![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks
A comprehensive reference book for detailed explanations for every algorithm and techniques related to the transformers. 60+ transformer architectures covered in a comprehensive manner. A book for understanding how to apply the transformer techniques in speech, text, time series, and computer vision. Practical tips and tricks for each architecture and how to use it in the real world. Hands-on case studies and code snippets for theory and practical real-world analysis using the tools and libraries, all ready to run in Google Colab.
Negnevitsky shows students how to build intelligent systems drawing on techniques from knowledge-based systems, neural networks, fuzzy systems, evolutionary computation and now also intelligent agents. The principles behind these techniques are explained without resorting to complex mathematics, showing how the various techniques are implemented, when they are useful and when they are not. No particular programming language is assumed and the book does not tie itself to any of the software tools available. However, available tools and their uses are described, and program examples are given in Java. The lack of assumed prior knowledge makes this book ideal for any introductory courses in artificial intelligence or intelligent systems design, while the contemporary coverage means more advanced students will benefit by discovering the latest state-of-the-art techniques, particularly in intelligent agents and knowledge discovery.
This book generalizes fuzzy logic systems for different types of uncertainty, including - semantic ambiguity resulting from limited perception or lack of knowledge about exact membership functions - lack of attributes or granularity arising from discretization of real data - imprecise description of membership functions - vagueness perceived as fuzzification of conditional attributes. Consequently, the membership uncertainty can be modeled by combining methods of conventional and type-2 fuzzy logic, rough set theory and possibility theory. In particular, this book provides a number of formulae for implementing the operation extended on fuzzy-valued fuzzy sets and presents some basic structures of generalized uncertain fuzzy logic systems, as well as introduces several of methods to generate fuzzy membership uncertainty. It is desirable as a reference book for under-graduates in higher education, master and doctor graduates in the courses of computer science, computational intelligence, or fuzzy control and classification, and is especially dedicated to researchers and practitioners in industry.
The field of Artificial Neural Networks is the fastest growing field in Information Technology and specifically, in Artificial Intelligence and Machine Learning.This must-have compendium presents the theory and case studies of artificial neural networks. The volume, with 4 new chapters, updates the earlier edition by highlighting recent developments in Deep-Learning Neural Networks, which are the recent leading approaches to neural networks. Uniquely, the book also includes case studies of applications of neural networks - demonstrating how such case studies are designed, executed and how their results are obtained.The title is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining.
"Connectionism and the Mind" provides a clear and balanced
introduction to connectionist networks and explores their
theoretical and philosophical implications. As in the first edition, the first few chapters focus on network architecture and offer an accessible treatment of the equations that govern learning and the propagation of activation, including a glossary for reference. The reader is walked step-by-step through such tasks as memory retrieval and prototype formation. The middle chapters pursue the implications of connectionism's focus on pattern recognition and completion as fundamental to cognition. Some proponents of connectionism have emphasized these functions to the point of rejecting any role for linguistically structured representations and rules, resulting in heated debates with advocates of symbol processing accounts of cognition. The coverage of this controversy has been updated and augmented by a new chapter on modular networks. Finally, three new chapters discuss the relation of connectionism to three emerging research programs: dynamical systems theory, artificial life, and cognitive neuroscience.
Real-world information is imperfect and is usually described in natural language (NL). Moreover, this information is often partially reliable and a degree of reliability is also expressed in NL. In view of this, the concept of a Z-number is a more adequate concept for the description of real-world information. The main critical problem that naturally arises in processing Z-numbers-based information is the computation with Z-numbers. Nowadays, there is no arithmetic of Z-numbers suggested in existing literature.This book is the first to present a comprehensive and self-contained theory of Z-arithmetic and its applications. Many of the concepts and techniques described in the book, with carefully worked-out examples, are original and appear in the literature for the first time.The book will be helpful for professionals, academics, managers and graduate students in fuzzy logic, decision sciences, artificial intelligence, mathematical economics, and computational economics.
