![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks
This book focuses on the fields of fuzzy logic and metaheuristic algorithms, particularly the harmony search algorithm and fuzzy control. There are currently several types of metaheuristics used to solve a range of real-world of problems, and these metaheuristics contain parameters that are usually fixed throughout the iterations. However, a number of techniques are also available that dynamically adjust the parameters of an algorithm, such as probabilistic fuzzy logic. This book proposes a method of addressing the problem of parameter adaptation in the original harmony search algorithm using type-1, interval type-2 and generalized type-2 fuzzy logic. The authors applied this methodology to the resolution of problems of classical benchmark mathematical functions, CEC 2015, CEC2017 functions and to the optimization of various fuzzy logic control cases, and tested the method using six benchmark control problems - four of the Mamdani type: the problem of filling a water tank, the problem of controlling the temperature of a shower, the problem of controlling the trajectory of an autonomous mobile robot and the problem of controlling the speed of an engine; and two of the Sugeno type: the problem of controlling the balance of a bar and ball, and the problem of controlling control the balance of an inverted pendulum. When the interval type-2 fuzzy logic system is used to model the behavior of the systems, the results show better stabilization because the uncertainty analysis is better. As such, the authors conclude that the proposed method, based on fuzzy systems, fuzzy controllers and the harmony search optimization algorithm, improves the behavior of complex control plants.
Models are important tools in psychology used to generate
predictions to test the validity of theories. "Minds and Machines:
Connectionism and Psychological Modeling" examines three different
kinds of models (models of data, mathematical models, and computer
simulations) and discusses a synthetic approach to modeling.
Connectionist models are introduced as tools that are both
synthetic and representational and that can be used as the basis
for conducting synthetic psychology. The book investigates some of
the basic properties of connectionism in the context of synthetic
psychology, including detailed accounts of how the internal
structure of connectionist networks can be interpreted. A website of supplementary material is available at www.bcp.psych.ualberta.ca/~mike/Book2/ and includes free software for conducting the connectionist simulations described in the book as well as instructions for building simple robots to illustrate some of the principles of the synthetic approach.
This book aims at providing an overview of state-of-the-art in both the theory and methods of intuitionistic fuzzy logic, partial differential equations and numerical methods in informatics. It covers topics such as fuzzy intuitionistic Hilbert spaces, intuitionistic fuzzy differential equations, fuzzy intuitionistic metric spaces, and numerical methods for differential equations. It reports on applications such as fuzzy real time scheduling, intelligent control, diagnostics and time series prediction. Chapters were carefully selected among contributions presented at the second edition of the International Conference on Intuitionistic Fuzzy Sets and Mathematical Science, ICIFSMAS, held on April 11-13, 2018, at Al Akhawayn University of Ifrane, in Morocco.
This book describes new theories and applications of artificial neural networks, with a special focus on addressing problems in neuroscience, biology and biophysics and cognitive research. It covers a wide range of methods and technologies, including deep neural networks, large-scale neural models, brain-computer interface, signal processing methods, as well as models of perception, studies on emotion recognition, self-organization and many more. The book includes both selected and invited papers presented at the XX International Conference on Neuroinformatics, held in Moscow, Russia on October 8-12, 2018.
This book presents an extension of the aggregation operator of the generalized interval type-2 Sugeno integral using generalized type-2 fuzzy logic. This extension enables it to handle higher levels of uncertainty when adding any number of sources and types of information in a wide variety of decision-making applications. The authors also demonstrate that the extended aggregation operator offers better performance than other traditional or extended operators. The book is a valuables reference resource for students and researchers working on theory and applications of fuzzy logic in various areas of application where decision making is performed under high levels of uncertainty, such as pattern recognition, time series prediction, intelligent control and manufacturing.
