![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks
Mathematical psychology is an interdisciplinary area of research in
which methods of mathematics, operations research, and computer
science in psychology are used. Now more than thirty years old, the
field has continued to grow rapidly and has taken on a life of its
own. This volume summarizes recent progress in mathematical
psychology as seen by some of the leading figures in the field as
well as some of its leading young researchers.
- Written by world-leading subject specialist in both sport management and artificial intelligence - Includes interviews with elite sports managers and coaches - Examines the competitive advantages offered by AI to a wide-range of areas including Recruitment, Performance & Tactics, Health & Fitness, Pedagogy, Broadcasting, eSports, Gambling, and Stadium Design
This book builds on two recently published books by the same authors on fuzzy graph theory. Continuing in their tradition, it provides readers with an extensive set of tools for applying fuzzy mathematics and graph theory to social problems such as human trafficking and illegal immigration. Further, it especially focuses on advanced concepts such as connectivity and Wiener indices in fuzzy graphs, distance, operations on fuzzy graphs involving t-norms, and the application of dialectic synthesis in fuzzy graph theory. Each chapter also discusses a number of key, representative applications. Given its approach, the book provides readers with an authoritative, self-contained guide to - and at the same time an inspiring read on - the theory and modern applications of fuzzy graphs. For newcomers, the book also includes a brief introduction to fuzzy sets, fuzzy relations and fuzzy graphs.
Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond.This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition - all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained.The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining.
AI for Digital Warfare explores how the weaponising of artificial intelligence can and will change how warfare is being conducted, and what impact it will have on the corporate world. With artificial intelligence tools becoming increasingly advanced, and in many cases more humanlike, their potential in psychological warfare is being recognised, which means digital warfare can move beyond just shutting down IT systems into more all-encompassing hybrid war strategies.
Some of the fundamental constraints of automated machine vision have been the inability to automatically adapt parameter settings or utilize previous adaptations in changing environments. Symbolic Visual Learning presents research which adds visual learning capabilities to computer vision systems. Using this state-of-the-art recognition technology, the outcome is different adaptive recognition systems that can measure their own performance, learn from their experience and outperform conventional static designs. Written as a companion volume to Early Visual Learning (edited by S. Nayar and T. Poggio), this book is intended for researchers and students in machine vision and machine learning.
This book contains a selection of the papers presented at the XVII SIGEF Congress. It presents fuzzy logic, neural networks and other intelligent techniques applied to economic and business problems. This book is very useful for researchers and graduate students aiming to introduce themselves to the field of quantitative techniques for overcoming uncertain environments. The contributors are experienced scholars of different countries who offer real world applications of these mathematical techniques.
a short and accessible introduction on AI and Cars written by leading experts
Predictive Intelligence in Biomedical and Health Informatics focuses on imaging, computer-aided diagnosis and therapy as well as intelligent biomedical image processing and analysis. It develops computational models, methods and tools for biomedical engineering related to computer-aided diagnostics (CAD), computer-aided surgery (CAS), computational anatomy and bioinformatics. Large volumes of complex data are often a key feature of biomedical and engineering problems and computational intelligence helps to address such problems. Practical and validated solutions to hard biomedical and engineering problems can be developed by the applications of neural networks, support vector machines, reservoir computing, evolutionary optimization, biosignal processing, pattern recognition methods and other techniques to address complex problems of the real world.
This volume collects together most of the papers presented at the Twelfth Neural Computation and Psychology Workshop (NCPW12) held in 2010 at Birkbeck College (England). The conference invited submissions on neurocomputational models of all cognitive and psychological processes. The special theme of this conference was "From Theory to Applications," which allowed submissions of pure theoretical work and of pure applied work. This topic extended the boundaries of the conference and highlighted the extent to which computational models of cognition and models in general are integrated in the cognitive sciences. The chapters in this book cover a wide range of research topics in neural computation and psychology, including cognitive development, language processing, higher-level cognition, but also ecology-based modeling of cognition, philosophy of science, and real-world applications.
