and an excellent starting condition for direct evaporative cooling to quantum degeneracy.
The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc. are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of superconductor, specimen size and electric field strength. Recent developments of critical current properties in various high-Tc superconductors and MgB2 are introduced. Other topics are: singularity in the case of transport current in a parallel magnetic field such as deviation from the Josephson relation, reversible flux motion inside pinning potentials which causes deviation from the critical state model prediction, the concept of the minimization of energy dissipation in the flux pinning phenomena which gives the basis for the critical state model, etc. Significant reduction in the AC loss in AC wires with very fine filaments originates from the reversible flux motion which is dominant in the two-dimensional pinning. The concept of minimum energy dissipation explains also the behavior of flux bundle size which determines the irreversibility line under the flux creep. The new edition has been thoroughly updated, with new sections on the progress in enhancing the critical current density in high temperature superconductors by introduction of artificial pinning centers, the effect of packing density on the critical current density and irreversibility field in MgB2 and derivation of the force-balance equation from the minimization of the free energy including the pinning energy.
In this thesis, the pseudogap and the precursor superconducting state, which are of great importance in clarifying the superconductivity mechanism in high-temperature cuprate superconductors, are investigated with a c-axis optical study in YBa2(Cu1-xZnx)3Oy. Testing was performed over a wide energy range with smaller temperature intervals for several Zn-substituted samples, as well as for several carrier-doping levels. A spectral weight (SW) analysis, in which the pseudogap behavior can be separated from the superconducting condensate with the SW transfer to the high-energy region, revealed that the pseudogap is not the precursor of the superconductivity (carriers moving to the high-energy region with pseudogap opening never contribute to the superconducting condensation). Moreover, the high-energy transfer continues even below Tc for the Zn-substituted samples (in which we weaken the superconductivity), which gives evidence to the coexistence of the pseudogap and the superconducting gap below Tc. On the other hand, the analysis of optical conductivity revealed that a precursor state to superconductivity can be defined at temperatures much higher than Tc. The superconducting carrier density (ns) was calculated for each temperature (above and below Tc) and the results confirmed the existence of ns at temperatures above Tc. The observed real superconducting condensate (ns) above Tc puts a serious constraint on the theory for high- Tc superconductivity. A theory based on an inhomogeneous superconducting state, in which a microscopically phase-separated state in a doped Mott insulator can be observed, is the most plausible candidate. This theory can explain the existence of ns and the observed temperature range for the precursor superconducting state. The results obtained show that the pseudogap coexists with superconductivity below Tc and is not the precursor of superconductivity. On the other hand, it is also possible to define a precursor superconducting state that is different than the pseudogap. The temperature range and the observed superconducting condensate in this state can be explained with the help of the inhomogeneous superconducting state.
This short but revealing biography tells the story of Kurt Mendelssohn FRS, one of the founding figures in the field of cryogenics, from his beginnings in Berlin through his move to Oxford in the 1930s, and his groundbreaking work in low temperature and solid state physics. He set up the first helium liquefier in the United Kingdom, and did fundamental research that increased our understanding of superconductivity and superfluid helium. Dr. Mendelssohn's vision extended beyond his scientific and technical achievements; he saw the potential for growth of cryogenics in industry, visiting China, Japan and India to forge global collaborations, founded the leading scientific journal in the field and established a conference series which still runs to this day. He published two monographs which remain as classics in the field. This book explores the story behind the science, in particular his relationships with other key figures in the cryogenics field, most notably Nicholas Kurti at Oxford, and his work outside cryogenics, including his novel ideas on the engineering of the pyramids.
At first glance, the articles in this book may appear to have nothing in common. They cover such seemingly disparate subjects as the properties of small metallic clusters and the behavior of superfluid He3, nuclear physics and organic materials, copper oxides and mag netic resonance. Why have they been brought together, particUlarly in our time of narrow spe cialization? In fact, the properties and effects described in this book touch upon one and the same fundamental phenomenon: pair correlation. Introduced in the theory of superconductivity by J. Bardeen, L. Cooper, and J. Schrieffer (BCS), this effect plays a key role in various Fermi systems. The book consists of several sections. The first chapter is concerned with conven tional and high Tc superconductors. The second chapter describes two relatively young fami lies of superconductors: organics and fullerenes. Chapter III addresses the superfluidity of 3 He * The discovery of this phenomenon in 1971 was a big event in physics and last year was acknowledged by a Nobel prize. This book contains the text of the Nobel lecture. Chapters IV and V are devoted to correlations in finite Fermi systems such as small metallic clusters, C 60 anions, and atomic nuclei. The book thus covers a broad range of problems, illuminating the close ties between various areas of physics.
