0
Your cart

Your cart is empty

Browse All Departments
Price
  • R500+ (174)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Physics > States of matter > Low temperature physics

Electron-Phonon Interaction in Conventional and Unconventional Superconductors (Hardcover, 2011 ed.): Pegor Aynajian Electron-Phonon Interaction in Conventional and Unconventional Superconductors (Hardcover, 2011 ed.)
Pegor Aynajian
R2,772 Discovery Miles 27 720 Ships in 10 - 15 working days

The problem of conventional, low-temperature superconductivity has been regarded as solved since the seminal work of Bardeen, Cooper, and Schrieffer (BCS) more than 50 years ago. However, the theory does not allow accurate predictions of some of the most fundamental properties of a superconductor, including the superconducting energy gap on the Fermi surface. This thesis describes the development and scientific implementation of a new experimental method that puts this old problem into an entirely new light. The nominee has made major contributions to the development and implementation of a new experimental method that enhances the resolution of spectroscopic experiments on dispersive lattice-vibrational excitations (the "glue" responsible for Cooper pairing of electrons in conventional superconductors) by more than two orders of magnitude. Using this method, he has discovered an unexpected relationship between the superconducting energy gap and the geometry of the Fermi surface in the normal state, both of which leave subtle imprints in the lattice vibrations that could not be resolved by conventional spectroscopic methods. He has confirmed this relationship on two elemental superconductors and on a series of metallic alloys. This indicates that a mechanism qualitatively beyond the standard BCS theory determines the magnitude and anisotropy of the superconducting gap.

Superconductivity: Discoveries and Discoverers - Ten Physics Nobel Laureates Tell Their Story (Hardcover, 2013 ed.): Kristian... Superconductivity: Discoveries and Discoverers - Ten Physics Nobel Laureates Tell Their Story (Hardcover, 2013 ed.)
Kristian Fossheim
R2,445 R1,776 Discovery Miles 17 760 Save R669 (27%) Ships in 12 - 17 working days

This book is about the work of 10 great scientists; who they were and are, their personal background and how they achieved their outstanding results and took their prominent place in science history. We follow one of physics and science history's most enigmatic phenomena, superconductivity, through 100 years, from its discovery in 1911 to the present, not as a history book in the usual sense, but through close ups of the leading characters and their role in that story, the Nobel laureates, who were still among us in the years 2001-2004 when the main round of interviews was carried out. Since then two of them already passed away. For each one of the 10 laureates, the author tells their story by direct quotation from interviews in their own words. Each chapter treats one laureate. The author first gives a brief account of the laureates' scientific background and main contribution. Then each laureate tells his own story in his own words. This book is unique in its approach to science history.

SQUID Sensors - Fundamentals, Fabrication and Applications (Hardcover): Harold Weinstock SQUID Sensors - Fundamentals, Fabrication and Applications (Hardcover)
Harold Weinstock
R2,455 Discovery Miles 24 550 Ships in 12 - 17 working days

This text examines all aspects of constructing and using SQUID magnetic sensors that operate at either liquid helium or liquid nitrogen temperatures (4 or 77 K, respectively). There is comprehensive coverage of a range of established and emerging applications: biomagnetism, geophysics, nondestructive evaluation, detection of unexploded ordnance, and gravity gradiometry. The principles of both dc and rf SQUIDS are discussed extensively, as are the geometries, electronic circuitry and analysis techniques required to maximize performance. A major chapter of SQUID gradiometers in real environments presents original information on how to minimize noise from external sources. The discussions of biomagnetism describe the growing importance of neuromagnetometry with systems employing over 100 SQUID sensors, as well as the emergence of magnetocardiography and foetal heartbeat monitoring. Analysis techniques relevant to both biomagnetism and nondestructive evaluation are presented in depth.

