![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > Mathematical modelling
Numerical methods and related computer based algorithms form the logical solution for many complex problems encountered in science and engineering. Although numerical techniques are now well established, they have continued to expand and diversify, particularly in the fields of engineering analysis and design. Various engineering departments in the University College of Swansea, in particular, Civil, Chemical, Electrical and Computer Science, have groups working in these areas. It is from this mutual interest that the NUMET A conference series was conceived with the main objective of providing a link between engineers developing new numerical techniques and those applying them in practice. Encouraged by the success of NUMETA '85, the second conference, NUMETA '87, was held at Swansea, 6-10 July 1987. Over two hundred and twenty abstracts were submitted for consideration together with a number of invited papers from experts in the field of numerical methods. The final selection of contributed and invited papers were of a high quality and have culminated in the two volumes which form these proceedings. This volume contains papers on the themes of 'Transient/Dynamic Analysis and Constitutive Laws for Engineering Materials'. Many new developments on a wide variety of topics have been reported and these proceedings contain a wealth of information and references which we believe will be of great interest to theoreticians and practising engineers alike.
This book on PDE Constrained Optimization contains contributions on the mathematical analysis and numerical solution of constrained optimal control and optimization problems where a partial differential equation (PDE) or a system of PDEs appears as an essential part of the constraints. The appropriate treatment of such problems requires a fundamental understanding of the subtle interplay between optimization in function spaces and numerical discretization techniques and relies on advanced methodologies from the theory of PDEs and numerical analysis as well as scientific computing. The contributions reflect the work of the European Science Foundation Networking Programme 'Optimization with PDEs' (OPTPDE).
This book addresses the issue of Machine Learning (ML) attacks on Integrated Circuits through Physical Unclonable Functions (PUFs). It provides the mathematical proofs of the vulnerability of various PUF families, including Arbiter, XOR Arbiter, ring-oscillator, and bistable ring PUFs, to ML attacks. To achieve this goal, it develops a generic framework for the assessment of these PUFs based on two main approaches. First, with regard to the inherent physical characteristics, it establishes fit-for-purpose mathematical representations of the PUFs mentioned above, which adequately reflect the physical behavior of these primitives. To this end, notions and formalizations that are already familiar to the ML theory world are reintroduced in order to give a better understanding of why, how, and to what extent ML attacks against PUFs can be feasible in practice. Second, the book explores polynomial time ML algorithms, which can learn the PUFs under the appropriate representation. More importantly, in contrast to previous ML approaches, the framework presented here ensures not only the accuracy of the model mimicking the behavior of the PUF, but also the delivery of such a model. Besides off-the-shelf ML algorithms, the book applies a set of algorithms hailing from the field of property testing, which can help to evaluate the security of PUFs. They serve as a "toolbox", from which PUF designers and manufacturers can choose the indicators most relevant for their requirements. Last but not least, on the basis of learning theory concepts, the book explicitly states that the PUF families cannot be considered as an ultimate solution to the problem of insecure ICs. As such, it provides essential insights into both academic research on and the design and manufacturing of PUFs.
The goal of this is book to give a detailed presentation of multicomponent flow models and to investigate the mathematical structure and properties of the resulting system of partial differential equations. These developments are also illustrated by simulating numerically a typical laminar flame. Our aim in the chapters is to treat the general situation of multicomponent flows, taking into account complex chemistry and detailed transport phe nomena. In this book, we have adopted an interdisciplinary approach that en compasses a physical, mathematical, and numerical point of view. In par ticular, the links between molecular models, macroscopic models, mathe matical structure, and mathematical properties are emphasized. We also often mention flame models since combustion is an excellent prototype of multicomponent flow. This book still does not pretend to be a complete survey of existing models and related mathematical results. In particular, many subjects like multi phase-flows, turbulence modeling, specific applications, porous me dia, biological models, or magneto-hydrodynamics are not covered. We rather emphasize the fundamental modeling of multicomponent gaseous flows and the qualitative properties of the resulting systems of partial dif ferential equations. Part of this book was taught at the post-graduate level at the Uni versity of Paris, the University of Versailles, and at Ecole Poly technique in 1998-1999 to students of applied mathematics."
