![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Academic & Education > Professional & Technical > Mathematics
The theory of tree languages, founded in the late Sixties and still active in the Seventies, was much less active during the Eighties. Now there is a simultaneous revival in several countries, with a number of significant results proved in the past five years. A large proportion of them appear in the present volume. The editors of this volume suggested that the authors should write comprehensive half-survey papers. This collection is therefore useful for everyone interested in the theory of tree languages as it covers most of the recent questions which are not treated in the very few rather old standard books on the subject. Trees appear naturally in many chapters of computer science and each new property is likely to result in improvement of some computational solution of a real problem in handling logical formulae, data structures, programming languages on systems, algorithms etc. The point of view adopted here is to put emphasis on the properties themselves and their rigorous mathematical exposition rather than on the many possible applications. This volume is a useful source of concepts and methods which may be applied successfully in many situations: its philosophy is very close to the whole philosophy of the ESPRIT Basic Research Actions and to that of the European Association for Theoretical Computer Science.
This book presents what in our opinion constitutes the basis of the
theory of the mu-calculus, considered as an algebraic system rather
than a logic. We have wished to present the subject in a unified
way, and in a form as general as possible. Therefore, our emphasis
is on the generality of the fixed-point notation, and on the
connections between mu-calculus, games, and automata, which we also
explain in an algebraic way.
This Proceedings Volume contains 32 articles on various interesting
areas of
Numerical analysis has witnessed many significant developments in
the 20th century. This book brings together 16 papers dealing with
historical developments, survey papers and papers on recent trends
in selected areas of numerical analysis, such as: approximation and
interpolation, solution of linear systems and eigenvalue problems,
iterative methods, quadrature rules, solution of ordinary-,
partial- and integral equations. The papers are reprinted from the
7-volume project of the "Journal of Computational and Applied
Mathematics" on '/homepage/sac/cam/na2000/index.htmlNumerical
Analysis 2000'. An introductory survey paper deals with the history
of the first courses on numerical analysis in several countries and
with the landmarks in the development of important algorithms and
concepts in the field.
The book is devoted to the perturbation analysis of matrix equations. The importance of perturbation analysis is that it gives a way to estimate the influence of measurement and/or parametric errors in mathematical models together with the rounding errors done in the computational process. The perturbation bounds may further be incorporated in accuracy estimates for the solution computed in finite arithmetic. This is necessary for the development of reliable computational methods, algorithms and software from the viewpoint of modern numerical analysis.
The aim of the present work is two-fold. Firstly it aims at a
giving an account of many existing algorithms for calculating with
finite-dimensional Lie algebras. Secondly, the book provides an
introduction into the theory of finite-dimensional Lie algebras.
These two subject areas are intimately related. First of all, the
algorithmic perspective often invites a different approach to the
theoretical material than the one taken in various other monographs
(e.g., 42], 48], 77], 86]). Indeed, on various occasions the
knowledge of certain algorithms allows us to obtain a
straightforward proof of theoretical results (we mention the proof
of the Poincare-Birkhoff-Witt theorem and the proof of Iwasawa's
theorem as examples). Also proofs that contain algorithmic
constructions are explicitly formulated as algorithms (an example
is the isomorphism theorem for semisimple Lie algebras that
constructs an isomorphism in case it exists). Secondly, the
algorithms can be used to arrive at a better understanding of the
theory. Performing the algorithms in concrete examples, calculating
with the concepts involved, really brings the theory of life.
The modern theory of algebras of binary relations, reformulated by
Tarski as an abstract, algebraic, equational theory of relation
algebras, has considerable mathematical significance, with
applications in various fields: e.g., in computer
science---databases, specification theory, AI---and in
anthropology, economics, physics, and philosophical logic.
This volume gives a state of the art of triangular norms which can
be used for the generalization of several mathematical concepts,
such as conjunction, metric, measure, etc. 16 chapters written by
leading experts provide a state of the art overview of theory and
applications of triangular norms and related operators in fuzzy
logic, measure theory, probability theory, and probabilistic metric
spaces.