High Precision Optical Spectroscopy and Quantum State Selected Photodissociation of Ultracold 88Sr2 Molecules in an Optical... High Precision Optical Spectroscopy and Quantum State Selected Photodissociation of Ultracold 88Sr2 Molecules in an Optical Lattice (Hardcover, 1st ed. 2018)
Mickey Mcdonald
R3,270 Discovery Miles 32 700 Ships in 12 - 17 working days

This thesis unites the fields of optical atomic clocks and ultracold molecular science, laying the foundation for optical molecular measurements of unprecedented precision. Building upon optical manipulation techniques developed by the atomic clock community, this work delves into attaining surgical control of molecular quantum states. The thesis develops two experimental observables that one can measure with optical-lattice-trapped ultracold molecules: extremely narrow optical spectra, and angular distributions of photofragments that are ejected when the diatomic molecules are dissociated by laser light pulses. The former allows molecular spectroscopy approaching the level of atomic clocks, leading into molecular metrology and tests of fundamental physics. The latter opens the field of ultracold chemistry through observation of quantum effects such as matter-wave interference of photofragments and tunneling through reaction barriers. The thesis also describes a discovery of a new method of thermometry that can be used near absolute zero temperatures for particles lacking cycling transitions, solving a long-standing experimental problem in atomic and molecular physics.

Heat Capacity and Thermal Expansion at Low Temperatures (Hardcover): T.H.K. Barron, G.K. White Heat Capacity and Thermal Expansion at Low Temperatures (Hardcover)
T.H.K. Barron, G.K. White
R4,336 Discovery Miles 43 360 Ships in 12 - 17 working days

The birth of this monograph is partly due to the persistent efforts of the General Editor, Dr. Klaus Timmerhaus, to persuade the authors that they encapsulate their forty or fifty years of struggle with the thermal properties of materials into a book before they either expired or became totally senile. We recognize his wisdom in wanting a monograph which includes the closely linked properties of heat capacity and thermal expansion, to which we have added a little 'cement' in the form of elastic moduli. There seems to be a dearth of practitioners in these areas, particularly among physics postgraduate students, sometimes temporarily alleviated when a new generation of exciting materials are found, be they heavy fermion compounds, high temperature superconductors, or fullerenes. And yet the needs of the space industry, telecommunications, energy conservation, astronomy, medical imaging, etc., place demands for more data and understanding of these properties for all classes of materials - metals, polymers, glasses, ceramics, and mixtures thereof. There have been many useful books, including Specific Heats at Low Tempera tures by E. S. Raja Gopal (1966) in this Plenum Cryogenic Monograph Series, but few if any that covered these related topics in one book in a fashion designed to help the cryogenic engineer and cryophysicist. We hope that the introductory chapter will widen the horizons of many without a solid state background but with a general interest in physics and materials."

Fundamentals of Superconducting Nanoelectronics (Hardcover, 2011 ed.): Anatoli Sidorenko Fundamentals of Superconducting Nanoelectronics (Hardcover, 2011 ed.)
Anatoli Sidorenko
R4,915 Discovery Miles 49 150 Ships in 12 - 17 working days

This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, PhD-students, lectures and others who would like to gain knowledge in the frontiers of superconductivity at the nanoscale.

Exciton Transport Phenomena in GaAs Coupled Quantum Wells (Hardcover, 1st ed. 2018): Jason Leonard Exciton Transport Phenomena in GaAs Coupled Quantum Wells (Hardcover, 1st ed. 2018)
Jason Leonard
R2,789 Discovery Miles 27 890 Ships in 10 - 15 working days

This thesis presents results crucial to the emerging field of indirect excitons. These specially designed quasiparticles give the unique opportunity to study fundamental properties of quantum degenerate Bose gases in semiconductors. Furthermore, indirect excitons allow for the creation of novel optoelectronic devices where excitons are used in place of electrons. Excitonic devices are explored for the development of advanced signal processing seamlessly coupled with optical communication. The thesis presents and describes the author's imaging experiments that led to the discovery of spin transport of excitons. The many firsts presented herein include the first studies of an excitonic conveyer, leading to the discovery of the dynamical localization-delocalization transition for excitons, and the first excitonic ramp and excitonic diode with no energy-dissipating voltage gradient.