This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts and methods. In the second edition of the book a discussion of extreme events ranging from their mathematical definition to their importance for financial crashes was included. The exposition of basic notions of probability theory and the Brownian motion problem as well as the relation between conservative diffusion processes and quantum mechanics is expanded. The second edition also enlarges the treatment of financial markets. Beyond a presentation of geometric Brownian motion and the Black-Scholes approach to option pricing as well as the econophysics analysis of the stylized facts of financial markets, an introduction to agent based modeling approaches is given.
Thermodynamic Optimization of Finite-Time Processes is the first book to provide a comprehensive treatment integrating finite-time thermodynamics and optimal control, and to give an overview of important breakthroughs in the field which have occurred during the last 20 years. A survey of the optimization technique, including the basics of optimal control theory, and the principal thermodynamic concepts and equations are presented in the first four chapters. The remaining chapters are devoted to the solutions of a variety of finite-time thermodynamic problems, and include coverage of their potential applications for the design of real technological processes, such as:
The goal of this textbook is to provide first-year engineering students with a firm grounding in the fundamentals of chemical and bioprocess engineering. However, instead of being a general overview of the two topics, Fundamentals of Chemical and Bioprocess Engineering will identify and focus on specific areas in which attaining a solid competency is desired. This strategy is the direct result of studies showing that broad-based courses at the freshman level often leave students grappling with a lot of material, which results in a low rate of retention. Specifically, strong emphasis will be placed on the topic of material balances, with the intent that students exiting a course based upon this textbook will be significantly higher on Bloom's Taxonomy (knowledge, comprehension, application, analysis and synthesis, evaluation, creation) relating to material balances. In addition, this book also provides students with a highly developed ability to analyze problems from the material balances perspective, which leaves them with important skills for the future. The textbook consists of numerous exercises and their solutions. Problems are classified by their level of difficulty. Each chapter has references and selected web pages to vividly illustrate each example. In addition, to engage students and increase their comprehension and rate of retention, many examples involve real-world situations.
This book presents the main tools for aggregation of information given by several members of a group or expressed in multiple criteria, and for fusion of data provided by several sources. It focuses on the case where the availability knowledge is imperfect, which means that uncertainty and/or imprecision must be taken into account. The book contains both theoretical and applied studies of aggregation and fusion methods in the main frameworks: probability theory, evidence theory, fuzzy set and possibility theory. The latter is more developed because it allows to manage both imprecise and uncertain knowledge. Applications to decision-making, image processing, control and classification are described.
Efficient and equitable policies for managing disaster risks and adapting to global environmental change are critically dependent on development of robust options supported by integrated modeling. The book is based on research and state-of-the art models developed at IIASA (International Institute for Applied Systems Analysis) and within its cooperation network. It addresses the methodological complexities of assessing disaster risks, which call for stochastic simulation, optimization methods and economic modeling. Furthermore, it describes policy frameworks for integrated disaster risk management, including stakeholder participation facilitated by user-interactive decision-support tools. Applications and results are presented for a number of case studies at different problem scales and in different socio-economic contexts, and their implications for loss sharing policies and economic development are discussed. Among others, the book presents studies for insurance policies for earthquakes in the Tuscany region in Italy and flood risk in the Tisza river basin in Hungary. Further, it investigates the economic impact of natural disasters on development and possible financial coping strategies; and applications are shown for selected South Asian countries. The book is addressed both to researchers and to organizations involvedwith catastrophe risk management and risk mitigation policies.
One service mathematics has rendered the 'Et moi, .... si favait su comment en revenir, je n'y seTais point alle.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded n- sense', The series is divergent; therefore we may be Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One scrvice logic has rendered com puter science .. .'; 'One service category theory has rendcred mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'e"tre of this scries."
