![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Academic & Education > Professional & Technical > Mathematics
This book is aimed at two kinds of readers: firstly, people working in or near mathematics, who are curious about continued fractions; and secondly, senior or graduate students who would like an extensive introduction to the analytic theory of continued fractions. The book contains several recent results and new angles of approach and thus should be of interest to researchers throughout the field. The first five chapters contain an introduction to the basic theory, while the last seven chapters present a variety of applications. Finally, an appendix presents a large number of special continued fraction expansions. This very readable book also contains many valuable examples and problems.
The collected works of Turing, including a substantial amount of unpublished material, will comprise four volumes: Mechanical Intelligence, Pure Mathematics, Morphogenesis and Mathematical Logic. Alan Mathison Turing (1912-1954) was a brilliant man who made major contributions in several areas of science. Today his name is mentioned frequently in philosophical discussions about the nature of Artificial Intelligence. Actually, he was a pioneer researcher in computer architecture and software engineering; his work in pure mathematics and mathematical logic extended considerably further and his last work, on morphogenesis in plants, is also acknowledged as being of the greatest originality and of permanent importance. He was one of the leading figures in Twentieth-century science, a fact which would have been known to the general public sooner but for the British Official Secrets Act, which prevented discussion of his wartime work. What is maybe surprising about these papers is that although they were written decades ago, they address major issues which concern researchers today.
The collected works of Turing, including a substantial amount of unpublished material, will comprise four volumes: Mechanical Intelligence, Pure Mathematics, Morphogenesis and Mathematical Logic. Alan Mathison Turing (1912-1954) was a brilliant man who made major contributions in several areas of science. Today his name is mentioned frequently in philosophical discussions about the nature of Artificial Intelligence. Actually, he was a pioneer researcher in computer architecture and software engineering; his work in pure mathematics and mathematical logic extended considerably further and his last work, on morphogenesis in plants, is also acknowledged as being of the greatest originality and of permanent importance. He was one of the leading figures in Twentieth-century science, a fact which would have been known to the general public sooner but for the British Official Secrets Act, which prevented discussion of his wartime work. What is maybe surprising about these papers is that although they were written decades ago, they address major issues which concern researchers today.
An Introduction to Wavelets is the first volume in a new series,
WAVELET ANALYSIS AND ITS APPLICATIONS. This is an introductory
treatise on wavelet analysis, with an emphasis on spline wavelets
and time-frequency analysis. Among the basic topics covered in this
book are time-frequency localization, integral wavelet transforms,
dyadic wavelets, frames, spline-wavelets, orthonormal wavelet
bases, and wavelet packets. In addition, the author presents a
unified treatment of nonorthogonal, semiorthogonal, and orthogonal
wavelets. This monograph is self-contained, the only prerequisite
being a basic knowledge of function theory and real analysis. It is
suitable as a textbook for a beginning course on wavelet analysis
and is directed toward both mathematicians and engineers who wish
to learn about the subject. Specialists may use this volume as a
valuable supplementary reading to the vast literature that has
already emerged in this field.
Threshold graphs have a beautiful structure and possess many important mathematical properties. They have applications in many areas including computer science and psychology. Over the last 20 years the interest in threshold graphs has increased significantly, and the subject continues to attract much attention. The book contains many open problems and research ideas which will appeal to graduate students and researchers interested in graph theory. But above all "Threshold Graphs and Related Topics" provides a valuable source of information for all those working in this field.
General concepts and methods that occur throughout mathematics and
now also in theoretical computer science are the subject of this
book. It is a thorough introduction to Categories, emphasizing the
geometric nature of the subject and explaining its connections to
mathematical logic. The book should appeal to the inquisitive
reader who has seen some basic topology and algebra and would like
to learn and explore further.
This is the first comprehensive treatment of the theoretical aspects of the discrete cosine transform (DCT), which is being recommended by various standards organizations, such as the CCITT, ISO etc., as the primary compression tool in digital image coding. The main purpose of the book is to provide a complete source for the user of this signal processing tool, where both the basics and the applications are detailed. An extensive bibliography covers both the theory and applications of the DCT. The novice will find the book useful in its self-contained treatment of the theory of the DCT, the detailed description of various algorithms supported by computer programs and the range of possible applications, including codecs used for teleconferencing, videophone, progressive image transmission, and broadcast TV. The more advanced user will appreciate the extensive references. Tables describing ASIC VLSI chips for implementing DCT, and motion estimation and details on image compression boards are also provided.