Microwave Cavities and Detectors for Axion Research - Proceedings of the 2nd International Workshop (Hardcover, 1st ed. 2018):... Microwave Cavities and Detectors for Axion Research - Proceedings of the 2nd International Workshop (Hardcover, 1st ed. 2018)
Gianpaolo Carosi, Gray Rybka, Karl van Bibber
R4,121 R3,144 Discovery Miles 31 440 Save R977 (24%) Ships in 12 - 17 working days

The nature of dark matter remains one of the preeminent mysteries in physics and cosmology. It appears to require the existence of new particles whose interactions to ordinary matter are extraordinarily feeble. One well-motivated candidate is the axion, an extraordinarily light neutral particle that may possibly be detected by looking for their conversion to detectable microwaves in the presence of a strong magnetic field. This has led to a number of experimental searches that are beginning to probe plausible axion model space and may discover the axion in the near future. These proceedings discuss the challenges of designing and operating tunable resonant cavities and detectors at ultralow temperatures. The topics discussed here have potential application far beyond the field of dark matter detection and may be applied to resonant cavities for accelerators as well as designing superconducting detectors for quantum information and computing applications. This work is intended for graduate students and researchers interested in learning the unique requirements for designing and operating microwave cavities and detectors for direct axion searches and to introduce several proposed experimental concepts that are still in the prototype stage.

Low-Temperature Physics (Hardcover, 2005 ed.): Christian Enss, Siegfried Hunklinger Low-Temperature Physics (Hardcover, 2005 ed.)
Christian Enss, Siegfried Hunklinger
R3,431 Discovery Miles 34 310 Ships in 12 - 17 working days

Presents experiment, theory and technology in a unified manner.

Contains numerous illustrations, tables and references as well as carefully selected problems for students.

Surveys the fascinating historical development of the field.

High-Tc Superconductors and Related Materials - Material Science, Fundamental Properties, and Some Future Electronic... High-Tc Superconductors and Related Materials - Material Science, Fundamental Properties, and Some Future Electronic Applications (Hardcover, 2001 ed.)
S.-L. Drechsler, T. Mishonov
R3,106 Discovery Miles 31 060 Ships in 12 - 17 working days

A broad introduction to high Tc superconductors, their parent compounds and related novel materials, covering both fundamental questions of modern solid state physics (such as correlation effects, fluctuations, unconventional symmetry of superconducting order parameter) and applied problems related to short coherence length, grain boundaries and thin films. The information that can be derived from electron spectroscopy and optical measurements is illustrated and explained in detail. Descriptions widely employ the clear, relatively simple, phenomenological Ginzburg-Landau model of complex phenomena, such as vortex physics, vortex charge determination, plasmons in superconductors, Cooper pair mass, and wetting of surfaces. The first comprehensive reviews of several novel classes of materials are presented, including borocarbides and chain cuprates.

Interferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential (Hardcover, 1st ed. 2016): Tarik Berrada Interferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential (Hardcover, 1st ed. 2016)
Tarik Berrada
R3,324 Discovery Miles 33 240 Ships in 12 - 17 working days

This thesis demonstrates a full Mach-Zehnder interferometer with interacting Bose-Einstein condensates confined on an atom chip. It relies on the coherent manipulation of atoms trapped in a magnetic double-well potential, for which the author developed a novel type of beam splitter. Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices, both for technological applications and fundamental tests. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Particle interactions in the Bose-Einstein condensate lead to a nonlinearity, absent in photon optics. This is exploited to generate a non-classical state with reduced atom-number fluctuations inside the interferometer. This state is then used to study the interaction-induced dephasing of the quantum superposition. The resulting coherence times are found to be a factor of three longer than expected for coherent states, highlighting the potential of entanglement as a resource for quantum-enhanced metrology.

Molecular Theory of Solvation (Hardcover, 2003 ed.): F. Hirata Molecular Theory of Solvation (Hardcover, 2003 ed.)
F. Hirata
R5,641 Discovery Miles 56 410 Ships in 10 - 15 working days

Molecular Theory of Solvation presents the recent progress in the statistical mechanics of molecular liquids applied to the most intriguing problems in chemistry today, including chemical reactions, conformational stability of biomolecules, ion hydration, and electrode-solution interface. The continuum model of "solvation" has played a dominant role in describing chemical processes in solution during the last century. This book discards and replaces it completely with molecular theory taking proper account of chemical specificity of solvent.