Recognized as a "Recommended" title by Choice for their April 2021 issue. Choice is a publishing unit at the Association of College & Research Libraries (ACR&L), a division of the American Library Association. Choice has been the acknowledged leader in the provision of objective, high-quality evaluations of nonfiction academic writing. Metaheuristic optimization is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information or limited computation capacity. This is usually applied when two or more objectives are to be optimized simultaneously. This book is presented with two major objectives. Firstly, it features chapters by eminent researchers in the field providing the readers about the current status of the subject. Secondly, algorithm-based optimization or advanced optimization techniques, which are applied to mostly non-engineering problems, are applied to engineering problems. This book will also serve as an aid to both research and industry. Usage of these methodologies would enable the improvement in engineering and manufacturing technology and support an organization in this era of low product life cycle. Features: Covers the application of recent and new algorithms Focuses on the development aspects such as including surrogate modeling, parallelization, game theory, and hybridization Presents the advances of engineering applications for both single-objective and multi-objective optimization problems Offers recent developments from a variety of engineering fields Discusses Optimization using Evolutionary Algorithms and Metaheuristics applications in engineering
This volume collects together most of the papers presented at the Twelfth Neural Computation and Psychology Workshop (NCPW12) held in 2010 at Birkbeck College (England). The conference invited submissions on neurocomputational models of all cognitive and psychological processes. The special theme of this conference was "From Theory to Applications," which allowed submissions of pure theoretical work and of pure applied work. This topic extended the boundaries of the conference and highlighted the extent to which computational models of cognition and models in general are integrated in the cognitive sciences. The chapters in this book cover a wide range of research topics in neural computation and psychology, including cognitive development, language processing, higher-level cognition, but also ecology-based modeling of cognition, philosophy of science, and real-world applications.
New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters.
This book covers the issues related to optimization of engineering and management problems using soft computing techniques with an industrial outlook. It covers a broad area related to real life complex decision making problems using a heuristics approach. It also explores a wide perspective and future directions in industrial engineering research on a global platform/scenario. The book highlights the concept of optimization, presents various soft computing techniques, offers sample problems, and discusses related software programs complete with illustrations. Features Explains the concept of optimization and relevance to soft computing techniques towards optimal solution in engineering and management Presents various soft computing techniques Offers problems and their optimization using various soft computing techniques Discusses related software programs, with illustrations Provides a step-by-step tutorial on how to handle relevant software for obtaining the optimal solution to various engineering problems
Although fuzzy systems and neural networks are central to the field of soft computing, most research work has focused on the development of the theories, algorithms, and designs of systems for specific applications. There has been little theoretical support for fuzzy neural systems, especially their mathematical foundations. Fuzzy Neural Intelligent Systems fills this gap. It develops a mathematical basis for fuzzy neural networks, offers a better way of combining fuzzy logic systems with neural networks, and explores some of their engineering applications. Dividing their focus into three main areas of interest, the authors give a systematic, comprehensive treatment of the relevant concepts and modern practical applications: -Fundamental concepts and theories for fuzzy systems and neural networks. -Foundation for fuzzy neural networks and important related topics -Case examples for neuro-fuzzy systems, fuzzy systems, neural network systems, and fuzzy-neural systems Suitable for self-study, as a reference, and ideal as a textbook, Fuzzy Neural Intelligent Systems is accessible to students with a basic background in linear algebra and engineering mathematics. Mastering the material in this textbook will prepare students to better understand, design, and implement fuzzy neural systems, develop new applications, and further advance the field.
There are many books on neural networks, some of which cover computational intelligence, but none that incorporate both feature extraction and computational intelligence, as Supervised and Unsupervised Pattern Recognition does. This volume describes the application of a novel, unsupervised pattern recognition scheme to the classification of various types of waveforms and images.
