![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Academic & Education > Professional & Technical > Mathematics
Topology, for many years, has been one of the most exciting and
influential fields of research in modern mathematics. Although its
origins may be traced back several hundred years, it was Poincare
who "gave topology wings" in a classic series of articles published
around the turn of the century. While the earlier history,
sometimes called the prehistory, is also considered, this volume is
mainly concerned with the more recent history of topology, from
Poincare onwards.
In this revolutionary work, the author sets the stage for the
science of In the field of
Handbook of Convex Geometry, Volume B offers a survey of convex geometry and its many ramifications and connections with other fields of mathematics, including convexity, lattices, crystallography, and convex functions. The selection first offers information on the geometry of numbers, lattice points, and packing and covering with convex sets. Discussions focus on packing in non-Euclidean spaces, problems in the Euclidean plane, general convex bodies, computational complexity of lattice point problem, centrally symmetric convex bodies, reduction theory, and lattices and the space of lattices. The text then examines finite packing and covering and tilings, including plane tilings, monohedral tilings, bin packing, and sausage problems. The manuscript takes a look at valuations and dissections, geometric crystallography, convexity and differential geometry, and convex functions. Topics include differentiability, inequalities, uniqueness theorems for convex hypersurfaces, mixed discriminants and mixed volumes, differential geometric characterization of convexity, reduction of quadratic forms, and finite groups of symmetry operations. The selection is a dependable source of data for mathematicians and researchers interested in convex geometry.
Handbook of Convex Geometry, Volume A offers a survey of convex geometry and its many ramifications and relations with other areas of mathematics, including convexity, geometric inequalities, and convex sets. The selection first offers information on the history of convexity, characterizations of convex sets, and mixed volumes. Topics include elementary convexity, equality in the Aleksandrov-Fenchel inequality, mixed surface area measures, characteristic properties of convex sets in analysis and differential geometry, and extensions of the notion of a convex set. The text then reviews the standard isoperimetric theorem and stability of geometric inequalities. The manuscript takes a look at selected affine isoperimetric inequalities, extremum problems for convex discs and polyhedra, and rigidity. Discussions focus on include infinitesimal and static rigidity related to surfaces, isoperimetric problem for convex polyhedral, bounds for the volume of a convex polyhedron, curvature image inequality, Busemann intersection inequality and its relatives, and Petty projection inequality. The book then tackles geometric algorithms, convexity and discrete optimization, mathematical programming and convex geometry, and the combinatorial aspects of convex polytopes. The selection is a valuable source of data for mathematicians and researchers interested in convex geometry.
The book presents surveys describing recent developments in most of
the primary subfields of
The aim of this Handbook is to acquaint the reader with the current
status of the theory of evolutionary partial differential
equations, and with some of its applications. Evolutionary partial
differential equations made their first appearance in the 18th
century, in the endeavor to understand the motion of fluids and
other continuous media. The active research effort over the span of
two centuries, combined with the wide variety of physical phenomena
that had to be explained, has resulted in an enormous body of
literature. Any attempt to produce a comprehensive survey would be
futile. The aim here is to collect review articles, written by
leading experts, which will highlight the present and expected
future directions of development of the field. The emphasis will be
on nonlinear equations, which pose the most challenging problems
today.
Recent decades have seen a very rapid success in developing
numerical methods based on explicit control over approximation
errors. It may be said that nowadays a new direction is forming in
numerical analysis, the main goal of which is to develop methods
ofreliable computations. In general, a reliable numerical method
must solve two basic problems: (a) generate a sequence of
approximations that converges to a solution and (b) verify the
accuracy of these approximations. A computer code for such a method
must consist of two respective blocks: solver and checker.
In 1974 the editors of the present volume published a well-received
book entitled Latin Squares and their Applications''. It included a
list of 73 unsolved problems of which about 20 have been completely
solved in the intervening period and about 10 more have been
partially solved.
