0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (5)
  • R250 - R500 (29)
  • R500+ (1,246)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Natural language & machine translation

Price-Forecasting Models for Bottomline Technologies, Inc. EPAY Stock (Paperback): Ton Viet Ta Price-Forecasting Models for Bottomline Technologies, Inc. EPAY Stock (Paperback)
Ton Viet Ta
R480 Discovery Miles 4 800 Ships in 18 - 22 working days
Generative Adversarial Networks with Industrial Use Cases - Learning How to Build Gan Applications for Retail, Healthcare,... Generative Adversarial Networks with Industrial Use Cases - Learning How to Build Gan Applications for Retail, Healthcare, Telecom, Media, Education, and Hrtech (Paperback)
Navin K Manaswi
R491 Discovery Miles 4 910 Ships in 18 - 22 working days
Artificial Intelligence. What is it, exactly? (Paperback): Sebastien Konieczny, Henri Prade Artificial Intelligence. What is it, exactly? (Paperback)
Sebastien Konieczny, Henri Prade
R447 Discovery Miles 4 470 Ships in 18 - 22 working days
Natural Language Processing Fundamentals - Build intelligent applications that can interpret the human language to deliver... Natural Language Processing Fundamentals - Build intelligent applications that can interpret the human language to deliver impactful results (Paperback)
Sohom Ghosh, Dwight Gunning
R1,002 Discovery Miles 10 020 Ships in 18 - 22 working days

Use Python and NLTK (Natural Language Toolkit) to build out your own text classifiers and solve common NLP problems. Key Features Assimilate key NLP concepts and terminologies Explore popular NLP tools and techniques Gain practical experience using NLP in application code Book DescriptionIf NLP hasn't been your forte, Natural Language Processing Fundamentals will make sure you set off to a steady start. This comprehensive guide will show you how to effectively use Python libraries and NLP concepts to solve various problems. You'll be introduced to natural language processing and its applications through examples and exercises. This will be followed by an introduction to the initial stages of solving a problem, which includes problem definition, getting text data, and preparing it for modeling. With exposure to concepts like advanced natural language processing algorithms and visualization techniques, you'll learn how to create applications that can extract information from unstructured data and present it as impactful visuals. Although you will continue to learn NLP-based techniques, the focus will gradually shift to developing useful applications. In these sections, you'll understand how to apply NLP techniques to answer questions as can be used in chatbots. By the end of this book, you'll be able to accomplish a varied range of assignments ranging from identifying the most suitable type of NLP task for solving a problem to using a tool like spacy or gensim for performing sentiment analysis. The book will easily equip you with the knowledge you need to build applications that interpret human language. What you will learn Obtain, verify, and clean data before transforming it into a correct format for use Perform data analysis and machine learning tasks using Python Understand the basics of computational linguistics Build models for general natural language processing tasks Evaluate the performance of a model with the right metrics Visualize, quantify, and perform exploratory analysis from any text data Who this book is forNatural Language Processing Fundamentals is designed for novice and mid-level data scientists and machine learning developers who want to gather and analyze text data to build an NLP-powered product. It'll help you to have prior experience of coding in Python using data types, writing functions, and importing libraries. Some experience with linguistics and probability is useful but not necessary.

Mobile Artificial Intelligence Projects - Develop seven projects on your smartphone using artificial intelligence and deep... Mobile Artificial Intelligence Projects - Develop seven projects on your smartphone using artificial intelligence and deep learning techniques (Paperback)
Karthikeyan NG, Arun Padmanabhan, Matt R Cole
R971 Discovery Miles 9 710 Ships in 18 - 22 working days

Learn to build end-to-end AI apps from scratch for Android and iOS using TensorFlow Lite, CoreML, and PyTorch Key Features Build practical, real-world AI projects on Android and iOS Implement tasks such as recognizing handwritten digits, sentiment analysis, and more Explore the core functions of machine learning, deep learning, and mobile vision Book DescriptionWe're witnessing a revolution in Artificial Intelligence, thanks to breakthroughs in deep learning. Mobile Artificial Intelligence Projects empowers you to take part in this revolution by applying Artificial Intelligence (AI) techniques to design applications for natural language processing (NLP), robotics, and computer vision. This book teaches you to harness the power of AI in mobile applications along with learning the core functions of NLP, neural networks, deep learning, and mobile vision. It features a range of projects, covering tasks such as real-estate price prediction, recognizing hand-written digits, predicting car damage, and sentiment analysis. You will learn to utilize NLP and machine learning algorithms to make applications more predictive, proactive, and capable of making autonomous decisions with less human input. In the concluding chapters, you will work with popular libraries, such as TensorFlow Lite, CoreML, and PyTorch across Android and iOS platforms. By the end of this book, you will have developed exciting and more intuitive mobile applications that deliver a customized and more personalized experience to users. What you will learn Explore the concepts and fundamentals of AI, deep learning, and neural networks Implement use cases for machine vision and natural language processing Build an ML model to predict car damage using TensorFlow Deploy TensorFlow on mobile to convert speech to text Implement GAN to recognize hand-written digits Develop end-to-end mobile applications that use AI principles Work with popular libraries, such as TensorFlow Lite, CoreML, and PyTorch Who this book is forMobile Artificial Intelligence Projects is for machine learning professionals, deep learning engineers, AI engineers, and software engineers who want to integrate AI technology into mobile-based platforms and applications. Sound knowledge of machine learning and experience with any programming language is all you need to get started with this book.

