![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematical modelling
Accelerated degradation of soils and surface waters produce increasing problems in many parts of the world. Within this context, the book addresses the topic Application of Physically Based Soil Erosion Models in order to present some essential tools for improving land-use strategies and conservation measures. Over the last 20 years, the need for more accurate assessments of soil losses and sediment yields has led to the development of some highly complex, process-based soil erosion models. In 14 papers, specialists from 5 European countries, the USA and Brazil report on practical applications of these models and give insight into the latest developments. This book will help to implement state-of-the-art soil erosion prediction technologies within soil and water conservation planning and assessment. Hence, the book should be of special interest to agricultural and environmental engineers, hydrologists, soil scientists and geoscientists.
The book examines the performance and optimization of systems where queueing and congestion are important constructs. Both finite and infinite queueing systems are examined. Many examples and case studies are utilized to indicate the breadth and depth of the queueing systems and their range of applicability. Blocking of these processes is very important and the book shows how to deal with this problem in an effective way and not only compute the performance measures of throughput, cycle times, and WIP but also to optimize the resources within these systems. The book is aimed at advanced undergraduate, graduate, and professionals and academics interested in network design, queueing performance models and their optimization. It assumes that the audience is fairly sophisticated in their mathematical understanding, although the explanations of the topics within the book are fairly detailed.
This book covers algorithms and discretization procedures for the solution of nonlinear progamming, semi-infinite optimization and optimal control problems. Among the important features included are the theory of algorithms represented as point-to-set maps, the treatment of min-max problems with and without constraints, the theory of consistent approximation which provides a framework for the solution of semi-infinite optimization, optimal control, and shape optimization problems with very general constraints, using simple algorithms that call standard nonlinear programming algorithms as subroutines, the completeness with which algorithms are analysed, and chapter 5 containing mathematical results needed in optimization from a large assortment of sources. Readers will find of particular interest the exhaustive modern treatment of optimality conditions and algorithms for min-max problems, as well as the newly developed theory of consistent approximations and the treatment of semi-infinite optimization and optimal control problems in this framework. This book presents the first treatment of optimization algorithms for optimal control problems with state-trajectory and control constraints, and fully accounts for all the approximations that one must make in their solution.It is also the first to make use of the concepts of epi-convergence and optimality functions in the construction of consistent approximations to infinite dimensional problems.
This award-winning thesis investigates the mechanisms underlying cardiac arrhythmia development and termination from an entirely new perspective. By viewing the heart as a complex system, the author uses theoretical tools from nonlinear dynamics combined with numerical simulations and experiments to achieve insights into the relationship between its structure and dynamics, thereby paving the way towards innovative low-energy defibrillation strategies. The work tackles, among other things: the effect of substrate heterogeneity on the spatial-temporal dynamics of cardiac arrhythmias and ways in which weak pulsed electric fields can be used to control these dynamics in heterogeneous cardiac tissue. The long-term vision of this research is to replace the current strategy of applying painful and sometimes tissue damaging electric shock - currently the only reliable way to terminate life-threatening fibrillation - by a more subtle but equally effective intervention. The book maps out a number of promising research directions for biophysicists and medical researchers working on the origins and treatment of cardiac arrhythmias.
This book reports on advanced theories and cutting-edge applications in the field of soft computing. The individual chapters, written by leading researchers, are based on contributions presented during the 4th World Conference on Soft Computing, held May 25-27, 2014, in Berkeley. The book covers a wealth of key topics in soft computing, focusing on both fundamental aspects and applications. The former include fuzzy mathematics, type-2 fuzzy sets, evolutionary-based optimization, aggregation and neural networks, while the latter include soft computing in data analysis, image processing, decision-making, classification, series prediction, economics, control, and modeling. By providing readers with a timely, authoritative view on the field, and by discussing thought-provoking developments and challenges, the book will foster new research directions in the diverse areas of soft computing.
This book builds inviscid flow analysis from an undergraduate-level treatment of potential flow to the level required for research. The tools covered in this book allow the reader to develop physics-based mathematical models for a variety of flows, including attached and separated flows past wings, fins, and blades of various shapes undergoing arbitrary motions. The book covers all of the ingredients of these models: the solution of potential flows about arbitrary body shapes in two- and three-dimensional contexts, with a particular focus on conformal mapping in the plane; the decomposition of the flow into contributions from ambient vorticity and body motion; generalized edge conditions, of which the Kutta condition is a special case; and the calculation of force and moment, with extensive treatments of added mass and the influence of fluid vorticity. The book also contains an extensive primer with all of the necessary mathematical tools. The concepts are demonstrated on several example problems, both classical and modern.