The main machinery employed here is the reference-interaction-site-model (RISM) theory, which is combined with other tools in theoretical chemistry and physics: the ab initio and density functional theories in quantum chemistry, the generalized Langevin theory, and the molecular simulation techniques.

This book will be of benefit to graduate students and industrial scientists who are struggling to find a better way of accounting and/or predicting "solvation" properties.

129 Xe Relaxation and Rabi Oscillations (Hardcover, 2015 ed.): Mark E. Limes 129 Xe Relaxation and Rabi Oscillations (Hardcover, 2015 ed.)
Mark E. Limes
R3,221 Discovery Miles 32 210 Ships in 12 - 17 working days

This thesis describes longitudinal nuclear relaxation measurements of solid 129Xe near 77 K with previously unattainable reproducibility, and demonstrates differences in relaxation, dependent upon the way in which the solid is condensed. These results are directly applicable to the generation and storage of large quantities of hyperpolarized 129Xe for various applications, such as lung magnetic resonance imaging (MRI). The thesis features a sophisticated theoretical approach to these data sets, including modifications to a well-established Raman-phonon scattering theory that may explain the larger scatter in and discrepancies with previous work.

Applied Superconductivity, Metallurgy, and Physics of Titanium Alloys: - Volume 2: Applications (Hardcover, 1986 ed.): E.W... Applied Superconductivity, Metallurgy, and Physics of Titanium Alloys: - Volume 2: Applications (Hardcover, 1986 ed.)
E.W Collings
R8,265 Discovery Miles 82 650 Ships in 12 - 17 working days
Polymers at Cryogenic Temperatures (Hardcover, 2013 ed.): Susheel Kalia, Shao-Yun Fu Polymers at Cryogenic Temperatures (Hardcover, 2013 ed.)
Susheel Kalia, Shao-Yun Fu
R4,659 Discovery Miles 46 590 Ships in 12 - 17 working days

Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

Artificial Gauge Fields with Ultracold Atoms in Optical Lattices (Hardcover, 1st ed. 2016): Monika Aidelsburger Artificial Gauge Fields with Ultracold Atoms in Optical Lattices (Hardcover, 1st ed. 2016)
Monika Aidelsburger
R3,252 Discovery Miles 32 520 Ships in 12 - 17 working days

This work reports on the generation of artificial magnetic fields with ultracold atoms in optical lattices using laser-assisted tunneling, as well as on the first Chern-number measurement in a non-electronic system. It starts with an introduction to the Hofstadter model, which describes the dynamics of charged particles on a square lattice subjected to strong magnetic fields. This model exhibits energy bands with non-zero topological invariants called Chern numbers, a property that is at the origin of the quantum Hall effect. The main part of the work discusses the realization of analog systems with ultracold neutral atoms using laser-assisted-tunneling techniques both from a theoretical and experimental point of view. Staggered, homogeneous and spin-dependent flux distributions are generated and characterized using two-dimensional optical super-lattice potentials. Additionally their topological properties are studied via the observation of bulk topological currents. The experimental techniques presented here offer a unique setting for studying topologically non-trivial systems with ultracold atoms.

From Atom Optics to Quantum Simulation - Interacting Bosons and Fermions in Three-Dimensional Optical Lattice Potentials... From Atom Optics to Quantum Simulation - Interacting Bosons and Fermions in Three-Dimensional Optical Lattice Potentials (Hardcover, 2013 ed.)
Sebastian Will
R4,354 R3,351 Discovery Miles 33 510 Save R1,003 (23%) Ships in 12 - 17 working days

This thesis explores ultracold quantum gases of bosonic and fermionic atoms in optical lattices. The highly controllable experimental setting discussed in this work, has opened the door to new insights into static and dynamical properties of ultracold quantum matter. One of the highlights reported here is the development and application of a novel time-resolved spectroscopy technique for quantum many-body systems. By following the dynamical evolution of a many-body system after a quantum quench, the author shows how the important energy scales of the underlying Hamiltonian can be measured with high precision. This achievement, its application, and many other exciting results make this thesis of interest to a broad audience ranging from quantum optics to condensed matter physics. A lucid style of writing accompanied by a series of excellent figures make the work accessible to readers outside the rapidly growing research field of ultracold atoms.