Neural Networks for Natural Language Processing (Paperback): Sumathi S., Janani M Neural Networks for Natural Language Processing (Paperback)
Sumathi S., Janani M
R4,971 Discovery Miles 49 710 Ships in 18 - 22 working days

Information in today's advancing world is rapidly expanding and becoming widely available. This eruption of data has made handling it a daunting and time-consuming task. Natural language processing (NLP) is a method that applies linguistics and algorithms to large amounts of this data to make it more valuable. NLP improves the interaction between humans and computers, yet there remains a lack of research that focuses on the practical implementations of this trending approach. Neural Networks for Natural Language Processing is a collection of innovative research on the methods and applications of linguistic information processing and its computational properties. This publication will support readers with performing sentence classification and language generation using neural networks, apply deep learning models to solve machine translation and conversation problems, and apply deep structured semantic models on information retrieval and natural language applications. While highlighting topics including deep learning, query entity recognition, and information retrieval, this book is ideally designed for research and development professionals, IT specialists, industrialists, technology developers, data analysts, data scientists, academics, researchers, and students seeking current research on the fundamental concepts and techniques of natural language processing.

Python Machine Learning - A Comprehensive Beginners Guide to Learn Python Machine Learning from A-Z (Paperback): Alexander Bold Python Machine Learning - A Comprehensive Beginners Guide to Learn Python Machine Learning from A-Z (Paperback)
Alexander Bold
R495 Discovery Miles 4 950 Ships in 18 - 22 working days
Machine Learning - Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists... Machine Learning - Master Machine Learning Fundamentals for Beginners, Business Leaders and Aspiring Data Scientists (Paperback)
M G Martin
R461 Discovery Miles 4 610 Ships in 18 - 22 working days
Python Machine Learning Blueprints - Put your machine learning concepts to the test by developing real-world smart projects,... Python Machine Learning Blueprints - Put your machine learning concepts to the test by developing real-world smart projects, 2nd Edition (Paperback, 2nd Revised edition)
Alexander Combs, Michael Roman
R1,102 Discovery Miles 11 020 Ships in 18 - 22 working days

Discover a project-based approach to mastering machine learning concepts by applying them to everyday problems using libraries such as scikit-learn, TensorFlow, and Keras Key Features Get to grips with Python's machine learning libraries including scikit-learn, TensorFlow, and Keras Implement advanced concepts and popular machine learning algorithms in real-world projects Build analytics, computer vision, and neural network projects Book DescriptionMachine learning is transforming the way we understand and interact with the world around us. This book is the perfect guide for you to put your knowledge and skills into practice and use the Python ecosystem to cover key domains in machine learning. This second edition covers a range of libraries from the Python ecosystem, including TensorFlow and Keras, to help you implement real-world machine learning projects. The book begins by giving you an overview of machine learning with Python. With the help of complex datasets and optimized techniques, you'll go on to understand how to apply advanced concepts and popular machine learning algorithms to real-world projects. Next, you'll cover projects from domains such as predictive analytics to analyze the stock market and recommendation systems for GitHub repositories. In addition to this, you'll also work on projects from the NLP domain to create a custom news feed using frameworks such as scikit-learn, TensorFlow, and Keras. Following this, you'll learn how to build an advanced chatbot, and scale things up using PySpark. In the concluding chapters, you can look forward to exciting insights into deep learning and you'll even create an application using computer vision and neural networks. By the end of this book, you'll be able to analyze data seamlessly and make a powerful impact through your projects. What you will learn Understand the Python data science stack and commonly used algorithms Build a model to forecast the performance of an Initial Public Offering (IPO) over an initial discrete trading window Understand NLP concepts by creating a custom news feed Create applications that will recommend GitHub repositories based on ones you've starred, watched, or forked Gain the skills to build a chatbot from scratch using PySpark Develop a market-prediction app using stock data Delve into advanced concepts such as computer vision, neural networks, and deep learning Who this book is forThis book is for machine learning practitioners, data scientists, and deep learning enthusiasts who want to take their machine learning skills to the next level by building real-world projects. The intermediate-level guide will help you to implement libraries from the Python ecosystem to build a variety of projects addressing various machine learning domains. Knowledge of Python programming and machine learning concepts will be helpful.