Modern techniques from quantum field theory are applied in this work to the description of ultracold quantum gases. This leads to a unified description of many phenomena including superfluidity for bosons and fermions, classical and quantum phase transitions, different dimensions, thermodynamic properties and few-body phenomena as bound state formation or the Efimov effect. The non-perturbative treatment with renormalization group flow equations can account for all known limiting cases by solving one single equation. It improves previous results quantitatively and brings qualitatively new insights. As an example, new quantum phase transitions are found for fermions with three spin states. Ultracold atomic gases can be seen as an interesting model for features of high energy physics and for condensed matter theory. The research reported in this thesis helps to solve the difficult complexity problem in modern theoretical physics.
"Since 1954 Advances in Cryogenic Engineering has been the archival publication of papers presented at the biennial CEC/ICMC conferences. Advances in Cryogenic Engineering resides throughout the world in the libraries of most institutions that conduct research and development in cryogenic engineering and applied superconductivity. The publication includes invited, unsolicited, and government-sponsored research papers in the research areas of superconductors and structural materials for cryogenic applications. All of the papers published must (1) be presented at the conference, (2) pass the review process, and (3) report previously unpublished theoretical studies, reviews, or measurements of material properties at low temperatures." Victoria A. Bardos, Managing Editor
This book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of superconductor, specimen size and electric field strength. Recent developments of critical current properties in various high-Tc superconductors and MgB2 are introduced. The 3rd edition has been thoroughly updated, with a new chapter on critical state model. The mechanism of irreversible properties is discussed in detail. The author provides calculations of pinning loss by the equation of motion of flux lines in the pinning potential and hysteresis loss. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. This book aims for graduate students and researchers studying superconductivity as well as engineers working in electric utility industry.
"The Frontiers of Knowhledge (to coin a phrase) are always on the move. - day's discovery will tomorrow be part of the mental furniture of every research worker. By the end of next week it will be in every course of graduate lectures. Within the month there will be a clamour to have it in the undergraduate c- riculum. Next year, I do believe, it will seem so commonplace that it may be assumed to be known by every schoolboy. "The process of advancing the line of settlements, and cultivating and c- ilizing the new territory, takes place in stages. The original papers are p- lished, to the delight of their authors, and to the critical eyes of their readers. Review articles then provide crude sketch plans, elementary guides through the forests of the literature. Then come the monographs, exact surveys, mapping out the ground that has been won, adjusting claims for priority, putting each fact or theory into its place" (J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, 1972) p.v). The main purpose of the book is to present the mechanism of - perconductivity discovered in 1986 by J. G. Bednorz and K. A. Muller, and to discuss the physics of superconductors. The last chapter of the book presents analysis of tunneling measurements in cuprates. The book is - dressed to researchers and graduate students in all branches of exact sciences."
This book deals with the study of superconductivity in systems with coexisting wide and narrow bands. It has been previously suggested that superconductivity can be enhanced in systems with coexisting wide and narrow bands when the Fermi level is near the narrow band edge. In this book, the authors study two problems concerning this mechanism in order to: (a) provide a systematic understanding of the role of strong electron correlation effects, and (b) propose a realistic candidate material which meets the ideal criteria for high-Tc superconductivity. Regarding the role of strong correlation effects, the FLEX+DMFT method is adopted. Based on systematic calculations, the pairing mechanism is found to be indeed valid even when the strong correlation effect is considered within the formalism. In the second half of the book, the authors propose a feasible candidate material by introducing the concept of the "hidden ladder" electronic structure, arising from the combination of the bilayer lattice structure and the anisotropic orbitals of the electrons. As such, the book contributes a valuable theoretical guiding principle for seeking unknown high-Tc superconductors.
Ultra-cold atomic ensembles have emerged in recent years as a powerful tool in many-body physics research, quantum information science and metrology. This thesis presents an experimental and theoretical study of the coherent properties of trapped atomic ensembles at high densities, which are essential to many of the aforementioned applications. The study focuses on how inter-particle interactions modify the ensemble coherence dynamics, and whether it is possible to extend the coherence time by means of external control. The thesis presents a theoretical model which explains the effect of elastic collision of the coherence dynamics and then reports on experiments which test this model successfully in the lab. Furthermore, the work includes the first implementation of dynamical decoupling with ultra-cold atomic ensembles. It is demonstrated experimentally that by using dynamical decoupling the coherence time can be extended 20-fold. This has a great potential to increase the usefulness of these ensembles for quantum computation.