The correlations between physical systems provide significant information about their collective behaviour - information that is used as a resource in many applications, e.g. communication protocols. However, when it comes to the exploitation of such correlations in the quantum world, identification of the associated 'resource' is extremely challenging and a matter of debate in the quantum community. This dissertation describes three key results on the identification, detection, and quantification of quantum correlations. It starts with an extensive and accessible introduction to the mathematical and physical grounds for the various definitions of quantum correlations. It subsequently focusses on introducing a novel unified picture of quantum correlations by taking a modern resource-theoretic position. The results show that this novel concept plays a crucial role in the performance of collaborative quantum computations that is not captured by the standard textbook approaches. Further, this new perspective provides a deeper understanding of the quantum-classical boundary and paves the way towards establishing a resource theory of quantum computations.
In the eighties, a group of theoretical physicists introduced several models for certain disordered systems, called "spin glasses". These models are simple and rather canonical random structures, that physicists studied by non-rigorous methods. They predicted spectacular behaviors, previously unknown in probability theory. They believe these behaviors occur in many models of considerable interest for several branches of science (statistical physics, neural networks and computer science). This book introduces in a rigorous manner this exciting new area to the mathematically minded reader. It requires no knowledge whatsoever of any physics, and contains proofs in complete detail of much of what is rigorously known on spin glasses at the time of writing.
This textbook presents the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. It presents the author's original method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameters is considered. In this second edition of the book, the number of approximate solving procedures for strong nonlinear oscillators is enlarged and a variety of procedures for solving free strong nonlinear oscillators is suggested. A method for error estimation is also given which is suitable to compare the exact and approximate solutions. Besides the oscillators with one degree-of-freedom, the one and two mass oscillatory systems with two-degrees-of-freedom and continuous oscillators are considered. The chaos and chaos suppression in ideal and non-ideal mechanical systems is explained. In this second edition more attention is given to the application of the suggested methodologies and obtained results to some practical problems in physics, mechanics, electronics and biomechanics. Thus, for the oscillator with two degrees-of-freedom, a generalization of the solving procedure is performed. Based on the obtained results, vibrations of the vocal cord are analyzed. In the book the vibration of the axially purely nonlinear rod as a continuous system is investigated. The developed solving procedure and the solutions are applied to discuss the muscle vibration. Vibrations of an optomechanical system are analyzed using the oscillations of an oscillator with odd or even quadratic nonlinearities. The extension of the forced vibrations of the system is realized by introducing the Ateb periodic excitation force which is the series of a trigonometric function. The book is self-consistent and suitable for researchers and as a textbook for students and also professionals and engineers who apply these techniques to the field of nonlinear oscillations.
Self-organizing maps (SOM) have proven to be of significant economic value in the areas of finance, economic and marketing applications. As a result, this area is rapidly becoming a non-academic technology. This book looks at near state-of-the-art SOM applications in the above areas, and is a multi-authored volume, edited by Guido Deboeck, a leading exponent in the use of computational methods in financial and economic forecasting, and by the originator of SOM, Teuvo Kohonen. The book contains chapters on applications of unsupervised neural networks using Kohonen's self-organizing map approach.
... "What do you call work?" "Why ain't that work?" Tom resumed his whitewashing, and answered carelessly: "Well. lI1a), he it is, and maybe it aill't. All I know, is, it suits Tom Sawvc/: " "Oil CO/lll , IIOW, Will do not mean to let 011 that you like it?" The brush continued to move. "Likc it? Well, I do not see wlzy I oughtn't to like it. Does a hoy get a chance to whitewash a fence every day?" That put the thing ill a Ilew light. Ben stopped nibhling the apple .... (From Mark Twain's Adventures of Tom Sawyer, Chapter II.) Mathematics can put quantitative phenomena in a new light; in turn applications may provide a vivid support for mathematical concepts. This volume illustrates some aspects of the mathematical treatment of phase transitions, namely, the classical Stefan problem and its generalizations. The in tended reader is a researcher in application-oriented mathematics. An effort has been made to make a part of the book accessible to beginners, as well as physicists and engineers with a mathematical background. Some room has also been devoted to illustrate analytical tools. This volume deals with research I initiated when I was affiliated with the Istituto di Analisi Numerica del C.N.R. in Pavia, and then continued at the Dipartimento di Matematica dell'Universita di Trento. It was typeset by the author in plain TEX."