This volume is a thorough introduction to contemporary research in
elasticity, and may be used as a working textbook at the graduate
level for courses in pure or applied mathematics or in continuum
mechanics. It provides a thorough description (with emphasis on the
nonlinear aspects) of the two competing mathematical models of
three-dimensional elasticity, together with a mathematical analysis
of these models. The book is as self-contained as possible.
The collected works of Turing, including a substantial amount of unpublished material, will comprise four volumes: Mechanical Intelligence, Pure Mathematics, Morphogenesis and Mathematical Logic. Alan Mathison Turing (1912-1954) was a brilliant man who made major contributions in several areas of science. Today his name is mentioned frequently in philosophical discussions about the nature of Artificial Intelligence. Actually, he was a pioneer researcher in computer architecture and software engineering; his work in pure mathematics and mathematical logic extended considerably further and his last work, on morphogenesis in plants, is also acknowledged as being of the greatest originality and of permanent importance. He was one of the leading figures in Twentieth-century science, a fact which would have been known to the general public sooner but for the British Official Secrets Act, which prevented discussion of his wartime work. What is maybe surprising about these papers is that although they were written decades ago, they address major issues which concern researchers today.
This book is aimed at two kinds of readers: firstly, people working in or near mathematics, who are curious about continued fractions; and secondly, senior or graduate students who would like an extensive introduction to the analytic theory of continued fractions. The book contains several recent results and new angles of approach and thus should be of interest to researchers throughout the field. The first five chapters contain an introduction to the basic theory, while the last seven chapters present a variety of applications. Finally, an appendix presents a large number of special continued fraction expansions. This very readable book also contains many valuable examples and problems.
An Introduction to Wavelets is the first volume in a new series,
WAVELET ANALYSIS AND ITS APPLICATIONS. This is an introductory
treatise on wavelet analysis, with an emphasis on spline wavelets
and time-frequency analysis. Among the basic topics covered in this
book are time-frequency localization, integral wavelet transforms,
dyadic wavelets, frames, spline-wavelets, orthonormal wavelet
bases, and wavelet packets. In addition, the author presents a
unified treatment of nonorthogonal, semiorthogonal, and orthogonal
wavelets. This monograph is self-contained, the only prerequisite
being a basic knowledge of function theory and real analysis. It is
suitable as a textbook for a beginning course on wavelet analysis
and is directed toward both mathematicians and engineers who wish
to learn about the subject. Specialists may use this volume as a
valuable supplementary reading to the vast literature that has
already emerged in this field.
The collected works of Turing, including a substantial amount of unpublished material, will comprise four volumes: Mechanical Intelligence, Pure Mathematics, Morphogenesis and Mathematical Logic. Alan Mathison Turing (1912-1954) was a brilliant man who made major contributions in several areas of science. Today his name is mentioned frequently in philosophical discussions about the nature of Artificial Intelligence. Actually, he was a pioneer researcher in computer architecture and software engineering; his work in pure mathematics and mathematical logic extended considerably further and his last work, on morphogenesis in plants, is also acknowledged as being of the greatest originality and of permanent importance. He was one of the leading figures in Twentieth-century science, a fact which would have been known to the general public sooner but for the British Official Secrets Act, which prevented discussion of his wartime work. What is maybe surprising about these papers is that although they were written decades ago, they address major issues which concern researchers today.
Geometric Function Theory is that part of Complex Analysis which
covers the theory of conformal and quasiconformal mappings.
The collected works of Turing, including a substantial amount of unpublished material, will comprise four volumes: Mechanical Intelligence, Pure Mathematics, Morphogenesis and Mathematical Logic. Alan Mathison Turing (1912-1954) was a brilliant man who made major contributions in several areas of science. Today his name is mentioned frequently in philosophical discussions about the nature of Artificial Intelligence. Actually, he was a pioneer researcher in computer architecture and software engineering; his work in pure mathematics and mathematical logic extended considerably further and his last work, on morphogenesis in plants, is also acknowledged as being of the greatest originality and of permanent importance. He was one of the leading figures in Twentieth-century science, a fact which would have been known to the general public sooner but for the British Official Secrets Act, which prevented discussion of his wartime work. What is maybe surprising about these papers is that although they were written decades ago, they address major issues which concern researchers today.