Many problems for partial difference and integro-difference
equations can be written as difference equations in a normed space.
This book is devoted to linear and nonlinear difference equations
in a normed space. Our aim in this monograph is to initiate
systematic investigations of the global behavior of solutions of
difference equations in a normed space. Our primary concern is to
study the asymptotic stability of the equilibrium solution. We are
also interested in the existence of periodic and positive
solutions. There are many books dealing with the theory of ordinary
difference equations. However there are no books dealing
systematically with difference equations in a normed space. It is
our hope that this book will stimulate interest among
mathematicians to develop the stability theory of abstract
difference equations.
This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.
The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points.
The problems of constructing covering codes and of estimating their parameters are the main concern of this book. It provides a unified account of the most recent theory of covering codes and shows how a number of mathematical and engineering issues are related to covering problems. Scientists involved in discrete mathematics, combinatorics, computer science, information theory, geometry, algebra or number theory will find the book of particular significance. It is designed both as an introductory textbook for the beginner and as a reference book for the expert mathematician and engineer. A number of unsolved problems suitable for research projects are also discussed.
This volume is a collection of surveys of research problems in
topology and its applications. The topics covered include general
topology, set-theoretic topology, continuum theory, topological
algebra, dynamical systems, computational topology and functional
analysis.
This series of volumes covers all the major aspects of numerical analysis, serving as the basic reference work on the subject. Each volume concentrates on one to three particular topics. Each article, written by an expert, is an in-depth survey, reflecting up-to-date trends in the field, and is essentially self-contained. The handbook will cover the basic methods of numerical analysis, under the following general headings: solution of equations in Rn; finite difference methods; finite element methods; techniques of scientific computing; optimization theory; and systems science. It will also cover the numerical solution of actual problems of contemporary interest in applied mathematics, under the following headings: numerical methods for fluids; numerical methods for solids; and specific applications - including meteorology, seismology, petroleum mechanics and celestial mechanics.
This encyclopedia contains more than 5000 integer sequences, over
half of which have never before been catalogued. Because the
sequences are presented in the most natural form, and arranged for
easy reference, this book is easier to use than the authors earlier
classic "A Handbook of Integer Sequences. The Encyclopedia gives
the name, mathematical description, and citations to literature for
each sequence. Following sequences of particular interest, thereare
essays on their origins, uses, and connections to related sequences
(all cross-referenced). A valuable new feature to this text is the
inclusion of a number of interesting diagrams and illustrations
related to selected sequences.
This English translation of the author's original work has been thoroughly revised, expanded and updated. The book covers logical systems known as "type-free" or "self-referential." These traditionally arise from any discussion on logical and semantical paradoxes. This particular volume, however, is not concerned with paradoxes but with the investigation of type-free sytems to show that: (i) there are rich theories of self-application, involving both operations and truth which can serve as foundations for property theory and formal semantics; (ii) these theories provide a new outlook on classical topics, such as inductive definitions and predicative mathematics; (iii) they are particularly promising with regard to applications. Research arising from paradoxes has moved progressively closer to the mainstream of mathematical logic and has become much more prominent in the last twenty years. A number of significant developments, techniques and results have been discovered. Academics, students and researchers will find that the book contains a thorough overview of all relevant research in this field.
The new edition of "Mathematical Modeling," the survey text of choice for mathematical modeling courses, adds ample instructor support and online delivery for solutions manuals and software ancillaries. From genetic engineering to hurricane prediction, mathematical
models guide much of the decision making in our society. If the
assumptions and methods underlying the modeling are flawed, the
outcome can be disastrously poor. With mathematical modeling
growing rapidly in so many scientific and technical disciplines,
"Mathematical Modeling, Fourth Edition" provides a rigorous
treatment of the subject. The book explores a range of approaches
including optimization models, dynamic models and probability
models.