This book provides a new forum for the dissemination of knowledge in both theoretical and applied research on swarm intelligence (SI) and artificial neural network (ANN). It accelerates interaction between the two bodies of knowledge and fosters a unified development in the next generation of computational model for machine learning. To the best of our knowledge, the integration of SI and ANN is the first attempt to integrate various aspects of both the independent research area into a single volume.
Cognitive Computing is a new topic which aims to simulate human thought processes using computers that self-learn through data mining, pattern recognition, and natural language processing. This book focuses on the applications of Cognitive Computing in areas like Robotics, Blockchain, Deep Learning, and Wireless Technologies. This book covers the basics of Green Computing, discusses Cognitive Science methodologies in Robotics, Computer Science, Wireless Networks, and Deep Learning. It goes on to present empirical data and research techniques, modelling techniques and offers a data-driven approach to decision making and problem solving. This book is written for researchers, academicians, undergraduate and graduate students, and industry persons who are working on current applications of Cognitive Computing.
This book provides theoretical and practical knowledge on AI and swarm intelligence. It provides a methodology for EA (evolutionary algorithm)-based approach for complex adaptive systems with the integration of several meta-heuristics, e.g., ACO (Ant Colony Optimization), ABC (Artificial Bee Colony), and PSO (Particle Swarm Optimization), etc. These developments contribute towards better problem-solving methodologies in AI. The book also covers emerging uses of swarm intelligence in applications such as complex adaptive systems, reaction-diffusion computing, and diffusion-limited aggregation, etc. Another emphasis is its real-world applications. We give empirical examples from real-world problems and show that the proposed approaches are successful when addressing tasks from such areas as swarm robotics, silicon traffics, image understanding, Vornoi diagrams, queuing theory, and slime intelligence, etc. Each chapter begins with the background of the problem followed by the current state-of-the-art techniques of the field, and ends with a detailed discussion. In addition, the simulators, based on optimizers such as PSO and ABC complex adaptive system simulation, are described in detail. These simulators, as well as some source codes, are available online on the author's website for the benefit of readers interested in getting some hands-on experience of the subject. The concepts presented in this book aim to promote and facilitate the effective research in swarm intelligence approaches in both theory and practice. This book would also be of value to other readers because it covers interdisciplinary research topics that encompass problem-solving tasks in AI, complex adaptive systems, and meta-heuristics.
This book comprehensively studies fuzzy temporal and spatial information, starting from the basics on fuzzy set theory and temporal/spatial reasoning, the development of a new model to represent fuzzy temporal/spatial information, the study of efficient and complete reasoning algorithms, and their application in an information retrieval context. This useful volume presents the first approach that goes beyond merely representing information, by thoroughly addressing a variety of reasoning tasks. It also focuses on applications in the domain of information retrieval, and demonstrating the practical importance of the proposed framework.
Neural Nets and Chaotic Carriers develops rational principles for the design of associative memories, with a view to applying these principles to models with irregularly oscillatory operation so evident in biological neural systems, and necessitated by the meaninglessness of absolute signal levels.Design is based on the criterion that an associative memory must be able to cope with "fading data", i.e., to form an inference from the data even as its memory of that data degrades. The resultant net shows striking biological parallels. When these principles are combined with the Freeman specification of a neural oscillator, some remarkable effects emerge. For example, the commonly-observed phenomenon of neuronal bursting appears, with gamma-range oscillation modulated by a low-frequency square-wave oscillation (the "escapement oscillation"). Bridging studies and new results of artificial and biological neural networks, the book has a strong research character. It is, on the other hand, accessible to non-specialists for its concise exposition on the basics.