Linux for beginners - An Easy And Intuitive Systems To Start Using Linux Operating System Essential Commands, Easy... Linux for beginners - An Easy And Intuitive Systems To Start Using Linux Operating System Essential Commands, Easy Installation, And Configuration Tips (Paperback)
Conley Walsh
R310 Discovery Miles 3 100 Ships in 18 - 22 working days
Codeless Deep Learning with KNIME - Build, train, and deploy various deep neural network architectures using KNIME Analytics... Codeless Deep Learning with KNIME - Build, train, and deploy various deep neural network architectures using KNIME Analytics Platform (Paperback)
Kathrin Melcher, Rosaria Silipo
R1,314 Discovery Miles 13 140 Ships in 18 - 22 working days

Discover how to integrate KNIME Analytics Platform with deep learning libraries to implement artificial intelligence solutions Key Features Become well-versed with KNIME Analytics Platform to perform codeless deep learning Design and build deep learning workflows quickly and more easily using the KNIME GUI Discover different deployment options without using a single line of code with KNIME Analytics Platform Book DescriptionKNIME Analytics Platform is an open source software used to create and design data science workflows. This book is a comprehensive guide to the KNIME GUI and KNIME deep learning integration, helping you build neural network models without writing any code. It'll guide you in building simple and complex neural networks through practical and creative solutions for solving real-world data problems. Starting with an introduction to KNIME Analytics Platform, you'll get an overview of simple feed-forward networks for solving simple classification problems on relatively small datasets. You'll then move on to build, train, test, and deploy more complex networks, such as autoencoders, recurrent neural networks (RNNs), long short-term memory (LSTM), and convolutional neural networks (CNNs). In each chapter, depending on the network and use case, you'll learn how to prepare data, encode incoming data, and apply best practices. By the end of this book, you'll have learned how to design a variety of different neural architectures and will be able to train, test, and deploy the final network. What you will learn Use various common nodes to transform your data into the right structure suitable for training a neural network Understand neural network techniques such as loss functions, backpropagation, and hyperparameters Prepare and encode data appropriately to feed it into the network Build and train a classic feedforward network Develop and optimize an autoencoder network for outlier detection Implement deep learning networks such as CNNs, RNNs, and LSTM with the help of practical examples Deploy a trained deep learning network on real-world data Who this book is forThis book is for data analysts, data scientists, and deep learning developers who are not well-versed in Python but want to learn how to use KNIME GUI to build, train, test, and deploy neural networks with different architectures. The practical implementations shown in the book do not require coding or any knowledge of dedicated scripts, so you can easily implement your knowledge into practical applications. No prior experience of using KNIME is required to get started with this book.

Natural Language Processing for Global and Local Business (Paperback): Fatih Pinarbasi, M. Nurdan Taskiran Natural Language Processing for Global and Local Business (Paperback)
Fatih Pinarbasi, M. Nurdan Taskiran
R4,821 Discovery Miles 48 210 Ships in 18 - 22 working days

The concept of natural language processing has become one of the preferred methods to better understand consumers, especially in recent years when digital technologies and research methods have developed exponentially. It has become apparent that when responding to international consumers through multiple platforms and speaking in the same language in which the consumers express themselves, companies are improving their standings within the public sphere. Natural Language Processing for Global and Local Business provides research exploring the theoretical and practical phenomenon of natural language processing through different languages and platforms in terms of today's conditions. Featuring coverage on a broad range of topics such as computational linguistics, information engineering, and translation technology, this book is ideally designed for IT specialists, academics, researchers, students, and business professionals seeking current research on improving and understanding the consumer experience.