A step-by-step introduction to modeling, training, and forecasting using wavelet networks Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification presents the statistical model identification framework that is needed to successfully apply wavelet networks as well as extensive comparisons of alternate methods. Providing a concise and rigorous treatment for constructing optimal wavelet networks, the book links mathematical aspects of wavelet network construction to statistical modeling and forecasting applications in areas such as finance, chaos, and classification. The authors ensure that readers obtain a complete understanding of model identification by providing in-depth coverage of both model selection and variable significance testing. Featuring an accessible approach with introductory coverage of the basic principles of wavelet analysis, Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification also includes: Methods that can be easily implemented or adapted by researchers, academics, and professionals in identification and modeling for complex nonlinear systems and artificial intelligence Multiple examples and thoroughly explained procedures with numerous applications ranging from financial modeling and financial engineering, time series prediction and construction of confidence and prediction intervals, and classification and chaotic time series prediction An extensive introduction to neural networks that begins with regression models and builds to more complex frameworks Coverage of both the variable selection algorithm and the model selection algorithm for wavelet networks in addition to methods for constructing confidence and prediction intervals Ideal as a textbook for MBA and graduate-level courses in applied neural network modeling, artificial intelligence, advanced data analysis, time series, and forecasting in financial engineering, the book is also useful as a supplement for courses in informatics, identification and modeling for complex nonlinear systems, and computational finance. In addition, the book serves as a valuable reference for researchers and practitioners in the fields of mathematical modeling, engineering, artificial intelligence, decision science, neural networks, and finance and economics.
In this book, a methodology for parameter adaptation in meta-heuristic op-timization methods is proposed. This methodology is based on using met-rics about the population of the meta-heuristic methods, to decide through a fuzzy inference system the best parameter values that were carefully se-lected to be adjusted. With this modification of parameters we want to find a better model of the behavior of the optimization method, because with the modification of parameters, these will affect directly the way in which the global or local search are performed.Three different optimization methods were used to verify the improve-ment of the proposed methodology. In this case the optimization methods are: PSO (Particle Swarm Optimization), ACO (Ant Colony Optimization) and GSA (Gravitational Search Algorithm), where some parameters are se-lected to be dynamically adjusted, and these parameters have the most im-pact in the behavior of each optimization method.Simulation results show that the proposed methodology helps to each optimization method in obtaining better results than the results obtained by the original method without parameter adjustment.
The six volume set LNCS 10634, LNCS 10635, LNCS 10636, LNCS 10637, LNCS 10638, and LNCS 10639 constitues the proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on Machine Learning, Reinforcement Learning, Big Data Analysis, Deep Learning, Brain-Computer Interface, Computational Finance, Computer Vision, Neurodynamics, Sensory Perception and Decision Making, Computational Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing.
The two volume set, LNCS 10613 and 10614, constitutes the proceedings of then 26th International Conference on Artificial Neural Networks, ICANN 2017, held in Alghero, Italy, in September 2017. The 128 full papers included in this volume were carefully reviewed and selected from 270 submissions. They were organized in topical sections named: From Perception to Action; From Neurons to Networks; Brain Imaging; Recurrent Neural Networks; Neuromorphic Hardware; Brain Topology and Dynamics; Neural Networks Meet Natural and Environmental Sciences; Convolutional Neural Networks; Games and Strategy; Representation and Classification; Clustering; Learning from Data Streams and Time Series; Image Processing and Medical Applications; Advances in Machine Learning. There are 63 short paper abstracts that are included in the back matter of the volume.
The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series. Indeed, both service interruptions and resource waste can be reduced with the implementation of an effective forecasting system. Significant research has thus been devoted to the design and development of methodologies for short term load forecasting over the past decades. A class of mathematical models, called Recurrent Neural Networks, are nowadays gaining renewed interest among researchers and they are replacing many practical implementations of the forecasting systems, previously based on static methods. Despite the undeniable expressive power of these architectures, their recurrent nature complicates their understanding and poses challenges in the training procedures. Recently, new important families of recurrent architectures have emerged and their applicability in the context of load forecasting has not been investigated completely yet. This work performs a comparative study on the problem of Short-Term Load Forecast, by using different classes of state-of-the-art Recurrent Neural Networks. The authors test the reviewed models first on controlled synthetic tasks and then on different real datasets, covering important practical cases of study. The text also provides a general overview of the most important architectures and defines guidelines for configuring the recurrent networks to predict real-valued time series.