With contributions from more than 40 renowned experts, Modeling in the Neurosciences: From Ionic Channels to Neural Networks is essential for those interested in neuronal modeling and quantitative neiroscience. Focusing on new mathematical and computer models, techniques and methods, this monograph represents a cohesive and comprehensive treatment of various aspects of the neurosciences from the biophysical, cellular and netwrok levels. Many state-of-the-art examples are presented as to how mathematical and computer modeling can contribute to the understanding of mechanisms and systems in the neurosciences. Each chapter also includes suggestions of possible refinements for future modeling in this rapidly changing and expanding field. This book will benefit and inspire the advanced modeler, and give the beginner sufficient confidence to model a wide selection of neuronal systems at the biophysical, cellular and network levels.
Information theoretics vis-a-vis neural networks generally embodies parametric entities and conceptual bases pertinent to memory considerations and information storage, information-theoretic based cost-functions, and neurocybernetics and self-organization. Existing studies only sparsely cover the entropy and/or cybernetic aspects of neural information. Information-Theoretic Aspects of Neural Networks cohesively explores this burgeoning discipline, covering topics such as: -Shannon information and information dynamics -neural complexity as an information processing system -memory and information storage in the interconnected neural web -extremum (maximum and minimum) information entropy -neural network training -non-conventional, statistical distance-measures for neural network optimizations -symmetric and asymmetric characteristics of information-theoretic error-metrics -algorithmic complexity based representation of neural information-theoretic parameters -genetic algorithms versus neural information -dynamics of neurocybernetics viewed in the information-theoretic plane -nonlinear, information-theoretic transfer function of the neural cellular units -statistical mechanics, neural networks, and information theory -semiotic framework of neural information processing and neural information flow -fuzzy information and neural networks -neural dynamics conceived through fuzzy information parameters -neural information flow dynamics -informatics of neural stochastic resonance Information-Theoretic Aspects of Neural Networks acts as an exceptional resource for engineers, scientists, and computer scientists working in the field of artificial neural networks as well as biologists applying theconcepts of communication theory and protocols to the functioning of the brain. The information in this book explores new avenues in the field and creates a common platform for analyzing the neural complex as well as artificial neural networks.
Mathematical psychology is an interdisciplinary area of research in
which methods of mathematics, operations research, and computer
science in psychology are used. Now more than thirty years old, the
field has continued to grow rapidly and has taken on a life of its
own. This volume summarizes recent progress in mathematical
psychology as seen by some of the leading figures in the field as
well as some of its leading young researchers.
Complex Systems are natural systems that science is unable to describe exhaustively. Examples of Complex Systems are both unicellular and multicellular living beings; human brains; human immune systems; ecosystems; human societies; the global economy; the climate and geology of our planet. This book is an account of a marvelous interdisciplinary journey the author made to understand properties of the Complex Systems. He has undertaken his trip, equipped with the fundamental principles of physical chemistry, in particular, the Second Law of Thermodynamics that describes the spontaneous evolution of our universe, and the tools of Non-linear dynamics. By dealing with many disciplines, in particular, chemistry, biology, physics, economy, and philosophy, the author demonstrates that Complex Systems are intertwined networks, working in out-of-equilibrium conditions, which exhibit emergent properties, such as self-organization phenomena and chaotic behaviors in time and space.
This book contains the proceedings of the 22nd EANN "Engineering Applications of Neural Networks" 2021 that comprise of research papers on both theoretical foundations and cutting-edge applications of artificial intelligence. Based on the discussed research areas, emphasis is given in advances of machine learning (ML) focusing on the following algorithms-approaches: Augmented ML, autoencoders, adversarial neural networks, blockchain-adaptive methods, convolutional neural networks, deep learning, ensemble methods, learning-federated learning, neural networks, recurrent - long short-term memory. The application domains are related to: Anomaly detection, bio-medical AI, cyber-security, data fusion, e-learning, emotion recognition, environment, hyperspectral imaging, fraud detection, image analysis, inverse kinematics, machine vision, natural language, recommendation systems, robotics, sentiment analysis, simulation, stock market prediction.