The book offers an insight on artificial neural networks for giving a robot a high level of autonomous tasks, such as navigation, cost mapping, object recognition, intelligent control of ground and aerial robots, and clustering, with real-time implementations. The reader will learn various methodologies that can be used to solve each stage on autonomous navigation for robots, from object recognition, clustering of obstacles, cost mapping of environments, path planning, and vision to low level control. These methodologies include real-life scenarios to implement a wide range of artificial neural network architectures. Includes real-time examples for various robotic platforms. Discusses real-time implementation for land and aerial robots. Presents solutions for problems encountered in autonomous navigation. Explores the mathematical preliminaries needed to understand the proposed methodologies. Integrates computing, communications, control, sensing, planning, and other techniques by means of artificial neural networks for robotics.
At the fascinating frontiers of neurobiology, mathematics and psychophysics, this book addresses the problem of human and computer vision on the basis of cognitive modeling. After recalling the physics of light and its transformation through media and optics, H rault presents the principles of the primate's visual system in terms of anatomy and functionality. Then, the neuronal circuitry of the retina is analyzed in terms of spatio-temporal filtering. This basic model is extended to the concept of neuromorphic circuits for motion processing and to the processing of color in the retina. For more in-depth studies, the adaptive non-linear properties of the photoreceptors and of ganglion cells are addressed, exhibiting all the power of the retinal pre- processing of images as a system of information cleaning suitable for further cortical processing. As a target of retinal information, the primary visual area is presented as a bank of filters able to extract valuable descriptors of images, suitable for categorization and recognition and also for local information extraction such as saliency and perspective. All along the book, many comparisons between the models and human perception are discussed as well as detailed applications to computer vision.
Industrial revolutions have impacted both, manufacturing and service. From the steam engine to digital automated production, the industrial revolutions have conduced significant changes in operations and supply chain management (SCM) processes. Swift changes in manufacturing and service systems have led to phenomenal improvements in productivity. The fast-paced environment brings new challenges and opportunities for the companies that are associated with the adaptation to the new concepts such as Internet of Things (IoT) and Cyber Physical Systems, artificial intelligence (AI), robotics, cyber security, data analytics, block chain and cloud technology. These emerging technologies facilitated and expedited the birth of Logistics 4.0. Industrial Revolution 4.0 initiatives in SCM has attracted stakeholders' attentions due to it is ability to empower using a set of technologies together that helps to execute more efficient production and distribution systems. This initiative has been called Logistics 4.0 of the fourth Industrial Revolution in SCM due to its high potential. Connecting entities, machines, physical items and enterprise resources to each other by using sensors, devices and the internet along the supply chains are the main attributes of Logistics 4.0. IoT enables customers to make more suitable and valuable decisions due to the data-driven structure of the Industry 4.0 paradigm. Besides that, the system's ability of gathering and analyzing information about the environment at any given time and adapting itself to the rapid changes add significant value to the SCM processes. In this peer-reviewed book, experts from all over the world, in the field present a conceptual framework for Logistics 4.0 and provide examples for usage of Industry 4.0 tools in SCM. This book is a work that will be beneficial for both practitioners and students and academicians, as it covers the theoretical framework, on the one hand, and includes examples of practice and real world.
This book is the third in a series based on conferences sponsored
by the Metroplex Institute for Neural Dynamics, an
interdisciplinary organization of neural network professionals in
academia and industry. The topics selected are of broad interest to
both those interested in designing machines to perform intelligent
functions and those interested in studying how these functions are
actually performed by living organisms and generate discussion of
basic and controversial issues in the study of mind.
This book generalizes fuzzy logic systems for different types of uncertainty, including - semantic ambiguity resulting from limited perception or lack of knowledge about exact membership functions - lack of attributes or granularity arising from discretization of real data - imprecise description of membership functions - vagueness perceived as fuzzification of conditional attributes. Consequently, the membership uncertainty can be modeled by combining methods of conventional and type-2 fuzzy logic, rough set theory and possibility theory. In particular, this book provides a number of formulae for implementing the operation extended on fuzzy-valued fuzzy sets and presents some basic structures of generalized uncertain fuzzy logic systems, as well as introduces several of methods to generate fuzzy membership uncertainty. It is desirable as a reference book for under-graduates in higher education, master and doctor graduates in the courses of computer science, computational intelligence, or fuzzy control and classification, and is especially dedicated to researchers and practitioners in industry.