This book highlights the power and elegance of algebraic methods of solving problems in quantum mechanics. It shows that symmetries not only provide elegant solutions to problems that can be solved exactly, but also substantially simplify problems that must be solved approximately. Furthermore, the book provides an elementary exposition of quantum electrodynamics and its application to low-energy physics, along with a thorough analysis of the role of relativistic, magnetic, and quantum electrodynamic effects in atomic spectroscopy. Included are essential derivations made clear through detailed, transparent calculations. The book's commitment to deriving advanced results with elementary techniques, as well as its inclusion of exercises will enamor it to advanced undergraduate and graduate students.
The revised second edition of this practical book reviews the fundamentals of cryogenic liquid behaviour in small and large scale storage systems. The text is based on research findings on the convective and evaporative behaviour of cryogenic fluids, aimed at improving the design, construction and operation of low-loss cryogenic liquid storage systems, with a view to minimising cost and improving operational safety. Since the first edition was published in 2006, the breadth of cryogenic applications and the modelling of cryogenic fluid dynamics (CFD) have expanded in several directions. In this second edition, most chapters have been extended to introduce discussions of these new applications and their safety and energy economy. These include advances in the modelling of CFD required in, for example, the design of miniature cryocoolers and condensers and reboilers, large-scale cryogenic liquid mixture properties and their stability, and the understanding that hazards and safety problems in the public domain increase with the scaling up of cryogenic systems. With helpful summaries at the end of each chapter, the book is an essential reference for anyone working on the design and operation of cryogenic liquid storage and transportation systems.
New Trends in Superconductivity contains up-to-date papers covering the most exciting current topics in superconductivity research. The main areas include cuprate superconductivity, covering mechanisms, pairing symmetry, pseudogap, stripes, growth and synthesis; novel superconductors, including MgB2, Sr2RuO4, borocarbides and C60-based systems; and mesoscopic superconductors and vortex matter, including vortex structure, type II superconductors, macroscopic quantum coherence and qubit devices and multilayer systems. A useful, up-to-date reference of current research in all of these rapidly developing fields of superconductivity.
In recent years, there have been significant developments in detector technologies in the field of astrophysics, requiring lower temperatures with simple self-contained refrigerators. Temperatures in the range of 1K to 50mK are now achieved by using dedicated closed-cycle miniature sorption coolers. This book presents the theoretical and experimental knowledge necessary to design and build your own miniature refrigerators, including both single shot and continuous 1 K, 300 mK and 100 mK coolers, and details how to write the needed design software. This text will be of interest to students and researchers, already familiar with basic physics and thermodynamics, who want to understand how sorption coolers and miniature dilution refrigerators work. Features: The first book dedicated to miniature sorption coolers Covers the basic thermodynamic concepts needed to understand the behavior of liquid helium-3 and liquid helium-4 Includes an appendix of Python example codes
A summary of recent developments in theoretical and experimental studies of fluctuation effects in itinerant electron magnets, focusing on novel physical phenomena: soft-mode spin fluctuations and zero-point effects, strong spin anharmonicity, magnetic frustrations in metals, fluctuation effects in Invar alloys and low-dimensional systems. All of these may be important for novel high-technology applications.
This thesis presents the discovery of a surprising phase transition between a topological and a broken symmetry phase. Phase transitions between broken symmetry phases involve a change in symmetry and those between topological phases require a change in topological order; in rare cases, however, transitions may occur between these two broad classes of phases in which the vanishing of the topological order is accompanied by the emergence of a broken symmetry. This thesis describes observations of such a special phase transition in the two-dimensional electron gas confined in the GaAs/AlGaAs structures. When tuned by hydrostatic pressure, the = 5/2 and = 7/2 fractional quantum Hall states, believed to be prototypical non-Abelian topological phases of the Pfaffian universality class, give way to an electronic nematic phase. Remarkably, the fractional quantum Hall states involved are due to pairing of emergent particles called composite fermions. The findings reported here, therefore, provide an interesting example of competition of pairing and nematicity. This thesis provides an introduction to quantum Hall physics of the two-dimensional electron gas, contains details of the high pressure experiments, and offers a discussion of the ramifications and of the origins of the newly reported phase transition.