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems.
The present book fmds its roots in the International Conference on Methods and Applications of Multiple Criteria Decision Making held in Mons in May 1997. A small number of contributions to that conference were selected via a refereeing procedure and retained authors were requested to include in their final version their more recent results. This explains why some papers differ significantly from the original presentation. The introductory paper of Raynaud addresses the long range forecasts in Multiple Criteria Decision Making on the basis of a Delphi process that was run before and during the congress. In a second part, the French author explains how he and some of his partners could find the proof of an important conjecture : the iteration of a strongly monotonic choice function is not a strongly monotonic ranking function. The second part of the book covers methodological aspects of decision theory. The contribution of Bouyssou and Pirlot concerns the reformulation of classical conjoint measurement models that induce a complete and transitive preference binary relation on the set of alternatives which seem to be unrealistic when decision makers are asked to compare objects evaluated on several attributes. The authors propose to consider non transitive, non complete and non additive decomposable conjoint models. They define properties that characterize such models.
The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such methods to dispersed multiphase flows.
This book contains revised and extended research articles written by prominent researchers participating in the international conference on Advances in Engineering Technologies and Physical Science ("London, U.K., 3-5 July, 2013)." Topics covered include mechanical engineering, bioengineering, internet engineering, image engineering, wireless networks, knowledge engineering, manufacturing engineering, and industrial applications. The book offers state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working with/on engineering technologies and physical science.
This book addresses several aspects of the integrable structure of the AdS/CFT correspondence. In particular it presents computations made on both sides of the AdS/CFT correspondence, at weak and at strong coupling. On the string theory side of the correspondence, the book focuses on the evaluation of the energy spectrum of closed string solutions moving in some deformed backgrounds that preserve integrability. On the gauge theory side, it explores various formal problems arising in the computation of two and three-point functions by means of the Algebraic Bethe Ansatz and the Quantum Inverse Scattering method. The book features numerous results on integrability in the context of the AdS/CFT correspondence. Self-contained and pedagogical, it includes general discussions and detailed presentations on the use of integrable systems techniques and their applications.
The aim of this book is to present a rigorous phenomenological and mathematical formulation of sedimentation processes and to show how this theory can be applied to the design and control of continuous thickeners. The book is directed to stu dents and researchers in applied mathematics and engineering sciences, especially in metallurgical, chemical, mechanical and civil engineering, and to practicing en gineers in the process industries. Such a vast and diverse audience should read this book differently. For this reason we have organized the chapters in such a way that the book can be read in two ways. Engineers and engineering students will find a rigorous formulation of the mathematical model of sedimentation and the exact and approximate solutions for the most important problems encountered in the laboratory and in industry in Chapters 1 to 3, 7 and 8, and 10 to 12, which form a self-contained subject. They can skip Chapters 4 to 6 and 9, which are most important to applied mathematicians, without losing the main features of sedimentation processes. On the other hand, applied mathematicians will find special interest in Chapters 4 to 6 and 9 which show some known but many recent results in the field of conservation laws of quasilinear hyperbolic and degenerate parabolic equations of great interest today. These two approaches to the theory keep their own styles: the mathematical approach with theorems and proofs, and the phenomenological approach with its deductive technique."
This clearly written and enlightening textbook provides a concise, introductory guide to the key mathematical concepts and techniques used by computer scientists. Topics and features: ideal for self-study, offering many pedagogical features such as chapter-opening key topics, chapter introductions and summaries, review questions, and a glossary; places our current state of knowledge within the context of the contributions made by early civilizations, such as the ancient Babylonians, Egyptians and Greeks; examines the building blocks of mathematics, including sets, relations and functions; presents an introduction to logic, formal methods and software engineering; explains the fundamentals of number theory, and its application in cryptography; describes the basics of coding theory, language theory, and graph theory; discusses the concept of computability and decideability; includes concise coverage of calculus, probability and statistics, matrices, complex numbers and quaternions.
The European Conferences on Numerical Mathematics and Advanced Applications (ENUMATH) are a series of conferences held every two years to provide a forum for discussion of new trends in numerical mathematics and challenging scientific and industrial applications at the highest level of international expertise. ENUMATH 2011 was hosted by the University of Leicester (UK) from the 5th to 9th September 2011. This proceedings volume contains more than 90 papers by speakers of the conference and gives an overview of recent developments in scientific computing, numerical analysis, and practical use of modern numerical techniques and algorithms in various applications. New results on finite element methods, multiscale methods, numerical linear algebra, and finite difference schemes are presented. A range of applications include computational problems from fluid dynamics, materials, image processing, and molecular dynamics.