The two volume set, LNCS 10613 and 10614, constitutes the proceedings of then 26th International Conference on Artificial Neural Networks, ICANN 2017, held in Alghero, Italy, in September 2017. The 128 full papers included in this volume were carefully reviewed and selected from 270 submissions. They were organized in topical sections named: From Perception to Action; From Neurons to Networks; Brain Imaging; Recurrent Neural Networks; Neuromorphic Hardware; Brain Topology and Dynamics; Neural Networks Meet Natural and Environmental Sciences; Convolutional Neural Networks; Games and Strategy; Representation and Classification; Clustering; Learning from Data Streams and Time Series; Image Processing and Medical Applications; Advances in Machine Learning. There are 63 short paper abstracts that are included in the back matter of the volume.
This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks. Furthermore, the authors developed framework is both more concise and mathematically intuitive than previous representations of neural networks. This SpringerBrief is one step towards unlocking the black box of Deep Learning. The authors believe that this framework will help catalyze further discoveries regarding the mathematical properties of neural networks.This SpringerBrief is accessible not only to researchers, professionals and students working and studying in the field of deep learning, but also to those outside of the neutral network community.
This book focuses on identifying the performance challenges involved in computer architectures, optimal configuration settings and analysing their impact on the performance of multi-core architectures. Proposing a power and throughput-aware fuzzy-logic-based reconfiguration for Multi-Processor Systems on Chip (MPSoCs) in both simulation and real-time environments, it is divided into two major parts. The first part deals with the simulation-based power and throughput-aware fuzzy logic reconfiguration for multi-core architectures, presenting the results of a detailed analysis on the factors impacting the power consumption and performance of MPSoCs. In turn, the second part highlights the real-time implementation of fuzzy-logic-based power-efficient reconfigurable multi-core architectures for Intel and Leone3 processors.
"FIELD GUIDE TO DYNAMICAL RECURRENT NETWORKS Acquire the tools for understanding new architectures and algorithms of dynamical recurrent networks (DRNs) from this valuable field guide, which documents recent forays into artificial intelligence, control theory, and connectionism. This unbiased introduction to DRNs and their application to time-series problems (such as classification and prediction) provides a comprehensive overview of the recent explosion of leading research in this prolific field. A Field Guide to Dynamical Recurrent Networks emphasizes the issues driving the development of this class of network structures. It provides a solid foundation in DRN systems theory and practice using consistent notation and terminology. Theoretical presentations are supplemented with applications ranging from cognitive modeling to financial forecasting. A Field Guide to Dynamical Recurrent Networks will enable engineers, research scientists, academics, and graduate students to apply DRNs to various real-world problems and learn about different areas of active research. It provides both state-of-the-art information and a road map to the future of cutting-edge dynamical recurrent networks. About the Editors John F. Kolen has explored the computational capabilities of dynamical recurrent networks on a wide range of projects: computer tomography of ballistic tests, autonomous science on extraterrestrial sensor platforms, and laser marksmanship modeling. His research interests include neural networks, distributed processing, philosophy of computation, and computer gaming. Dr. Kolen is a member of the Institute for Human and Machine Cognition at the University of West Florida. Stefan C. Kremer's research interests include connectionist networks (the subject of his 1996 thesis A Theory of Grammatical Induction in the Connectionist Paradigm), genetic algorithms, signal processing, grammar induction, and image processing. He is an assistant professor of computing and information science at the University of Guelph, Ontario, Canada, and is a founding member of the Guelph Natural Computation Research Group."
The two volume set, LNCS 9886 + 9887, constitutes the proceedings of the 25th International Conference on Artificial Neural Networks, ICANN 2016, held in Barcelona, Spain, in September 2016. The 121 full papers included in this volume were carefully reviewed and selected from 227 submissions. They were organized in topical sections named: from neurons to networks; networks and dynamics; higher nervous functions; neuronal hardware; learning foundations; deep learning; classifications and forecasting; and recognition and navigation. There are 47 short paper abstracts that are included in the back matter of the volume.
