Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Academic & Education > Professional & Technical > Mathematics
"Difference Equations, Second Edition," presents a practical introduction to this important field of solutions for engineering and the physical sciences. Topic coverage includes numerical analysis, numerical methods, differential equations, combinatorics and discrete modeling. A hallmark of this revision is the diverse application to many subfields of mathematics. * Phase plane analysis for systems of two linear equations
This revised edition presents the relevant aspects of
transformational geometry, matrix algebra, and calculus to those
who may be lacking the necessary mathematical foundations of
applied multivariate analysis. It brings up-to-date many
definitions of mathematical concepts and their operations. It also
clearly defines the relevance of the exercises to concerns within
the business community and the social and behavioral sciences.
Readers gain a technical background for tackling
applications-oriented multivariate texts and receive a geometric
perspective for understanding multivariate methods."Mathematical
Tools for Applied Multivariate Analysis, Revised Edition
illustrates major concepts in matrix algebra, linear structures,
and eigenstructures geometrically, numerically, and algebraically.
The authors emphasize the applications of these techniques by
discussing potential solutions to problems outlined early in the
book. They also present small numerical examples of the various
concepts.
The collected works of Turing, including a substantial amount of unpublished material, will comprise four volumes: Mechanical Intelligence, Pure Mathematics, Morphogenesis and Mathematical Logic. Alan Mathison Turing (1912-1954) was a brilliant man who made major contributions in several areas of science. Today his name is mentioned frequently in philosophical discussions about the nature of Artificial Intelligence. Actually, he was a pioneer researcher in computer architecture and software engineering; his work in pure mathematics and mathematical logic extended considerably further and his last work, on morphogenesis in plants, is also acknowledged as being of the greatest originality and of permanent importance. He was one of the leading figures in Twentieth-century science, a fact which would have been known to the general public sooner but for the British Official Secrets Act, which prevented discussion of his wartime work. What is maybe surprising about these papers is that although they were written decades ago, they address major issues which concern researchers today.
This book is aimed at two kinds of readers: firstly, people working in or near mathematics, who are curious about continued fractions; and secondly, senior or graduate students who would like an extensive introduction to the analytic theory of continued fractions. The book contains several recent results and new angles of approach and thus should be of interest to researchers throughout the field. The first five chapters contain an introduction to the basic theory, while the last seven chapters present a variety of applications. Finally, an appendix presents a large number of special continued fraction expansions. This very readable book also contains many valuable examples and problems.
An Introduction to Wavelets is the first volume in a new series,
WAVELET ANALYSIS AND ITS APPLICATIONS. This is an introductory
treatise on wavelet analysis, with an emphasis on spline wavelets
and time-frequency analysis. Among the basic topics covered in this
book are time-frequency localization, integral wavelet transforms,
dyadic wavelets, frames, spline-wavelets, orthonormal wavelet
bases, and wavelet packets. In addition, the author presents a
unified treatment of nonorthogonal, semiorthogonal, and orthogonal
wavelets. This monograph is self-contained, the only prerequisite
being a basic knowledge of function theory and real analysis. It is
suitable as a textbook for a beginning course on wavelet analysis
and is directed toward both mathematicians and engineers who wish
to learn about the subject. Specialists may use this volume as a
valuable supplementary reading to the vast literature that has
already emerged in this field.
The collected works of Turing, including a substantial amount of unpublished material, will comprise four volumes: Mechanical Intelligence, Pure Mathematics, Morphogenesis and Mathematical Logic. Alan Mathison Turing (1912-1954) was a brilliant man who made major contributions in several areas of science. Today his name is mentioned frequently in philosophical discussions about the nature of Artificial Intelligence. Actually, he was a pioneer researcher in computer architecture and software engineering; his work in pure mathematics and mathematical logic extended considerably further and his last work, on morphogenesis in plants, is also acknowledged as being of the greatest originality and of permanent importance. He was one of the leading figures in Twentieth-century science, a fact which would have been known to the general public sooner but for the British Official Secrets Act, which prevented discussion of his wartime work. What is maybe surprising about these papers is that although they were written decades ago, they address major issues which concern researchers today.
The collected works of Turing, including a substantial amount of unpublished material, will comprise four volumes: Mechanical Intelligence, Pure Mathematics, Morphogenesis and Mathematical Logic. Alan Mathison Turing (1912-1954) was a brilliant man who made major contributions in several areas of science. Today his name is mentioned frequently in philosophical discussions about the nature of Artificial Intelligence. Actually, he was a pioneer researcher in computer architecture and software engineering; his work in pure mathematics and mathematical logic extended considerably further and his last work, on morphogenesis in plants, is also acknowledged as being of the greatest originality and of permanent importance. He was one of the leading figures in Twentieth-century science, a fact which would have been known to the general public sooner but for the British Official Secrets Act, which prevented discussion of his wartime work. What is maybe surprising about these papers is that although they were written decades ago, they address major issues which concern researchers today.