The world is witnessing the rapid evolution of its own nervous
system by an unparalleled growth in communication technology. Like
the evolution of the nervous systems in animals, this growth is
being driven by a survival-of-the-fittest-mechanism. In
telecommunications, the entities that fuel this growth are
companies and nations who compete with each other. Companies with
superior information systems can outrun and outsmart others because
they serve their customers better.
Composed of three sections, this book presents the most popular
training algorithm for neural networks: backpropagation. The first
section presents the theory and principles behind backpropagation
as seen from different perspectives such as statistics, machine
learning, and dynamical systems. The second presents a number of
network architectures that may be designed to match the general
concepts of Parallel Distributed Processing with backpropagation
learning. Finally, the third section shows how these principles can
be applied to a number of different fields related to the cognitive
sciences, including control, speech recognition, robotics, image
processing, and cognitive psychology. The volume is designed to
provide both a solid theoretical foundation and a set of examples
that show the versatility of the concepts. Useful to experts in the
field, it should also be most helpful to students seeking to
understand the basic principles of connectionist learning and to
engineers wanting to add neural networks in general -- and
backpropagation in particular -- to their set of problem-solving
methods.
Recognized as a "Recommended" title by Choice for their April 2021 issue. Choice is a publishing unit at the Association of College & Research Libraries (ACR&L), a division of the American Library Association. Choice has been the acknowledged leader in the provision of objective, high-quality evaluations of nonfiction academic writing. Metaheuristic optimization is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information or limited computation capacity. This is usually applied when two or more objectives are to be optimized simultaneously. This book is presented with two major objectives. Firstly, it features chapters by eminent researchers in the field providing the readers about the current status of the subject. Secondly, algorithm-based optimization or advanced optimization techniques, which are applied to mostly non-engineering problems, are applied to engineering problems. This book will also serve as an aid to both research and industry. Usage of these methodologies would enable the improvement in engineering and manufacturing technology and support an organization in this era of low product life cycle. Features: Covers the application of recent and new algorithms Focuses on the development aspects such as including surrogate modeling, parallelization, game theory, and hybridization Presents the advances of engineering applications for both single-objective and multi-objective optimization problems Offers recent developments from a variety of engineering fields Discusses Optimization using Evolutionary Algorithms and Metaheuristics applications in engineering
This book covers the issues related to optimization of engineering and management problems using soft computing techniques with an industrial outlook. It covers a broad area related to real life complex decision making problems using a heuristics approach. It also explores a wide perspective and future directions in industrial engineering research on a global platform/scenario. The book highlights the concept of optimization, presents various soft computing techniques, offers sample problems, and discusses related software programs complete with illustrations. Features Explains the concept of optimization and relevance to soft computing techniques towards optimal solution in engineering and management Presents various soft computing techniques Offers problems and their optimization using various soft computing techniques Discusses related software programs, with illustrations Provides a step-by-step tutorial on how to handle relevant software for obtaining the optimal solution to various engineering problems |
![]() ![]() You may like...
Explainable Neural Networks Based on…
Jozsef Dombi, Orsolya Csiszar
Hardcover
R4,131
Discovery Miles 41 310
State of the Art in Neural Networks and…
Ayman S. El-Baz, Jasjit S. Suri
Paperback
R3,524
Discovery Miles 35 240
Research Anthology on Artificial Neural…
Information R Management Association
Hardcover
R14,397
Discovery Miles 143 970
Fuzzy Systems - Theory and Applications
Constantin Volosencu
Hardcover
R3,437
Discovery Miles 34 370
Research Anthology on Artificial Neural…
Information R Management Association
Hardcover
R14,387
Discovery Miles 143 870
Deep Neural Networks for Multimodal…
Annamalai Suresh, R. Udendhran, …
Hardcover
R8,343
Discovery Miles 83 430
|