Advanced Deep Learning with TensorFlow 2 and Keras - Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and... Advanced Deep Learning with TensorFlow 2 and Keras - Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more, 2nd Edition (Paperback, 2nd Revised edition)
Rowel Atienza
R1,132 Discovery Miles 11 320 Ships in 18 - 22 working days

Updated and revised second edition of the bestselling guide to advanced deep learning with TensorFlow 2 and Keras Key Features Explore the most advanced deep learning techniques that drive modern AI results New coverage of unsupervised deep learning using mutual information, object detection, and semantic segmentation Completely updated for TensorFlow 2.x Book DescriptionAdvanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects. Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques. Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance. Next, you'll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI. What you will learn Use mutual information maximization techniques to perform unsupervised learning Use segmentation to identify the pixel-wise class of each object in an image Identify both the bounding box and class of objects in an image using object detection Learn the building blocks for advanced techniques - MLPss, CNN, and RNNs Understand deep neural networks - including ResNet and DenseNet Understand and build autoregressive models - autoencoders, VAEs, and GANs Discover and implement deep reinforcement learning methods Who this book is forThis is not an introductory book, so fluency with Python is required. The reader should also be familiar with some machine learning approaches, and practical experience with DL will also be helpful. Knowledge of Keras or TensorFlow 2.0 is not required but is recommended.

Hands-On Python Natural Language Processing - Explore tools and techniques to analyze and process text with a view to building... Hands-On Python Natural Language Processing - Explore tools and techniques to analyze and process text with a view to building real-world NLP applications (Paperback)
Aman Kedia, Mayank Rasu
R1,070 Discovery Miles 10 700 Ships in 18 - 22 working days

Get well-versed with traditional as well as modern natural language processing concepts and techniques Key Features Perform various NLP tasks to build linguistic applications using Python libraries Understand, analyze, and generate text to provide accurate results Interpret human language using various NLP concepts, methodologies, and tools Book DescriptionNatural Language Processing (NLP) is the subfield in computational linguistics that enables computers to understand, process, and analyze text. This book caters to the unmet demand for hands-on training of NLP concepts and provides exposure to real-world applications along with a solid theoretical grounding. This book starts by introducing you to the field of NLP and its applications, along with the modern Python libraries that you'll use to build your NLP-powered apps. With the help of practical examples, you'll learn how to build reasonably sophisticated NLP applications, and cover various methodologies and challenges in deploying NLP applications in the real world. You'll cover key NLP tasks such as text classification, semantic embedding, sentiment analysis, machine translation, and developing a chatbot using machine learning and deep learning techniques. The book will also help you discover how machine learning techniques play a vital role in making your linguistic apps smart. Every chapter is accompanied by examples of real-world applications to help you build impressive NLP applications of your own. By the end of this NLP book, you'll be able to work with language data, use machine learning to identify patterns in text, and get acquainted with the advancements in NLP. What you will learn Understand how NLP powers modern applications Explore key NLP techniques to build your natural language vocabulary Transform text data into mathematical data structures and learn how to improve text mining models Discover how various neural network architectures work with natural language data Get the hang of building sophisticated text processing models using machine learning and deep learning Check out state-of-the-art architectures that have revolutionized research in the NLP domain Who this book is forThis NLP Python book is for anyone looking to learn NLP's theoretical and practical aspects alike. It starts with the basics and gradually covers advanced concepts to make it easy to follow for readers with varying levels of NLP proficiency. This comprehensive guide will help you develop a thorough understanding of the NLP methodologies for building linguistic applications; however, working knowledge of Python programming language and high school level mathematics is expected.

Hands-On Natural Language Processing with PyTorch 1.x - Build smart, AI-driven linguistic applications using deep learning and... Hands-On Natural Language Processing with PyTorch 1.x - Build smart, AI-driven linguistic applications using deep learning and NLP techniques (Paperback)
Thomas Dop
R1,002 Discovery Miles 10 020 Ships in 18 - 22 working days