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
This is the first comprehensive treatment of the theoretical aspects of the discrete cosine transform (DCT), which is being recommended by various standards organizations, such as the CCITT, ISO etc., as the primary compression tool in digital image coding. The main purpose of the book is to provide a complete source for the user of this signal processing tool, where both the basics and the applications are detailed. An extensive bibliography covers both the theory and applications of the DCT. The novice will find the book useful in its self-contained treatment of the theory of the DCT, the detailed description of various algorithms supported by computer programs and the range of possible applications, including codecs used for teleconferencing, videophone, progressive image transmission, and broadcast TV. The more advanced user will appreciate the extensive references. Tables describing ASIC VLSI chips for implementing DCT, and motion estimation and details on image compression boards are also provided.
This book is a comprehensive survey of matrix perturbation theory, a topic of interest to numerical analysts, statisticians, physical scientists, and engineers. In particular, the authors cover perturbation theory of linear systems and least square problems, the eignevalue problem, and the generalized eignevalue problem as wellas a complete treatment of vector and matrix norms, including the theory of unitary invariant norms.
A number of monographs of various aspects of complex analysis in
several variables have appeared since the first version of this
book was published, but none of them uses the analytic techniques
based on the solution of the Neumann Problem as the main tool.
This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."
These two volumes cover the principal approaches to constructivism in mathematics. They present a thorough, up-to-date introduction to the metamathematics of constructive mathematics, paying special attention to Intuitionism, Markov's constructivism and Martin-Lof's type theory with its operational semantics. A detailed exposition of the basic features of constructive mathematics, with illustrations from analysis, algebra and topology, is provided, with due attention to the metamathematical aspects. Volume 1 is a self-contained introduction to the practice and foundations of constructivism, and does not require specialized knowledge beyond basic mathematical logic. Volume 2 contains mainly advanced topics of a proof-theoretical and semantical nature.
This is an all-encompassing and exhaustive exposition of the theory of infinite-dimensional Unitary Representations of Locally Compact Groups and its generalization to representations of Banach algebras. The presentation is detailed, accessible, and self-contained (except for some elementary knowledge in algebra, topology, and abstract measure theory). In the later chapters the reader is brought to the frontiers of present-day knowledge in the area of Mackey normal subgroup analysisand its generalization to the context of Banach *-Algebraic Bundles.
This is an all-encompassing and exhaustive exposition of the theory of infinite-dimensional Unitary Representations of Locally Compact Groups and its generalization to representations of Banach algebras. The presentation is detailed, accessible, and self-contained (except for some elementary knowledge in algebra, topology, and abstract measure theory). In the later chapters the reader is brought to the frontiers of present-day knowledge in the area of Mackey normal subgroup analysisand its generalization to the context of Banach *-Algebraic Bundles.
The ideas of Fourier have made their way into every branch of mathematics and mathematical physics, from the theory of numbers to quantum mechanics. Fourier Series and Integrals focuses on the extraordinary power and flexibility of Fourier's basic series and integrals and on the astonishing variety of applications in which it is the chief tool. It presents a mathematical account of Fourier ideas on the circle and the line, on finite commutative groups, and on a few important noncommutative groups. A wide variety of exercises are placed in nearly every section as an integral part of the text.
The basic goals of the book are: (i) to introduce the subject to those interested in discovering it, (ii) to coherently present a number of basic techniques and results, currently used in the subject, to those working in it, and (iii) to present some of the results that are attractive in their own right, and which lend themselves to a presentation not overburdened with technical machinery.
This is the revised and augmented edition of a now classic book
which is an introduction to sub-Markovian kernels on general
measurable spaces and their associated homogeneous Markov chains.
The first part, an expository text on the foundations of the
subject, is intended for post-graduate students. A study of
potential theory, the basic classification of chains according to
their asymptotic behaviour and the celebrated Chacon-Ornstein
theorem are examined in detail.