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
This book is a comprehensive survey of matrix perturbation theory, a topic of interest to numerical analysts, statisticians, physical scientists, and engineers. In particular, the authors cover perturbation theory of linear systems and least square problems, the eignevalue problem, and the generalized eignevalue problem as wellas a complete treatment of vector and matrix norms, including the theory of unitary invariant norms.
The three chapters of this book are entitled Basic Concepts, Tensor Norms, and Special Topics. The first may serve as part of an introductory course in Functional Analysis since it shows the powerful use of the projective and injective tensor norms, as well as the basics of the theory of operator ideals. The second chapter is the main part of the book: it presents the theory of tensor norms as designed by Grothendieck in the Resume and deals with the relation between tensor norms and operator ideals. The last chapter deals with special questions. Each section is accompanied by a series of exercises.
Progress in mathematics is based on a thorough understanding of the mathematical objects under consideration, and yet many textbooks and monographs proceed to discuss general statements and assume that the reader can and will provide the mathematical infrastructure of examples and counterexamples. This book makes a deliberate effort to correct this situation: it is a collection of examples. The following table of contents describes its breadth and reveals the underlying motivation--differential geometry--in its many facets: Riemannian, symplectic, K*adahler, hyperK*adahler, as well as complex and quaternionic.
A number of monographs of various aspects of complex analysis in
several variables have appeared since the first version of this
book was published, but none of them uses the analytic techniques
based on the solution of the Neumann Problem as the main tool.
This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."
The book, suitable as both an introductory reference and as a text book in the rapidly growing field of topological graph theory, models both maps (as in map-coloring problems) and groups by means of graph imbeddings on sufaces. Automorphism groups of both graphs and maps are studied. In addition connections are made to other areas of mathematics, such as hypergraphs, block designs, finite geometries, and finite fields. There are chapters on the emerging subfields of enumerative topological graph theory and random topological graph theory, as well as a chapter on the composition of English church-bell music. The latter is facilitated by imbedding the right graph of the right group on an appropriate surface, with suitable symmetries. Throughout the emphasis is on Cayley maps: imbeddings of Cayley graphs for finite groups as (possibly branched) covering projections of surface imbeddings of loop graphs with one vertex. This is not as restrictive as it might sound; many developments in topological graph theory involve such imbeddings.
These two volumes cover the principal approaches to constructivism in mathematics. They present a thorough, up-to-date introduction to the metamathematics of constructive mathematics, paying special attention to Intuitionism, Markov's constructivism and Martin-Lof's type theory with its operational semantics. A detailed exposition of the basic features of constructive mathematics, with illustrations from analysis, algebra and topology, is provided, with due attention to the metamathematical aspects. Volume 1 is a self-contained introduction to the practice and foundations of constructivism, and does not require specialized knowledge beyond basic mathematical logic. Volume 2 contains mainly advanced topics of a proof-theoretical and semantical nature.
This is an all-encompassing and exhaustive exposition of the theory of infinite-dimensional Unitary Representations of Locally Compact Groups and its generalization to representations of Banach algebras. The presentation is detailed, accessible, and self-contained (except for some elementary knowledge in algebra, topology, and abstract measure theory). In the later chapters the reader is brought to the frontiers of present-day knowledge in the area of Mackey normal subgroup analysisand its generalization to the context of Banach *-Algebraic Bundles.
This is an all-encompassing and exhaustive exposition of the theory of infinite-dimensional Unitary Representations of Locally Compact Groups and its generalization to representations of Banach algebras. The presentation is detailed, accessible, and self-contained (except for some elementary knowledge in algebra, topology, and abstract measure theory). In the later chapters the reader is brought to the frontiers of present-day knowledge in the area of Mackey normal subgroup analysisand its generalization to the context of Banach *-Algebraic Bundles.
This book is the first attempt to develop systematically a general
theory of the initial-boundary value problems for nonlinear
evolution equations with pseudodifferential operators Ku on a
half-line or on a segment. We study traditionally important
problems, such as local and global existence of solutions and their
properties, in particular much attention is drawn to the asymptotic
behavior of solutions for large time. Up to now the theory of
nonlinear initial-boundary value problems with a general
pseudodifferential operator has not been well developed due to its
difficulty. There are many open natural questions. Firstly how many
boundary data should we pose on the initial-boundary value problems
for its correct solvability? As far as we know there are few
results in the case of nonlinear nonlocal equations. The methods
developed in this book are applicable to a wide class of dispersive
and dissipative nonlinear equations, both local and nonlocal.