Neural Network Analysis, Architectures and Applications discusses the main areas of neural networks, with each authoritative chapter covering the latest information from different perspectives. Divided into three parts, the book first lays the groundwork for understanding and simplifying networks. It then describes novel architectures and algorithms, including pulse-stream techniques, cellular neural networks, and multiversion neural computing. The book concludes by examining various neural network applications, such as neuron-fuzzy control systems and image compression. This final part of the book also provides a case study involving oil spill detection. This book is invaluable for students and practitioners who have a basic understanding of neural computing yet want to broaden and deepen their knowledge of the field.
This superb new book is one of the first publications in recent years to provide a broad overview of this interdisciplinary field. Most of the book is written in a self contained manner, assuming only a general knowledge of statistical mechanics and basic probabilty theory . It provides the reader with a sound introduction to the field and to the analytical techniques necessary to follow its most recent developments
The addition of artificial neural network computing to traditional
pattern recognition has given rise to a new, different, and more
powerful methodology that is presented in this interesting book.
This is a practical guide to the application of artificial neural
networks.
Composed of three sections, this book presents the most popular
training algorithm for neural networks: backpropagation. The first
section presents the theory and principles behind backpropagation
as seen from different perspectives such as statistics, machine
learning, and dynamical systems. The second presents a number of
network architectures that may be designed to match the general
concepts of Parallel Distributed Processing with backpropagation
learning. Finally, the third section shows how these principles can
be applied to a number of different fields related to the cognitive
sciences, including control, speech recognition, robotics, image
processing, and cognitive psychology. The volume is designed to
provide both a solid theoretical foundation and a set of examples
that show the versatility of the concepts. Useful to experts in the
field, it should also be most helpful to students seeking to
understand the basic principles of connectionist learning and to
engineers wanting to add neural networks in general -- and
backpropagation in particular -- to their set of problem-solving
methods.
Composed of three sections, this book presents the most popular
training algorithm for neural networks: backpropagation. The first
section presents the theory and principles behind backpropagation
as seen from different perspectives such as statistics, machine
learning, and dynamical systems. The second presents a number of
network architectures that may be designed to match the general
concepts of Parallel Distributed Processing with backpropagation
learning. Finally, the third section shows how these principles can
be applied to a number of different fields related to the cognitive
sciences, including control, speech recognition, robotics, image
processing, and cognitive psychology. The volume is designed to
provide both a solid theoretical foundation and a set of examples
that show the versatility of the concepts. Useful to experts in the
field, it should also be most helpful to students seeking to
understand the basic principles of connectionist learning and to
engineers wanting to add neural networks in general -- and
backpropagation in particular -- to their set of problem-solving
methods.
Neural Network Modeling offers a cohesive approach to the statistical mechanics and principles of cybernetics as a basis for neural network modeling. It brings together neurobiologists and the engineers who design intelligent automata to understand the physics of collective behavior pertinent to neural elements and the self-control aspects of neurocybernetics. The theoretical perspectives and explanatory projections portray the most current information in the field, some of which counters certain conventional concepts in the visualization of neuronal interactions.
This book covers the fundamentals in designing and deploying techniques using deep architectures. It is intended to serve as a beginner's guide to engineers or students who want to have a quick start on learning and/or building deep learning systems. This book provides a good theoretical and practical understanding and a complete toolkit of basic information and knowledge required to understand and build convolutional neural networks (CNN) from scratch. The book focuses explicitly on convolutional neural networks, filtering out other material that co-occur in many deep learning books on CNN topics. |
![]() ![]() You may like...
View-Dependent Character Animation
Parag Chaudhuri, Prem Kalra, …
Hardcover
R2,873
Discovery Miles 28 730
SQL Server 2019 AlwaysOn - Supporting…
Peter A. Carter
Paperback
|