History of Functional Analysis presents functional analysis as a rather complex blend of algebra and topology, with its evolution influenced by the development of these two branches of mathematics. The book adopts a narrower definition-one that is assumed to satisfy various algebraic and topological conditions. A moment of reflections shows that this already covers a large part of modern analysis, in particular, the theory of partial differential equations. This volume comprises nine chapters, the first of which focuses on linear differential equations and the Sturm-Liouville problem. The succeeding chapters go on to discuss the ""crypto-integral"" equations, including the Dirichlet principle and the Beer-Neumann method; the equation of vibrating membranes, including the contributions of Poincare and H.A. Schwarz's 1885 paper; and the idea of infinite dimension. Other chapters cover the crucial years and the definition of Hilbert space, including Fredholm's discovery and the contributions of Hilbert; duality and the definition of normed spaces, including the Hahn-Banach theorem and the method of the gliding hump and Baire category; spectral theory after 1900, including the theories and works of F. Riesz, Hilbert, von Neumann, Weyl, and Carleman; locally convex spaces and the theory of distributions; and applications of functional analysis to differential and partial differential equations. This book will be of interest to practitioners in the fields of mathematics and statistics.
Stephen Cole Kleene was one of the greatest logicians of the twentieth century and this book is the influential textbook he wrote to teach the subject to the next generation. It was first published in 1952, some twenty years after the publication of Gadel's paper on the incompleteness of arithmetic, which marked, if not the beginning of modern logic, at least a turning point after which oenothing was ever the same. Kleene was an important figure in logic, and lived a long full life of scholarship and teaching. The 1930s was a time of creativity and ferment in the subject, when the notion of aEUROoecomputableaEURO moved from the realm of philosophical speculation to the realm of science. This was accomplished by the work of Kurt Gade1, Alan Turing, and Alonzo Church, who gave three apparently different precise definitions of aEUROoecomputableaEURO . When they all turned out to be equivalent, there was a collective realization that this was indeed the oeright notion. Kleene played a key role in this process. One could say that he was oethere at the beginning of modern logic. He showed the equivalence of lambda calculus with Turing machines and with Gadel's recursion equations, and developed the modern machinery of partial recursive functions. This textbook played an invaluable part in educating the logicians of the present. It played an important role in their own logical education.
An Introduction to Homological Algebra discusses the origins of algebraic topology. It also presents the study of homological algebra as a two-stage affair. First, one must learn the language of Ext and Tor and what it describes. Second, one must be able to compute these things, and often, this involves yet another language: spectral sequences. Homological algebra is an accessible subject to those who wish to learn it, and this book is the author's attempt to make it lovable. This book comprises 11 chapters, with an introductory chapter that focuses on line integrals and independence of path, categories and functors, tensor products, and singular homology. Succeeding chapters discuss Hom and ?; projectives, injectives, and flats; specific rings; extensions of groups; homology; Ext; Tor; son of specific rings; the return of cohomology of groups; and spectral sequences, such as bicomplexes, Kunneth Theorems, and Grothendieck Spectral Sequences. This book will be of interest to practitioners in the field of pure and applied mathematics.
Nonlinearity and Functional Analysis is a collection of lectures that aim to present a systematic description of fundamental nonlinear results and their applicability to a variety of concrete problems taken from various fields of mathematical analysis. For decades, great mathematical interest has focused on problems associated with linear operators and the extension of the well-known results of linear algebra to an infinite-dimensional context. This interest has been crowned with deep insights, and the substantial theory that has been developed has had a profound influence throughout the mathematical sciences. This volume comprises six chapters and begins by presenting some background material, such as differential-geometric sources, sources in mathematical physics, and sources from the calculus of variations, before delving into the subject of nonlinear operators. The following chapters then discuss local analysis of a single mapping and parameter dependent perturbation phenomena before going into analysis in the large. The final chapters conclude the collection with a discussion of global theories for general nonlinear operators and critical point theory for gradient mappings. This book will be of interest to practitioners in the fields of mathematics and physics, and to those with interest in conventional linear functional analysis and ordinary and partial differential equations.
A comprehensive one-year graduate (or advanced undergraduate)
course in mathematical logic and foundations of mathematics. No
previous knowledge of logic is required; the book is suitable for
self-study. Many exercises (with hints) are included.
Unlike books currently on the market, this book attempts to satisfy
two goals: combine circuits and electronics into a single, unified
treatment, and establish a strong connection with the contemporary
world of digital systems. It will introduce a new way of looking
not only at the treatment of circuits, but also at the treatment of
introductory coursework in engineering in general. |
You may like...
Functional Analysis and its…
Vladimir Kadets, Wieslaw Tadeusz Zelazko
Hardcover
R4,693
Discovery Miles 46 930
Handbook of Quantum Logic and Quantum…
Kurt Engesser, Dov M. Gabbay, …
Hardcover
R7,053
Discovery Miles 70 530
A Practical Logic of Cognitive Systems…
Dov M. Gabbay, John Woods
Hardcover
R5,833
Discovery Miles 58 330
Reliable Methods for Computer…
Pekka Neittaanmaki, Sergey R Repin
Hardcover
R2,844
Discovery Miles 28 440
|