This book presents the state of the art technology in Serious Games which is driven extensive by applications and research in simulation. The topics in this book include: (1) Fashion simulation; (2) Chinese calligraphy ink diffusion simulation; (3) Rehabilitation (4) Long vehicle turning simulation; (5) Marine traffic conflict control; (6) CNC simulation; (7) Special needs education. The book also addresses the fundamental issues in Simulation and Serious Games such as rapid collision detection, game engines or game development platforms. The target audience for this book includes scientists, engineers and practitioners involved in the field of Serious Games and Simulation. The major part of this book comprises of papers presented at the 2012 Asia-Europe Workshop on Serious Games and Simulation held in Nanyang Technological University, Singapore (May 9, 2012). All the contributions have been peer reviewed and by scientific committee members with report about quality, content and originality.
There are three rudiments to the art of modelling: intuition, a sound theoretical background and experience. Intuition is beyond the reach of any teaching. Experience may to some extent be substituted by studying existing models. Initially, the foundations for the theoretic background needed in modelling must be laid down. This book defines the wide application of the term. The basic concepts are imaging processes and the fine structure of mappings. The main emphasis is on the imaging of dynamic processes which are analysed and subdivided into their atomic constituents by means of systems analysis. The cyclic structure and the stages of models' set-up are explained. The evaluation of a model's quality is regarded as a stochastic process. The aspects of grade used in different fields of sciences are brought into perspective. Thus, a quantitative concept of validity on the basis of conditional degrees of rational belief can be developed.
Shape interrogation is the process of extraction of information from a geometric model. It is a fundamental component of Computer Aided Design and Manufacturing (CAD/CAM) systems. The authors focus on shape interrogation of geometric models bounded by free-form surfaces. Free-form surfaces, also called sculptured surfaces, are widely used in the bodies of ships, automobiles and aircraft, which have both functionality and attractive shape requirements. Many electronic devices as well as consumer products are designed with aesthetic shapes, which involve free-form surfaces. This book provides the mathematical fundamentals as well as algorithms for various shape interrogation methods including nonlinear polynomial solvers, intersection problems, differential geometry of intersection curves, distance functions, curve and surface interrogation, umbilics and lines of curvature, geodesics, and offset curves and surfaces. This book will be of interest both to graduate students and professionals.
These proceedings report on the conference "Math Everywhere," celebrating the 60th birthday of the mathematician Vincenzo Capasso. The conference promoted ideas Capasso has pursued and shared the open atmosphere he is known for. Topic sections include: Deterministic and Stochastic Systems. Mathematical Problems in Biology, Medicine and Ecology. Mathematical Problems in Industry and Economics. The broad spectrum of contributions to this volume demonstrates the truth of its title: Math is Everywhere, indeed.
This book encourages and demonstrates an innovative approach to the design and operation of urban wastewater systems: integrated modelling and control. Consideration of sewer system, wastewater treatment plant and receiving water body as a single system (rather than as three moderately independent units as before) opens up new types of analyses and new control algorithms for urban wastewater systems.After a comprehensive review of the literature of various fields including processes affecting water flow and quality in urban wastewater systems and their description by different types of models, this book also introduces some of the fundamental concepts of the operation of such systems. It discusses conventional as well as innovative control approaches - ranging from control by simple set-points to elaborate hierarchical control concepts taking into account the water flow and the quality of sewer systems, treatment plants and receiving water body. Thus it will enable the researcher as well as the practising engineer to analyse and to implement various types of control for a particular case study site. In order to illustrate the concepts developed, a detailed simulation study, covering the complete urban wastewater system, is presented. The conclusions drawn demonstrate that the application of innovative control concepts can lead to improved performance of wastewater systems.In addition, a comprehensive survey of mathematical optimisation methods is presented. This book can assist the practising engineer and the student to gain knowledge of all aspects of wastewater systems. To the researcher, this book provides a thorough survey of existing simulation and control concepts and inspiration for further work. |
You may like...
Vusi - Business & Life Lessons From a…
Vusi Thembekwayo
Paperback
(3)
System Center Configuration Manager…
Kerrie Meyler, Gerry Hampson, …
Paperback
(1)
Inside Coca Cola - A CEO's Life Story Of…
Neville Isdell, David Beasley
Paperback
|