Become a proficient NLP data scientist by developing deep learning models for NLP and extract valuable insights from structured and unstructured data Key Features Get to grips with word embeddings, semantics, labeling, and high-level word representations using practical examples Learn modern approaches to NLP and explore state-of-the-art NLP models using PyTorch Improve your NLP applications with innovative neural networks such as RNNs, LSTMs, and CNNs Book DescriptionIn the internet age, where an increasing volume of text data is generated daily from social media and other platforms, being able to make sense of that data is a crucial skill. With this book, you'll learn how to extract valuable insights from text by building deep learning models for natural language processing (NLP) tasks. Starting by understanding how to install PyTorch and using CUDA to accelerate the processing speed, you'll explore how the NLP architecture works with the help of practical examples. This PyTorch NLP book will guide you through core concepts such as word embeddings, CBOW, and tokenization in PyTorch. You'll then learn techniques for processing textual data and see how deep learning can be used for NLP tasks. The book demonstrates how to implement deep learning and neural network architectures to build models that will allow you to classify and translate text and perform sentiment analysis. Finally, you'll learn how to build advanced NLP models, such as conversational chatbots. By the end of this book, you'll not only have understood the different NLP problems that can be solved using deep learning with PyTorch, but also be able to build models to solve them. What you will learn Use NLP techniques for understanding, processing, and generating text Understand PyTorch, its applications and how it can be used to build deep linguistic models Explore the wide variety of deep learning architectures for NLP Develop the skills you need to process and represent both structured and unstructured NLP data Become well-versed with state-of-the-art technologies and exciting new developments in the NLP domain Create chatbots using attention-based neural networks Who this book is forThis PyTorch book is for NLP developers, machine learning and deep learning developers, and anyone interested in building intelligent language applications using both traditional NLP approaches and deep learning architectures. If you're looking to adopt modern NLP techniques and models for your development projects, this book is for you. Working knowledge of Python programming, along with basic working knowledge of NLP tasks, is required.

Hands-On Markov Models with Python - Implement probabilistic models for learning complex data sequences using the Python... Hands-On Markov Models with Python - Implement probabilistic models for learning complex data sequences using the Python ecosystem (Paperback)
Ankur Ankan, Abinash Panda
R901 Discovery Miles 9 010 Ships in 18 - 22 working days

Unleash the power of unsupervised machine learning in Hidden Markov Models using TensorFlow, pgmpy, and hmmlearn Key Features Build a variety of Hidden Markov Models (HMM) Create and apply models to any sequence of data to analyze, predict, and extract valuable insights Use natural language processing (NLP) techniques and 2D-HMM model for image segmentation Book DescriptionHidden Markov Model (HMM) is a statistical model based on the Markov chain concept. Hands-On Markov Models with Python helps you get to grips with HMMs and different inference algorithms by working on real-world problems. The hands-on examples explored in the book help you simplify the process flow in machine learning by using Markov model concepts, thereby making it accessible to everyone. Once you've covered the basic concepts of Markov chains, you'll get insights into Markov processes, models, and types with the help of practical examples. After grasping these fundamentals, you'll move on to learning about the different algorithms used in inferences and applying them in state and parameter inference. In addition to this, you'll explore the Bayesian approach of inference and learn how to apply it in HMMs. In further chapters, you'll discover how to use HMMs in time series analysis and natural language processing (NLP) using Python. You'll also learn to apply HMM to image processing using 2D-HMM to segment images. Finally, you'll understand how to apply HMM for reinforcement learning (RL) with the help of Q-Learning, and use this technique for single-stock and multi-stock algorithmic trading. By the end of this book, you will have grasped how to build your own Markov and hidden Markov models on complex datasets in order to apply them to projects. What you will learn Explore a balance of both theoretical and practical aspects of HMM Implement HMMs using different datasets in Python using different packages Understand multiple inference algorithms and how to select the right algorithm to resolve your problems Develop a Bayesian approach to inference in HMMs Implement HMMs in finance, natural language processing (NLP), and image processing Determine the most likely sequence of hidden states in an HMM using the Viterbi algorithm Who this book is forHands-On Markov Models with Python is for you if you are a data analyst, data scientist, or machine learning developer and want to enhance your machine learning knowledge and skills. This book will also help you build your own hidden Markov models by applying them to any sequence of data. Basic knowledge of machine learning and the Python programming language is expected to get the most out of the book

Machine Learning With Python - 3 Books in 1 - The Ultimate Beginners Guide & a Comprehensive Guide of Tips and Tricks &... Machine Learning With Python - 3 Books in 1 - The Ultimate Beginners Guide & a Comprehensive Guide of Tips and Tricks & Advanced and Effective Strategies Using Machine Learning with Python (Paperback)
Ethan Williams
R1,039 Discovery Miles 10 390 Ships in 18 - 22 working days
The Natural Language Processing Workshop - Confidently design and build your own NLP projects with this easy-to-understand... The Natural Language Processing Workshop - Confidently design and build your own NLP projects with this easy-to-understand practical guide (Paperback, 2nd edition)
Rohan Chopra, Aniruddha M. Godbole, Nipun Sadvilkar, Muzaffar Bashir Shah, Sohom Ghosh, …
R1,018 Discovery Miles 10 180 Ships in 18 - 22 working days