The two volume set, LNCS 9886 + 9887, constitutes the proceedings of the 25th International Conference on Artificial Neural Networks, ICANN 2016, held in Barcelona, Spain, in September 2016. The 121 full papers included in this volume were carefully reviewed and selected from 227 submissions. They were organized in topical sections named: from neurons to networks; networks and dynamics; higher nervous functions; neuronal hardware; learning foundations; deep learning; classifications and forecasting; and recognition and navigation. There are 47 short paper abstracts that are included in the back matter of the volume.
Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neuroscience. The methods are demonstrated through case studies of real problems to empower readers to build their own solutions. The book covers a wide variety of methods, including supervised classification with non-probabilistic models (nearest-neighbors, classification trees, rule induction, artificial neural networks and support vector machines) and probabilistic models (discriminant analysis, logistic regression and Bayesian network classifiers), meta-classifiers, multi-dimensional classifiers and feature subset selection methods. Other parts of the book are devoted to association discovery with probabilistic graphical models (Bayesian networks and Markov networks) and spatial statistics with point processes (complete spatial randomness and cluster, regular and Gibbs processes). Cellular, structural, functional, medical and behavioral neuroscience levels are considered.
In this book a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially fuzzy weights.The internal operation of the neuron is changed to work with two internal calculations for the activation function to obtain two results as outputs of the proposed method. Simulation results and a comparative study among monolithic neural networks, neural network with type-1 fuzzy weights and neural network with type-2 fuzzy weights are presented to illustrate the advantages of the proposed method.The proposed approach is based on recent methods that handle adaptation of weights using fuzzy logic of type-1 and type-2. The proposed approach is applied to a cases of prediction for the Mackey-Glass (for o=17) and Dow-Jones time series, and recognition of person with iris biometric measure. In some experiments, noise was applied in different levels to the test data of the Mackey-Glass time series for showing that the type-2 fuzzy backpropagation approach obtains better behavior and tolerance to noise than the other methods.The optimization algorithms that were used are the genetic algorithm and the particle swarm optimization algorithm and the purpose of applying these methods was to find the optimal type-2 fuzzy inference systems for the neural network with type-2 fuzzy weights that permit to obtain the lowest prediction error.
The work in this book is based on philosophical as well as logical views on the subject of decoding the 'progress' of decision making process in the cognition system of a decision maker (be it a human or an animal or a bird or any living thing which has a brain) while evaluating the membership value (x) in a fuzzy set or in an intuitionistic fuzzy set or in any such soft computing set model or in a crisp set. A new theory is introduced called by "Theory of CIFS". The following two hypothesis are hidden facts in fuzzy computing or in any soft computing process :- Fact-1: A decision maker (intelligent agent) can never use or apply 'fuzzy theory' or any soft-computing set theory without intuitionistic fuzzy system. Fact-2 : The Fact-1 does not necessarily require that a fuzzy decision maker (or a crisp ordinary decision maker or a decision maker with any other soft theory models or a decision maker like animal/bird which has brain, etc.) must be aware or knowledgeable about IFS Theory! The "Theory of CIFS" is developed with a careful analysis unearthing the correctness of these two facts. Two examples of 'decision making problems' with complete solutions are presented out of which one example will show the dominance of the application potential of intuitionistic fuzzy set theory over fuzzy set theory, and the other will show the converse i.e. the dominance of the application potential of fuzzy set theory over intuitionistic fuzzy set theory in some cases. The "Theory of CIFS" may be viewed to belong to the subjects : Theory of Intuitionistic Fuzzy Sets, Soft Computing, Artificial Intelligence, etc.