Magnetic Interactions and Spin Transport (Hardcover, 2003 ed.): Almadena Chtchelkanova, Stuart A. Wolf, Yves Idzerda Magnetic Interactions and Spin Transport (Hardcover, 2003 ed.)
Almadena Chtchelkanova, Stuart A. Wolf, Yves Idzerda
R4,317 Discovery Miles 43 170 Ships in 12 - 17 working days

Stuart Wolf This book originated as a series of lectures that were given as part of a Summer School on Spintronics in the end of August, 1998 at Lake Tahoe, Nevada. It has taken some time to get these lectures in a form suitable for this book and so the process has been an iterative one to provide current information on the topics that are covered. There are some topics that have developed in the intervening years and we have tried to at least alert the readers to them in the Introduction where a rather complete set of references is provided to the current state of the art. The field of magnetism, once thought to be dead or dying, has seen a remarkable rebirth in the last decade and promises to get even more important as we enter the new millennium. This rebirth is due to some very new insight into how the spin degree of freedom of both electrons and nucleons can play a role in a new type of electronics that utilizes the spin in addition to or in place of the charge. For this new field to mature and prosper, it is important that students and postdoctoral fellows have access to the appropriate literature that can give them a sound basis in the funda mentals of this new field and I hope that this book is a very good start in this direction."

Scattering Theory (Hardcover, 2nd ed. 2016): Harald Friedrich Scattering Theory (Hardcover, 2nd ed. 2016)
Harald Friedrich
R3,383 Discovery Miles 33 830 Ships in 12 - 17 working days

This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.

Theory of Heavy-Fermion Compounds - Theory of Strongly Correlated Fermi-Systems (Hardcover): Miron Ya. Amusia, Konstantin G.... Theory of Heavy-Fermion Compounds - Theory of Strongly Correlated Fermi-Systems (Hardcover)
Miron Ya. Amusia, Konstantin G. Popov, Vasily R. Shaginyan, Vladimir A. Stephanovich
R4,194 R3,472 Discovery Miles 34 720 Save R722 (17%) Ships in 12 - 17 working days

This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good agreement with experimental facts, offer the reader solid grounds to learn the theory's applications. Finally, the reader will learn that FCQPT develops unexpectedly simple, yet completely good description of HF compounds.

High-Temperature Cuprate Superconductors - Experiment, Theory, and Applications (Hardcover, 2010 ed.): Nikolay Plakida High-Temperature Cuprate Superconductors - Experiment, Theory, and Applications (Hardcover, 2010 ed.)
Nikolay Plakida
R5,561 Discovery Miles 55 610 Ships in 10 - 15 working days

High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their knowledge of this remarkable class of materials.

Vortices in Unconventional Superconductors and Superfluids (Hardcover, 2002 ed.): R.P. Huebener, N. Schopohl, G.E. Volovik Vortices in Unconventional Superconductors and Superfluids (Hardcover, 2002 ed.)
R.P. Huebener, N. Schopohl, G.E. Volovik
R6,371 Discovery Miles 63 710 Ships in 10 - 15 working days

Topological defects are generic in continuous media. In the relativistic quantum vacuum they are known as cosmic strings, in superconductors as quantized flux lines, and in superfluids, low-density atomic Bose-Einstein condensates and neutron stars as quantized vortex lines. This collection of articles by leading scientists presents a modern treatment of the physics of vortex matter, mainly applied to unconventional superconductors and superfluids but with extensions to other areas of physics.

Molecules in Superfluid Helium Nanodroplets - Spectroscopy, Structure, and Dynamics (Hardcover, 1st ed. 2022): Alkwin Slenczka,... Molecules in Superfluid Helium Nanodroplets - Spectroscopy, Structure, and Dynamics (Hardcover, 1st ed. 2022)
Alkwin Slenczka, Jan Peter Toennies
R1,581 Discovery Miles 15 810 Ships in 12 - 17 working days

This open access book covers recent advances in experiments using the ultra-cold, very weakly perturbing superfluid environment provided by helium nanodroplets for high resolution spectroscopic, structural and dynamic studies of molecules and synthetic clusters. The recent infra-red, UV-Vis studies of radicals, molecules, clusters, ions and biomolecules, as well as laser dynamical and laser orientational studies, are reviewed. The Coulomb explosion studies of the uniquely quantum structures of small helium clusters, X-ray imaging of large droplets and electron diffraction of embedded molecules are also described. Particular emphasis is given to the synthesis and detection of new species by mass spectrometry and deposition electron microscopy.