Threshold graphs have a beautiful structure and possess many important mathematical properties. They have applications in many areas including computer science and psychology. Over the last 20 years the interest in threshold graphs has increased significantly, and the subject continues to attract much attention. The book contains many open problems and research ideas which will appeal to graduate students and researchers interested in graph theory. But above all "Threshold Graphs and Related Topics" provides a valuable source of information for all those working in this field.
General concepts and methods that occur throughout mathematics and
now also in theoretical computer science are the subject of this
book. It is a thorough introduction to Categories, emphasizing the
geometric nature of the subject and explaining its connections to
mathematical logic. The book should appeal to the inquisitive
reader who has seen some basic topology and algebra and would like
to learn and explore further.
This is the first comprehensive treatment of the theoretical aspects of the discrete cosine transform (DCT), which is being recommended by various standards organizations, such as the CCITT, ISO etc., as the primary compression tool in digital image coding. The main purpose of the book is to provide a complete source for the user of this signal processing tool, where both the basics and the applications are detailed. An extensive bibliography covers both the theory and applications of the DCT. The novice will find the book useful in its self-contained treatment of the theory of the DCT, the detailed description of various algorithms supported by computer programs and the range of possible applications, including codecs used for teleconferencing, videophone, progressive image transmission, and broadcast TV. The more advanced user will appreciate the extensive references. Tables describing ASIC VLSI chips for implementing DCT, and motion estimation and details on image compression boards are also provided.
The three chapters of this book are entitled Basic Concepts, Tensor Norms, and Special Topics. The first may serve as part of an introductory course in Functional Analysis since it shows the powerful use of the projective and injective tensor norms, as well as the basics of the theory of operator ideals. The second chapter is the main part of the book: it presents the theory of tensor norms as designed by Grothendieck in the Resume and deals with the relation between tensor norms and operator ideals. The last chapter deals with special questions. Each section is accompanied by a series of exercises.
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
Progress in mathematics is based on a thorough understanding of the mathematical objects under consideration, and yet many textbooks and monographs proceed to discuss general statements and assume that the reader can and will provide the mathematical infrastructure of examples and counterexamples. This book makes a deliberate effort to correct this situation: it is a collection of examples. The following table of contents describes its breadth and reveals the underlying motivation--differential geometry--in its many facets: Riemannian, symplectic, K*adahler, hyperK*adahler, as well as complex and quaternionic.
This first part presents chapters on models of computation,
complexity theory, data structures, and efficient computation in
many recognized sub-disciplines of Theoretical Computer Science.
This book is a comprehensive survey of matrix perturbation theory, a topic of interest to numerical analysts, statisticians, physical scientists, and engineers. In particular, the authors cover perturbation theory of linear systems and least square problems, the eignevalue problem, and the generalized eignevalue problem as wellas a complete treatment of vector and matrix norms, including the theory of unitary invariant norms.
A number of monographs of various aspects of complex analysis in
several variables have appeared since the first version of this
book was published, but none of them uses the analytic techniques
based on the solution of the Neumann Problem as the main tool.
This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine." |
You may like...
Essential Java for Scientists and…
Brian Hahn, Katherine Malan
Paperback
R1,266
Discovery Miles 12 660
Quantification in Nonclassical Logic…
Dov M. Gabbay, Dimitrij Skvortsov, …
Hardcover
R4,420
Discovery Miles 44 200
Infinite Words, Volume 141 - Automata…
Dominique Perrin, Jean-Eric Pin
Hardcover
R4,065
Discovery Miles 40 650
|