The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. The guidelines of plasma physics are illustrated by a host of practical examples, preferentially from plasma diagnostics. There, Langmuir probe methods, laser interferometry, ionospheric sounding, Faraday rotation, and diagnostics of dusty plasmas are discussed. Though primarily addressing students in plasma physics, the book is easily accessible for researchers in neighboring disciplines, such as space science, astrophysics, material science, applied physics, and electrical engineering. This second edition has been thoroughly revised and contains substantially enlarged chapters on plasma diagnostics, dusty plasmas and plasma discharges. Probe techniques have been rearranged into basic theory and a host of practical examples for probe techniques in dc, rf, and space plasmas. New topics in dusty plasmas, such as plasma crystals, Yukawa balls, phase transitions and attractive forces have been adopted. The chapter on plasma discharges now contains a new section on conventional and high-power impulse magnetron sputtering. The recently discovered electrical asymmetry effect in capacitive rf-discharges is described. The text is based on an introductory course to plasma physics and advanced courses in plasma diagnostics, dusty plasmas, and plasma waves, which the author has taught at Kiel University for three decades. The pedagogical approach combines detailed explanations, a large number of illustrative figures, short summaries of the basics at the end of each chapter, and a selection of problems with detailed solutions.
This is the first text on the modern theory of superconductivity. It deals with the behaviour of superconductors in external fields varying in time, and with transport phenomena in superconductors. The book starts with the fundamentals of the first-principle, microscopic theory of superconductivity, and guides the reader through the modern theoretical analysis directly to applications of the theory to practical problems.
Physics and Chemistry of Ice is an authoritative summary of state-of the-art research contributions from the world's leading scientists. A key selection of submissions from the 11th International Conference on the Physics and Chemistry of Ice, 2006 are presented here with a foreword by Werner F. Kuhs. An invaluable resource, this book provides researchers and professionals with up-to-date coverage on a wide range of areas in ice science including: * Spectroscopic and diffraction studies * Molecular dynamics simulations * Studies of Ice Mechanics * Quantum mechanical ab initio calculations * Ice and hydrate crystal growth and inhibition studies * Bulk and surface properties of ice and gas hydrates * Snow physics and chemistry This insight into topical aspects of ice research is a key point of reference for physicists, chemists, glaciologists, cryo-biologists and professionals working in the fields of ice and hydrogen bonding.
This fourth edition is primarily aimed at helping physicists, physical chemists, materials scientists, metallurgists, engineers, and biologists to carry out investigations at low temperatures. This new edition takes into account the major changes in cryogenic technology over the past twenty years. These changes include areas of temperature measurement and control, superconducting magnets, cryocoolers, ultra-low temperatures, technical data on materials, commercially available cryostats for optical, x-ray, thermal and electrical measurements. Less emphasis is now placed on methods of constructing cryostats in the laboratory and more emphasis on commercially available cryostats, temperature controllers, and closed circuit cryocoolers. The book contains comprehensive, up-to-date tables of physical property data on metals, polymers, and ceramics. It will be of value to graduate students as well as to engineers and biologists facing cryogenic problems.
This book introduces readers to the characteristic features of electromagnetic phenomena in superconductivity. It first demonstrates not only that the diamagnetism in the superconductivity complies with Maxwell's theory, which was formulated before the discovery of superconductivity, but also that the dominant E-B analogy in the electromagnetism loses perfection without the superconductivity. The book then explores flux pinning, which is responsible for the non-dissipative current in DC, leading to irreversibility in AC. Drawing on Maxwell's work, it also proves theoretically that if there is no energy dissipation in the superconductivity caused by the break in time reversal symmetry, it contradicts the thermodynamic principle of energy conservation - something that had previously only been proved experimentally. Lastly, the book addresses the longitudinal magnetic field effect, and explains how this phenomenon leads to a new development of Maxwell's theory. Featuring numerous appendices to help readers understand the methods of derivation of equations, this book offers students and young scientists an introduction to applied superconductivity, especially in the context of power applications. Presenting the characteristic features of electromagnetic phenomena in superconductivity from basic to advanced topics for applications, the book offers a valuable resource for graduate students and researchers studying superconductivity as well as engineers working in electric utility industry. |
You may like...
Microwave Cavities and Detectors for…
Gianpaolo Carosi, Gray Rybka
Hardcover
R2,789
Discovery Miles 27 890
|