Make NLP easy by building chatbots and models, and executing various NLP tasks to gain data-driven insights from raw text data Key Features Get familiar with key natural language processing (NLP) concepts and terminology Explore the functionalities and features of popular NLP tools Learn how to use Python programming and third-party libraries to perform NLP tasks Book DescriptionDo you want to learn how to communicate with computer systems using Natural Language Processing (NLP) techniques, or make a machine understand human sentiments? Do you want to build applications like Siri, Alexa, or chatbots, even if you've never done it before? With The Natural Language Processing Workshop, you can expect to make consistent progress as a beginner, and get up to speed in an interactive way, with the help of hands-on activities and fun exercises. The book starts with an introduction to NLP. You'll study different approaches to NLP tasks, and perform exercises in Python to understand the process of preparing datasets for NLP models. Next, you'll use advanced NLP algorithms and visualization techniques to collect datasets from open websites, and to summarize and generate random text from a document. In the final chapters, you'll use NLP to create a chatbot that detects positive or negative sentiment in text documents such as movie reviews. By the end of this book, you'll be equipped with the essential NLP tools and techniques you need to solve common business problems that involve processing text. What you will learn Obtain, verify, clean and transform text data into a correct format for use Use methods such as tokenization and stemming for text extraction Develop a classifier to classify comments in Wikipedia articles Collect data from open websites with the help of web scraping Train a model to detect topics in a set of documents using topic modeling Discover techniques to represent text as word and document vectors Who this book is forThis book is for beginner to mid-level data scientists, machine learning developers, and NLP enthusiasts. A basic understanding of machine learning and NLP is required to help you grasp the topics in this workshop more quickly.

Natural Language Processing with Java Cookbook - Over 70 recipes to create linguistic and language translation applications... Natural Language Processing with Java Cookbook - Over 70 recipes to create linguistic and language translation applications using Java libraries (Paperback)
Richard M Reese
R1,094 Discovery Miles 10 940 Ships in 18 - 22 working days

A problem-solution guide to encounter various NLP tasks utilizing Java open source libraries and cloud-based solutions Key Features Perform simple-to-complex NLP text processing tasks using modern Java libraries Extract relationships between different text complexities using a problem-solution approach Utilize cloud-based APIs to perform machine translation operations Book DescriptionNatural Language Processing (NLP) has become one of the prime technologies for processing very large amounts of unstructured data from disparate information sources. This book includes a wide set of recipes and quick methods that solve challenges in text syntax, semantics, and speech tasks. At the beginning of the book, you'll learn important NLP techniques, such as identifying parts of speech, tagging words, and analyzing word semantics. You will learn how to perform lexical analysis and use machine learning techniques to speed up NLP operations. With independent recipes, you will explore techniques for customizing your existing NLP engines/models using Java libraries such as OpenNLP and the Stanford NLP library. You will also learn how to use NLP processing features from cloud-based sources, including Google and Amazon's AWS. You will master core tasks, such as stemming, lemmatization, part-of-speech tagging, and named entity recognition. You will also learn about sentiment analysis, semantic text similarity, language identification, machine translation, and text summarization. By the end of this book, you will be ready to become a professional NLP expert using a problem-solution approach to analyze any sort of text, sentences, or semantic words. What you will learn Explore how to use tokenizers in NLP processing Implement NLP techniques in machine learning and deep learning applications Identify sentences within the text and learn how to train specialized NER models Learn how to classify documents and perform sentiment analysis Find semantic similarities between text elements and extract text from a variety of sources Preprocess text from a variety of data sources Learn how to identify and translate languages Who this book is forThis book is for data scientists, NLP engineers, and machine learning developers who want to perform their work on linguistic applications faster with the use of popular libraries on JVM machines. This book will help you build real-world NLP applications using a recipe-based approach. Prior knowledge of Natural Language Processing basics and Java programming is expected.

Julia High Performance - Optimizations, distributed computing, multithreading, and GPU programming with Julia 1.0 and beyond,... Julia High Performance - Optimizations, distributed computing, multithreading, and GPU programming with Julia 1.0 and beyond, 2nd Edition (Paperback, 2nd Revised edition)
Avik Sengupta; Foreword by Alan Edelman
R820 Discovery Miles 8 200 Ships in 18 - 22 working days