The four volume set LNCS 9489, LNCS 9490, LNCS 9491, and LNCS 9492 constitutes the proceedings of the 22nd International Conference on Neural Information Processing, ICONIP 2015, held in Istanbul, Turkey, in November 2015. The 231 full papers presented were carefully reviewed and selected from 375 submissions. The 4 volumes represent topical sections containing articles on Learning Algorithms and Classification Systems; Artificial Intelligence and Neural Networks: Theory, Design, and Applications; Image and Signal Processing; and Intelligent Social Networks.
The four volume set LNCS 9489, LNCS 9490, LNCS 9491, and LNCS 9492 constitutes the proceedings of the 22nd International Conference on Neural Information Processing, ICONIP 2015, held in Istanbul, Turkey, in November 2015. The 231 full papers presented were carefully reviewed and selected from 375 submissions. The 4 volumes represent topical sections containing articles on Learning Algorithms and Classification Systems; Artificial Intelligence and Neural Networks: Theory, Design, and Applications; Image and Signal Processing; and Intelligent Social Networks.
The four volume set LNCS 9489, LNCS 9490, LNCS 9491, and LNCS 9492 constitutes the proceedings of the 22nd International Conference on Neural Information Processing, ICONIP 2015, held in Istanbul, Turkey, in November 2015. The 231 full papers presented were carefully reviewed and selected from 375 submissions. The 4 volumes represent topical sections containing articles on Learning Algorithms and Classification Systems; Artificial Intelligence and Neural Networks: Theory, Design, and Applications; Image and Signal Processing; and Intelligent Social Networks.
The three volume set LNCS 8834, LNCS 8835, and LNCS 8836 constitutes the proceedings of the 20th International Conference on Neural Information Processing, ICONIP 2014, held in Kuching, Malaysia, in November 2014. The 231 full papers presented were carefully reviewed and selected from 375 submissions. The selected papers cover major topics of theoretical research, empirical study, and applications of neural information processing research. The 3 volumes represent topical sections containing articles on cognitive science, neural networks and learning systems, theory and design, applications, kernel and statistical methods, evolutionary computation and hybrid intelligent systems, signal and image processing, and special sessions intelligent systems for supporting decision, making processes, theories and applications, cognitive robotics, and learning systems for social network and web mining.
This book focuses on the use of AI/ML-based techniques to solve issues related to IoT-based environments, as well as their applications. It addresses, among others, signal detection, channel modeling, resource optimization, routing protocol design, transport layer optimization, user/application behavior prediction, software-defi ned networking, congestion control, communication network optimization, security, and anomaly detection.
What happens in our brain when we make a decision? What triggers a neuron to send out a signal? What is the neural code? This textbook for advanced undergraduate and beginning graduate students provides a thorough and up-to-date introduction to the fields of computational and theoretical neuroscience. It covers classical topics, including the Hodgkin-Huxley equations and Hopfield model, as well as modern developments in the field such as Generalized Linear Models and decision theory. Concepts are introduced using clear step-by-step explanations suitable for readers with only a basic knowledge of differential equations and probabilities, and are richly illustrated by figures and worked-out examples. End-of-chapter summaries and classroom-tested exercises make the book ideal for courses or for self-study. The authors also give pointers to the literature and an extensive bibliography, which will prove invaluable to readers interested in further study. |
![]() ![]() You may like...
Fuzzy Systems - Theory and Applications
Constantin Volosencu
Hardcover
R3,543
Discovery Miles 35 430
Intelligent Analysis Of Fundus Images…
Yuanyuan Chen, Yi Zhang, …
Hardcover
R2,438
Discovery Miles 24 380
Research Anthology on Artificial Neural…
Information R Management Association
Hardcover
R14,774
Discovery Miles 147 740
Research Anthology on Artificial Neural…
Information R Management Association
Hardcover
R14,768
Discovery Miles 147 680
Biomedical and Business Applications…
Richard S Segall, Gao Niu
Hardcover
R7,586
Discovery Miles 75 860
Deep Neural Networks for Multimodal…
Annamalai Suresh, R. Udendhran, …
Hardcover
R8,622
Discovery Miles 86 220
|