Because of its versatility in analyzing a broad range of applications, multibody dynamics has grown in the past two decades to be an important tool for designing, prototyping, and simulating complex articulated mechanical systems. This textbooka "a result of the authora (TM)s many years of research and teachinga "brings together diverse concepts of dynamics, combining the efforts of many researchers in the field of mechanics. Bridging the gap between dynamics and engineering applications such as microrobotics, virtual reality simulation of interactive mechanical systems, nanomechanics, flexible biosystems, crash simulation, and biomechanics, the book puts into perspective the importance of modeling in the dynamic simulation and solution of problems in these fields. To help engineering students and practicing engineers understand the rigid-body dynamics concepts needed for the book, the author presents a compiled overview of particle dynamics and Newtona (TM)s second law of motion in the first chapter. A particular strength of the work is its use of matrices to generate kinematic coefficients associated with the formulation of the governing equations of motion. Additional features of the book include: * numerous worked examples at the end of each section * introduction of boundary-element methods (BEM) in the description of flexible systems * up-to-date solution techniques for rigid and flexible multibody dynamics using finite- element methods (FEM) * inclusion of MATLAB-based simulations and graphical solutions * in-depth presentation of constrained systems * presentation of the general form of equations of motion ready for computerimplementation * two unique chapters on stability and linearization of the equations of motion Junior/senior undergraduates and first-year graduate engineering students taking a course in dynamics, physics, control, robotics, or biomechanics will find this a useful book with a strong computer orientation towards the subject. The work may also be used as a self-study resource or research reference for practitioners in the above-mentioned fields.
In the quest to understand and model the healthy or sick human body, re searchers and medical doctors are utilizing more and more quantitative tools and techniques. This trend is pushing the envelope of a new field we call Biomedical Computing, as an exciting frontier among signal processing, pattern recognition, optimization, nonlinear dynamics, computer science and biology, chemistry and medicine. A conference on Biocomputing was held during February 25-27, 2001 at the University of Florida. The conference was sponsored by the Center for Applied Optimization, the Computational Neuroengineering Center, the Biomedical En gineering Program (through a Whitaker Foundation grant), the Brain Institute, the School of Engineering, and the University of Florida Research & Graduate Programs. The conference provided a forum for researchers to discuss and present new directions in Biocomputing. The well-attended three days event was highlighted by the presence of top researchers in the field who presented their work in Biocomputing. This volume contains a selective collection of ref ereed papers based on talks presented at this conference. You will find seminal contributions in genomics, global optimization, computational neuroscience, FMRI, brain dynamics, epileptic seizure prediction and cancer diagnostics. We would like to take the opportunity to thank the sponsors, the authors of the papers, the anonymous referees, and Kluwer Academic Publishers for making the conference successful and the publication of this volume possible. Panos M. Pardalos and Jose C."
This volume constitutes the Proceedings of the IUTAM Symposium on 'Scaling in Solid Mechanics', held in Cardiff from 25th to 29th June 2007. The Symposium was convened to address and place on record topical issues in theoretical, experimental and computational aspects of scaling approaches to solid mechanics and related fields. Scaling is a rapidly expanding area of research having multidisciplinaryapplications. The expertise represented in the Symposium was accordingly very wide, and many of the world's greatest authorities in their respective fields participated. Scaling methods apply wherever there is similarity across many scales or a need to bridge different scales, e.g. the nanoscale and macroscale. The emphasis in the Symposium was upon fundamental issues such as: mathematical foundations of scaling methods based on transformations and connections between multi-scale approaches and transformations. The Symposium remained focussed on fundamental research issues of practical significance. The topics considered included damage accumulation, growth of fatigue cracks, development of patterns of flaws in the earth's core and in ice, abrasiveness of rough surfaces, and so on. The Symposium showed that scaling methods cannot be reduced solely to dimensional analysis and fractal approaches. Modern scaling approaches consist of a great diversity of techniques. These proceedings contain lectures on state-of-the-art developments in self-similar solutions, fractal models, models involving interplay between different scales, size effects in fracture of solids and bundles of fibres, scaling in problems of fracture mechanics, nanomechanics, contact mechanics and testing of materials byindentation, scaling issues in mechanics of agglomeration of adhesive particles, and in biomimetic of adhesive contact.