Design and develop high-performance programs in Julia 1.0 Key Features Learn the characteristics of high-performance Julia code Use the power of the GPU to write efficient numerical code Speed up your computation with the help of newly introduced shared memory multi-threading in Julia 1.0 Book DescriptionJulia is a high-level, high-performance dynamic programming language for numerical computing. If you want to understand how to avoid bottlenecks and design your programs for the highest possible performance, then this book is for you. The book starts with how Julia uses type information to achieve its performance goals, and how to use multiple dispatches to help the compiler emit high-performance machine code. After that, you will learn how to analyze Julia programs and identify issues with time and memory consumption. We teach you how to use Julia's typing facilities accurately to write high-performance code and describe how the Julia compiler uses type information to create fast machine code. Moving ahead, you'll master design constraints and learn how to use the power of the GPU in your Julia code and compile Julia code directly to the GPU. Then, you'll learn how tasks and asynchronous IO help you create responsive programs and how to use shared memory multithreading in Julia. Toward the end, you will get a flavor of Julia's distributed computing capabilities and how to run Julia programs on a large distributed cluster. By the end of this book, you will have the ability to build large-scale, high-performance Julia applications, design systems with a focus on speed, and improve the performance of existing programs. What you will learn Understand how Julia code is transformed into machine code Measure the time and memory taken by Julia programs Create fast machine code using Julia's type information Define and call functions without compromising Julia's performance Accelerate your code via the GPU Use tasks and asynchronous IO for responsive programs Run Julia programs on large distributed clusters Who this book is forThis book is for beginners and intermediate Julia programmers who are interested in high-performance technical programming. A basic knowledge of Julia programming is assumed.

Hands-On Machine Learning with C++ - Build, train, and deploy end-to-end machine learning and deep learning pipelines... Hands-On Machine Learning with C++ - Build, train, and deploy end-to-end machine learning and deep learning pipelines (Paperback)
Kirill Kolodiazhnyi
R1,469 Discovery Miles 14 690 Ships in 18 - 22 working days

Implement supervised and unsupervised machine learning algorithms using C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib with the help of real-world examples and datasets Key Features Become familiar with data processing, performance measuring, and model selection using various C++ libraries Implement practical machine learning and deep learning techniques to build smart models Deploy machine learning models to work on mobile and embedded devices Book DescriptionC++ can make your machine learning models run faster and more efficiently. This handy guide will help you learn the fundamentals of machine learning (ML), showing you how to use C++ libraries to get the most out of your data. This book makes machine learning with C++ for beginners easy with its example-based approach, demonstrating how to implement supervised and unsupervised ML algorithms through real-world examples. This book will get you hands-on with tuning and optimizing a model for different use cases, assisting you with model selection and the measurement of performance. You'll cover techniques such as product recommendations, ensemble learning, and anomaly detection using modern C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib. Next, you'll explore neural networks and deep learning using examples such as image classification and sentiment analysis, which will help you solve various problems. Later, you'll learn how to handle production and deployment challenges on mobile and cloud platforms, before discovering how to export and import models using the ONNX format. By the end of this C++ book, you will have real-world machine learning and C++ knowledge, as well as the skills to use C++ to build powerful ML systems. What you will learn Explore how to load and preprocess various data types to suitable C++ data structures Employ key machine learning algorithms with various C++ libraries Understand the grid-search approach to find the best parameters for a machine learning model Implement an algorithm for filtering anomalies in user data using Gaussian distribution Improve collaborative filtering to deal with dynamic user preferences Use C++ libraries and APIs to manage model structures and parameters Implement a C++ program to solve image classification tasks with LeNet architecture Who this book is forYou will find this C++ machine learning book useful if you want to get started with machine learning algorithms and techniques using the popular C++ language. As well as being a useful first course in machine learning with C++, this book will also appeal to data analysts, data scientists, and machine learning developers who are looking to implement different machine learning models in production using varied datasets and examples. Working knowledge of the C++ programming language is mandatory to get started with this book.

Hands-On Natural Language Processing with Python - A practical guide to applying deep learning architectures to your NLP... Hands-On Natural Language Processing with Python - A practical guide to applying deep learning architectures to your NLP applications (Paperback)
Rajesh Arumugam, Rajalingappaa shanmugamani
R1,076 Discovery Miles 10 760 Ships in 18 - 22 working days

Foster your NLP applications with the help of deep learning, NLTK, and TensorFlow Key Features Weave neural networks into linguistic applications across various platforms Perform NLP tasks and train its models using NLTK and TensorFlow Boost your NLP models with strong deep learning architectures such as CNNs and RNNs Book DescriptionNatural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today's NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts. What you will learn Implement semantic embedding of words to classify and find entities Convert words to vectors by training in order to perform arithmetic operations Train a deep learning model to detect classification of tweets and news Implement a question-answer model with search and RNN models Train models for various text classification datasets using CNN Implement WaveNet a deep generative model for producing a natural-sounding voice Convert voice-to-text and text-to-voice Train a model to convert speech-to-text using DeepSpeech Who this book is forHands-on Natural Language Processing with Python is for you if you are a developer, machine learning or an NLP engineer who wants to build a deep learning application that leverages NLP techniques. This comprehensive guide is also useful for deep learning users who want to extend their deep learning skills in building NLP applications. All you need is the basics of machine learning and Python to enjoy the book.