Basic Superfluids (Paperback): Tony Guenault Basic Superfluids (Paperback)
Tony Guenault
R1,739 Discovery Miles 17 390 Ships in 12 - 17 working days


The author describes superfluidity as the jewel in the crown of low temperature physics. At low enough temperatures, every substance in thermal equilibrium must become ordered. Since some materials remain fluid to the lowest temperatures, it is a fascinating question as to how this ordering can take place. One possibility is the formation of a superfluid state, a state in which there is macroscopic quantum order, effectively quantum mechanics in a tea-cup. These ideas are developed in chapter 1. The book assumes some basic knowledge of quantum, statistical and thermal physics, and builds on this background to give a readable introduction to the three superfluids of low temperature physics.
A Short chapter describing experimental techniques is included. The emphasis throughout is on physical principles rather than technical detail, with the aim of introducing the subject in an accessible yet authoritative way to final year undergraduates or starting postgraduate students.

Cryocoolers - Theory and Applications (Hardcover, 1st ed. 2020): Milind D. Atrey Cryocoolers - Theory and Applications (Hardcover, 1st ed. 2020)
Milind D. Atrey
R4,904 Discovery Miles 49 040 Ships in 12 - 17 working days

This book serves as an introduction to cryocooler technology and describes the principle applications of cryocoolers across a broad range of fields. It covers the specific requirements of these applications, and describes how the advantages and disadvantages of different cryocooler systems are taken into consideration. For example, Stirling coolers tend to be used only in space applications because of their high coefficient of performance, low weight and proven reliability, whilst Gifford-McMahon coolers are used for ground applications, such as in cryopumps and MRI shield cooling applications. Joule-Thomson cryocoolers are used in missile technology because of the fast cool down requirements. The cryocooler field is fast developing and the number of applications are growing because of the increasing costs of the cryogens such as Helium and Neon. The first chapter of the book introduces the different types of cryocoolers, their classification, working principles, and their design aspects, and briefly mentions some of the applications of these systems. This introductory chapter is followed by a number of contributions from prominent international researchers, each describing a specific field of application, the cooling requirements and the cryocooler systems employed. These areas of application include gas liquefaction, space technology, medical science, dilution refrigerators, missile systems, and physics research including particle accelerators. Each chapter describes the cooling requirements based on the end use, the approximate cooling load calculations, the criteria for cryocooler selection, the arrangement for cryocooler placement, the connection of the cooler to the object to be cooled, and includes genuine case studies. Intended primarily for researchers working on cryocoolers, the book will also serve as an introduction to cryocooler technology for students, and a useful reference for those using cryocooler systems in any area of application.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Thermodynamics - Fundamental Principles…
Antonio Saggion, Rossella Faraldo, … Hardcover R2,526 Discovery Miles 25 260
Cryogenic Helium Refrigeration for…
Guy Gistau Baguer Hardcover R4,319 Discovery Miles 43 190
Exciton Polaritons in Microcavities…
Daniele Sanvitto, Vladislav Timofeev Hardcover R5,016 Discovery Miles 50 160
Non-equilibrium Dynamics of…
Marine Pigneur Hardcover R2,794 Discovery Miles 27 940
Multi-species Systems in Optical…
Fernanda Pinheiro Hardcover R3,203 Discovery Miles 32 030
Classical Pendulum Feels Quantum…
Nobuyuki Matsumoto Hardcover R2,789 Discovery Miles 27 890
Magnetic Monopole Noise
Ritika Dusad Hardcover R2,789 Discovery Miles 27 890
Enhanced Optical and Electric…
Jacob P. Covey Hardcover R2,812 Discovery Miles 28 120
Superconductivity - Basics and…
R.G. Sharma Hardcover R5,911 Discovery Miles 59 110
Flux Pinning in Superconductors
Teruo Matsushita Hardcover R5,442 R4,875 Discovery Miles 48 750

 

Partners