The need for a comprehensive survey-type exposition on formal languages and related mainstream areas of computer science has been evident for some years. In the early 1970s, when the book Formal Languages by the second mentioned editor appeared, it was still quite feasible to write a comprehensive book with that title and include also topics of current research interest. This would not be possible anymore. A standard-sized book on formal languages would either have to stay on a fairly low level or else be specialized and restricted to some narrow sector of the field. The setup becomes drastically different in a collection of contributions, where the best authorities in the world join forces, each of them concentrat ing on their own areas of specialization. The present three-volume Handbook constitutes such a unique collection. In these three volumes we present the current state of the art in formallanguage theory. We were most satisfied with the enthusiastic response given to our request for contributions by specialists representing various subfields. The need for a Handbook of Formal Languages was in many answers expressed in different ways: as an easily accessible his torical reference, a general source of information, an overall course-aid, and a compact collection of material for self-study. We are convinced that the final result will satisfy such various needs."
This book offers a valuable methodological approach to the state-of-the-art of the classical plate/shell mathematical models, exemplifying the vast range of mathematical models of nonlinear dynamics and statics of continuous mechanical structural members. The main objective highlights the need for further study of the classical problem of shell dynamics consisting of mathematical modeling, derivation of nonlinear PDEs, and of finding their solutions based on the development of new and effective numerical techniques. The book is designed for a broad readership of graduate students in mechanical and civil engineering, applied mathematics, and physics, as well as to researchers and professionals interested in a rigorous and comprehensive study of modeling non-linear phenomena governed by PDEs.
This book covers several bases at once. It is useful as a textbook for a second course in experimental optimization techniques for industrial production processes. In addition, it is a superb reference volume for use by professors and graduate students in Industrial Engineering and Statistics departments. It will also be of huge interest to applied statisticians, process engineers, and quality engineers working in the electronics and biotech manufacturing industries. In all, it provides an in-depth presentation of the statistical issues that arise in optimization problems, including confidence regions on the optimal settings of a process, stopping rules in experimental optimization, and more.
This book presents versatile, modern and creative applications of graph theory in mechanical engineering, robotics and computer networks. Topics related to mechanical engineering include e.g. machine and mechanism science, mechatronics, robotics, gearing and transmissions, design theory and production processes. The graphs treated are simple graphs, weighted and mixed graphs, bond graphs, Petri nets, logical trees etc. The authors represent several countries in Europe and America, and their contributions show how different, elegant, useful and fruitful the utilization of graphs in modelling of engineering systems can be.
This introductory textbook is designed for a one-semester course on queueing theory that does not require a course on stochastic processes as a prerequisite. By integrating the necessary background on stochastic processes with the analysis of models, the work provides a sound foundational introduction to the modeling and analysis of queueing systems for a broad interdisciplinary audience of students in mathematics, statistics, and applied disciplines such as computer science, operations research, and engineering. This edition includes additional topics in methodology and applications. Key features: * An introductory chapter including a historical account of the growth of queueing theory in more than 100 years. * A modeling-based approach with emphasis on identification of models * Rigorous treatment of the foundations of basic models commonly used in applications with appropriate references for advanced topics. * A chapter on matrix-analytic method as an alternative to the traditional methods of analysis of queueing systems. * A comprehensive treatment of statistical inference for queueing systems. * Modeling exercises and review exercises when appropriate. The second edition of An Introduction of Queueing Theory may be used as a textbook by first-year graduate students in fields such as computer science, operations research, industrial and systems engineering, as well as related fields such as manufacturing and communications engineering. Upper-level undergraduate students in mathematics, statistics, and engineering may also use the book in an introductory course on queueing theory. With its rigorous coverage of basic material and extensive bibliography of the queueing literature, the work may also be useful to applied scientists and practitioners as a self-study reference for applications and further research. "...This book has brought a freshness and novelty as it deals mainly with modeling and analysis in applications as well as with statistical inference for queueing problems. With his 40 years of valuable experience in teaching and high level research in this subject area, Professor Bhat has been able to achieve what he aimed: to make [the work] somewhat different in content and approach from other books." - Assam Statistical Review of the first edition