Intelligent Projects Using Python - 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and... Intelligent Projects Using Python - 9 real-world AI projects leveraging machine learning and deep learning with TensorFlow and Keras (Paperback)
Santanu Pattanayak
R1,083 Discovery Miles 10 830 Ships in 18 - 22 working days

Implement machine learning and deep learning methodologies to build smart, cognitive AI projects using Python Key Features A go-to guide to help you master AI algorithms and concepts 8 real-world projects tackling different challenges in healthcare, e-commerce, and surveillance Use TensorFlow, Keras, and other Python libraries to implement smart AI applications Book DescriptionThis book will be a perfect companion if you want to build insightful projects from leading AI domains using Python. The book covers detailed implementation of projects from all the core disciplines of AI. We start by covering the basics of how to create smart systems using machine learning and deep learning techniques. You will assimilate various neural network architectures such as CNN, RNN, LSTM, to solve critical new world challenges. You will learn to train a model to detect diabetic retinopathy conditions in the human eye and create an intelligent system for performing a video-to-text translation. You will use the transfer learning technique in the healthcare domain and implement style transfer using GANs. Later you will learn to build AI-based recommendation systems, a mobile app for sentiment analysis and a powerful chatbot for carrying customer services. You will implement AI techniques in the cybersecurity domain to generate Captchas. Later you will train and build autonomous vehicles to self-drive using reinforcement learning. You will be using libraries from the Python ecosystem such as TensorFlow, Keras and more to bring the core aspects of machine learning, deep learning, and AI. By the end of this book, you will be skilled to build your own smart models for tackling any kind of AI problems without any hassle. What you will learn Build an intelligent machine translation system using seq-2-seq neural translation machines Create AI applications using GAN and deploy smart mobile apps using TensorFlow Translate videos into text using CNN and RNN Implement smart AI Chatbots, and integrate and extend them in several domains Create smart reinforcement, learning-based applications using Q-Learning Break and generate CAPTCHA using Deep Learning and Adversarial Learning Who this book is forThis book is intended for data scientists, machine learning professionals, and deep learning practitioners who are ready to extend their knowledge and potential in AI. If you want to build real-life smart systems to play a crucial role in every complex domain, then this book is what you need. Knowledge of Python programming and a familiarity with basic machine learning and deep learning concepts are expected to help you get the most out of the book

Deep Learning With Python - 3 Books in 1: A Hands-On Guide for Beginners+A Comprehensive Guide Beyond The Basics+A... Deep Learning With Python - 3 Books in 1: A Hands-On Guide for Beginners+A Comprehensive Guide Beyond The Basics+A Comprehensive Guide for Experts (Paperback)
Travis Booth
R824 Discovery Miles 8 240 Ships in 18 - 22 working days
Natural Language Processing - A Quick Introduction to NLP with Python and NLTK (Paperback): Samuel Burns Natural Language Processing - A Quick Introduction to NLP with Python and NLTK (Paperback)
Samuel Burns
R360 Discovery Miles 3 600 Ships in 18 - 22 working days
Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Python Programming for Computations…
Computer Language Hardcover R1,120 R949 Discovery Miles 9 490
Linguistic Issues in Machine Translation
Frank Van Eydne Hardcover R4,313 Discovery Miles 43 130
Neural Networks for Natural Language…
Sumathi S., Janani M Hardcover R6,405 Discovery Miles 64 050
Foundation Models for Natural Language…
Gerhard Paaß, Sven Giesselbach Hardcover R884 Discovery Miles 8 840
AI Art - Poetry - A Style Transfer Photo…
Shane Neeley Hardcover R1,213 Discovery Miles 12 130
Natural Interaction with Robots…
Joseph Mariani, Sophie Rosset, … Hardcover R6,913 R6,484 Discovery Miles 64 840
Modern Computational Models of Semantic…
Jan Ika, Frantii?1/2ek Da?Ena Hardcover R5,368 Discovery Miles 53 680
Natural Language Processing with Python…
Nirant Kasliwal Paperback R780 Discovery Miles 7 800
Fit-For-Market Translator and…
Rita Besznyak Hardcover R1,645 Discovery Miles 16 450
New Developments in Parsing Technology
H Bunt, John Carroll, … Hardcover R4,233 Discovery Miles 42 330

 

Partners