Presented in this monograph is the current state-of-the-art in the theory of convex structures. The notion of convexity covered here is considerably broader than the classic one; specifically, it is not restricted to the context of vector spaces. Classical concepts of order-convex sets (Birkhoff) and of geodesically convex sets (Menger) are directly inspired by intuition; they go back to the first half of this century. An axiomatic approach started to develop in the early Fifties. The author became attracted to it in the mid-Seventies, resulting in the present volume, in which graphs appear side-by-side with Banach spaces, classical geometry with matroids, and ordered sets with metric spaces. A wide variety of results has been included (ranging for instance from the area of partition calculus to that of continuous selection). The tools involved are borrowed from areas ranging from discrete mathematics to infinite-dimensional topology. Although addressed primarily to the researcher, parts of this monograph can be used as a basis for a well-balanced, one-semester graduate course.
Hirsch, Devaney, and Smale s classic "Differential Equations,
Dynamical Systems, and an Introduction to Chaos" has been used by
professors as the primary text for undergraduate and graduate level
courses covering differential equations. It provides a theoretical
approach to dynamical systems and chaos written for a diverse
student population among the fields of mathematics, science, and
engineering. Prominent experts provide everything students need to
know about dynamical systems as students seek to develop sufficient
mathematical skills to analyze the types of differential equations
that arise in their area of study. The authors provide rigorous
exercises and examples clearly and easily by slowly introducing
linear systems of differential equations. Calculus is required as
specialized advanced topics not usually found in elementary
differential equations courses are included, such as exploring the
world of discrete dynamical systems and describing chaotic
systems.
The aim of this book is to present the fundamental theoretical results concerning inference rules in deductive formal systems. Primary attention is focused on: - admissible or permissible inference rules - the derivability of the admissible inference rules - the structural completeness of logics - the bases for admissible and valid inference rules. There is particular emphasis on propositional non-standard logics (primary, superintuitionistic and modal logics) but general logical consequence relations and classical first-order theories are also considered. The book is basically self-contained and special attention has been made to present the material in a convenient manner for the reader. Proofs of results, many of which are not readily available elsewhere, are also included. The book is written at a level appropriate for first-year graduate students in mathematics or computer science. Although some knowledge of elementary logic and universal algebra are necessary, the first chapter includes all the results from universal algebra and logic that the reader needs. For graduate students in mathematics and computer science the book is an excellent textbook.
Complex Numbers lie at the heart of most technical and scientific subjects. This book can be used to teach complex numbers as a course text,a revision or remedial guide, or as a self-teaching work. The author has designed the book to be a flexible learning tool, suitable for A-Level students as well as other students in higher and further education whose courses include a substantial maths component (e.g. BTEC or GNVQ science and engineering courses). Verity Carr has accumulated nearly thirty years of experience teaching mathematics at all levels and has a rare gift for making mathematics simple and enjoyable. At Brooklands College, she has taken a leading role in the development of a highly successful Mathematics Workshop. This series of Made Simple Maths books widens her audience but continues to provide the kind of straightforward and logical approach she has developed over her years of teaching.
The material collected in this volume discusses the present as well
as expected future directions of development of the field with
particular emphasis on applications. The seven survey articles
present different topics in Evolutionary PDE s, written by leading
experts.
This book contains the written versions of lectures delivered since
1997 in the well-known weekly seminar on Applied Mathematics at the
College de France in Paris, directed by Jacques-Louis Lions. It is
the 14th and last of the series, due to the recent and untimely
death of Professor Lions. "18.07"
The main purpose of this volume is to provide a new perception of multivariate environmental statistics using some examples that are of concern and interest today. The papers are presented by outstanding research workers. They discuss the current state of the art in different areas of multivariate environmental statistics and provide new problems for future research and instruction. A perspective is to cover a broad spectrum of methods and issues involving multivariate observations and processes, and not just classical multivariate analysis. The book will be valuable to current statistical theory and practice in this area, and will be used by researchers, teachers, and students alike. |
You may like...
|