Primary Audience for the Book * Specialists in numerical computations who are interested in algorithms with automatic result verification. * Engineers, scientists, and practitioners who desire results with automatic verification and who would therefore benefit from the experience of suc cessful applications. * Students in applied mathematics and computer science who want to learn these methods. Goal Of the Book This book contains surveys of applications of interval computations, i. e. , appli cations of numerical methods with automatic result verification, that were pre sented at an international workshop on the subject in EI Paso, Texas, February 23-25, 1995. The purpose of this book is to disseminate detailed and surveyed information about existing and potential applications of this new growing field. Brief Description of the Papers At the most fundamental level, interval arithmetic operations work with sets: The result of a single arithmetic operation is the set of all possible results as the operands range over the domain. For example, [0. 9,1. 1] + [2. 9,3. 1] = [3. 8,4. 2], where [3. 8,4. 2] = {x + ylx E [0. 9,1. 1] and y E [3. 8,4. 2]}. The power of interval arithmetic comes from the fact that (i) the elementary operations and standard functions can be computed for intervals with formulas and subroutines; and (ii) directed roundings can be used, so that the images of these operations (e. g.
This book analyses quantitative open source software (OSS) reliability assessment and its applications, focusing on three major topic areas: the Fundamentals of OSS Quality/Reliability Measurement and Assessment; the Practical Applications of OSS Reliability Modelling; and Recent Developments in OSS Reliability Modelling. Offering an ideal reference guide for graduate students and researchers in reliability for open source software (OSS) and modelling, the book introduces several methods of reliability assessment for OSS including component-oriented reliability analysis based on analytic hierarchy process (AHP), analytic network process (ANP), and non-homogeneous Poisson process (NHPP) models, the stochastic differential equation models and hazard rate models. These measurement and management technologies are essential to producing and maintaining quality/reliable systems using OSS.
This is the 9th volume in Avner Friedman's collection of Mathematics in Industrial problems. This book aims to foster interaction between industry and mathematics at the "grass roots" level of specific problems. The problems presented in this book arise from models developed by industrial scientists engaged in research and development of new or improved products. The topics explored in this volume include diffusion in porous media and in rubber/glass transition, coating flows, solvation of molecules, semiconductor processing, optoelectronics, photographic images, density-functional theory, sphere packing, performance evaluation, causal networks, electrical well logging, general positioning system, sensor management, pursuit-evasion algorithms, and nonlinear viscoelasticity. Open problems and references are incorporated into most of the chapters. The final chapter contains some solutions to problems raised in earlier volumes.
In this text, we introduce the basic concepts for the numerical modeling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.
The primary goal of this book is to present the research
findings and conclusions of physicists, economists, mathematicians
and financial engineers working in the field of "Econophysics" who
have undertaken agent-based modelling, comparison with empirical
studies and related investigations.
This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 18-20, 2010. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of optimization techniques in finance, logistics, health, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.
These proceedings contain research papers presented at the 5th International Conference on Dynamics in Logistics, held in Bremen, Germany, February 2016. The conference is concerned with dynamic aspects of logistic processes and networks. The spectrum of topics reaches from modeling, planning and control of processes over supply chain management and maritime logistics to innovative technologies and robotic applications for cyber-physical production and logistic systems. The growing dynamic confronts the area of logistics with completely new challenges: it must become possible to describe, identify and analyze the process changes. Moreover, logistic processes and networks must be redevised to be rapidly and flexibly adaptable to continuously changing conditions. The book primarily addresses researchers and practitioners from the field of industrial engineering and logistics, but it may also be beneficial for graduate students. |
You may like...
|