In accordance with the developments in computation, theoretical
studies on numerical schemes are now fruitful and highly needed. In
1991 an article on the finite element method applied to
evolutionary problems was published. Following the method,
basically this book studies various schemes from operator
theoretical points of view. Many parts are devoted to the finite
element method, but other schemes and problems (charge simulation
method, domain decomposition method, nonlinear problems, and so
forth) are also discussed, motivated by the observation that
practically useful schemes have fine mathematical structures and
the converses are also true. This book has the following chapters:
1. Boundary Value Problems and FEM. 2. Semigroup Theory and FEM. 3.
Evolution Equations and FEM. 4. Other Methods in Time
Discretization. 5. Other Methods in Space Discretization. 6.
Nonlinear Problems. 7. Domain Decomposition Method.
The book is designed for researchers, students and practitioners
interested in using fast and efficient iterative methods to
approximate solutions of nonlinear equations. The following four
major problems are addressed. Problem 1: Show that the iterates are
well defined. Problem 2: concerns the convergence of the sequences
generated by a process and the question of whether the limit points
are, in fact solutions of the equation. Problem 3: concerns the
economy of the entire operations. Problem 4: concerns with how to
best choose a method, algorithm or software program to solve a
specific type of problem and its description of when a given
algorithm succeeds or fails. The book contains applications in
several areas of applied sciences including mathematical
programming and mathematical economics. There is also a huge number
of exercises complementing the theory.
The book is an almost self-contained presentation of the most
important concepts and results in viability and invariance. The
viability of a set K with respect to a given function (or
multi-function) F, defined on it, describes the property that, for
each initial data in K, the differential equation (or inclusion)
driven by that function or multi-function) to have at least one
solution. The invariance of a set K with respect to a function (or
multi-function) F, defined on a larger set D, is that property
which says that each solution of the differential equation (or
inclusion) driven by F and issuing in K remains in K, at least for
a short time.
The ideas of Fourier have made their way into every branch of mathematics and mathematical physics, from the theory of numbers to quantum mechanics. Fourier Series and Integrals focuses on the extraordinary power and flexibility of Fourier's basic series and integrals and on the astonishing variety of applications in which it is the chief tool. It presents a mathematical account of Fourier ideas on the circle and the line, on finite commutative groups, and on a few important noncommutative groups. A wide variety of exercises are placed in nearly every section as an integral part of the text.
The basic goals of the book are: (i) to introduce the subject to those interested in discovering it, (ii) to coherently present a number of basic techniques and results, currently used in the subject, to those working in it, and (iii) to present some of the results that are attractive in their own right, and which lend themselves to a presentation not overburdened with technical machinery.
This is the revised and augmented edition of a now classic book
which is an introduction to sub-Markovian kernels on general
measurable spaces and their associated homogeneous Markov chains.
The first part, an expository text on the foundations of the
subject, is intended for post-graduate students. A study of
potential theory, the basic classification of chains according to
their asymptotic behaviour and the celebrated Chacon-Ornstein
theorem are examined in detail.
This book describes a program of research in computable structure
theory. The goal is to find definability conditions corresponding
to bounds on complexity which persist under isomorphism. The
results apply to familiar kinds of structures (groups, fields,
vector spaces, linear orderings Boolean algebras, Abelian p-groups,
models of arithmetic). There are many interesting results already,
but there are also many natural questions still to be answered. The
book is self-contained in that it includes necessary background
material from recursion theory (ordinal notations, the
hyperarithmetical hierarchy) and model theory (infinitary formulas,
consistency properties). |
You may like...
Essential Java for Scientists and…
Brian Hahn, Katherine Malan
Paperback
R1,266
Discovery Miles 12 660
Fundamentals of Structural Stability
George Simitses, Dewey H. Hodges
Hardcover
R2,143
Discovery Miles 21 430
Infinite Words, Volume 141 - Automata…
Dominique Perrin, Jean-Eric Pin
Hardcover
R4,065
Discovery Miles 40 650
|