Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks
This superb new book is one of the first publications in recent years to provide a broad overview of this interdisciplinary field. Most of the book is written in a self contained manner, assuming only a general knowledge of statistical mechanics and basic probabilty theory . It provides the reader with a sound introduction to the field and to the analytical techniques necessary to follow its most recent developments
The addition of artificial neural network computing to traditional
pattern recognition has given rise to a new, different, and more
powerful methodology that is presented in this interesting book.
This is a practical guide to the application of artificial neural
networks.
This book covers the fundamentals in designing and deploying techniques using deep architectures. It is intended to serve as a beginner's guide to engineers or students who want to have a quick start on learning and/or building deep learning systems. This book provides a good theoretical and practical understanding and a complete toolkit of basic information and knowledge required to understand and build convolutional neural networks (CNN) from scratch. The book focuses explicitly on convolutional neural networks, filtering out other material that co-occur in many deep learning books on CNN topics.
This book covers the fundamentals in designing and deploying techniques using deep architectures. It is intended to serve as a beginner's guide to engineers or students who want to have a quick start on learning and/or building deep learning systems. This book provides a good theoretical and practical understanding and a complete toolkit of basic information and knowledge required to understand and build convolutional neural networks (CNN) from scratch. The book focuses explicitly on convolutional neural networks, filtering out other material that co-occur in many deep learning books on CNN topics.
Composed of three sections, this book presents the most popular
training algorithm for neural networks: backpropagation. The first
section presents the theory and principles behind backpropagation
as seen from different perspectives such as statistics, machine
learning, and dynamical systems. The second presents a number of
network architectures that may be designed to match the general
concepts of Parallel Distributed Processing with backpropagation
learning. Finally, the third section shows how these principles can
be applied to a number of different fields related to the cognitive
sciences, including control, speech recognition, robotics, image
processing, and cognitive psychology. The volume is designed to
provide both a solid theoretical foundation and a set of examples
that show the versatility of the concepts. Useful to experts in the
field, it should also be most helpful to students seeking to
understand the basic principles of connectionist learning and to
engineers wanting to add neural networks in general -- and
backpropagation in particular -- to their set of problem-solving
methods.
Composed of three sections, this book presents the most popular
training algorithm for neural networks: backpropagation. The first
section presents the theory and principles behind backpropagation
as seen from different perspectives such as statistics, machine
learning, and dynamical systems. The second presents a number of
network architectures that may be designed to match the general
concepts of Parallel Distributed Processing with backpropagation
learning. Finally, the third section shows how these principles can
be applied to a number of different fields related to the cognitive
sciences, including control, speech recognition, robotics, image
processing, and cognitive psychology. The volume is designed to
provide both a solid theoretical foundation and a set of examples
that show the versatility of the concepts. Useful to experts in the
field, it should also be most helpful to students seeking to
understand the basic principles of connectionist learning and to
engineers wanting to add neural networks in general -- and
backpropagation in particular -- to their set of problem-solving
methods.
Neural Network Modeling offers a cohesive approach to the statistical mechanics and principles of cybernetics as a basis for neural network modeling. It brings together neurobiologists and the engineers who design intelligent automata to understand the physics of collective behavior pertinent to neural elements and the self-control aspects of neurocybernetics. The theoretical perspectives and explanatory projections portray the most current information in the field, some of which counters certain conventional concepts in the visualization of neuronal interactions.
The world is witnessing the rapid evolution of its own nervous
system by an unparalleled growth in communication technology. Like
the evolution of the nervous systems in animals, this growth is
being driven by a survival-of-the-fittest-mechanism. In
telecommunications, the entities that fuel this growth are
companies and nations who compete with each other. Companies with
superior information systems can outrun and outsmart others because
they serve their customers better.
It is necessary to practice methodological doubt, like Descartes, in - der to loosen the hold of mental habits; and it is necessary to cultivate logical imagination, in order to have a number of hypotheses at c- mand, and not to be the slave of the one which common sense has r- dered easy to imagine. These two processes, of doubting the familiar and imagining the unfamiliar, are corrective, and form the chief part of the mental training required for a philosopher. Bertrand Russell At every stage and in all circumstances knowledge is incomplete and provisional, conditioned and limited by the historical circumstances under which it was acquired, including the means and methods used for gaining it and the historically conditioned assumptions and categories used in the formulation of ideas and conclusions. Maurice Cornforth This monograph is the second in the series of meta-theoretic analysis of fuzzy paradigm and its contribution and possible contribution to formal reasoning in order to free the knowledge production process from the ridge frame of the classical paradigm that makes its application to soft and inexact sciences d- ficult or irrelevant. The work in the previous monograph was strictly devoted to problems of theory of knowledge and critique of classical, bounded and other rationalities in decision-choice processes regarding the principles of verification, falsification or corroboration in knowledge production. This monograph deals mostly with epistemic decision-choice models and theories and how they are related to both the classical and fuzzy paradigms.
Written for cognitive scientists, psychologists, computer
scientists, engineers, and neuroscientists, this book provides an
accessible overview of how computational network models are being
used to model neurobiological phenomena. Each chapter presents a
representative example of how biological data and network models
interact with the authors' research. The biological phenomena cover
network- or circuit-level phenomena in humans and other
higher-order vertebrates.
In the industry of manufacturing and design, one major constraint has been enhancing operating performance using less time. As technology continues to advance, manufacturers are looking for better methods in predicting the condition and residual lifetime of electronic devices in order to save repair costs and their reputation. Intelligent systems are a solution for predicting the reliability of these components; however, there is a lack of research on the advancements of this smart technology within the manufacturing industry. AI Techniques for Reliability Prediction for Electronic Components provides emerging research exploring the theoretical and practical aspects of prediction methods using artificial intelligence and machine learning in the manufacturing field. Featuring coverage on a broad range of topics such as data collection, fault tolerance, and health prognostics, this book is ideally designed for reliability engineers, electronic engineers, researchers, scientists, students, and faculty members seeking current research on the advancement of reliability analysis using AI.
By the end of the decade, approximately 50 billion devices will be connected over the internet using multiple services such as online gaming, ultra-high definition videos, and 5G mobile services. The associated data traffic demand in both fixed and mobile networks is increasing dramatically, causing network operators to have to migrate the existing optical networks towards next-generation solutions. The main challenge within this development stems from network operators having difficulties finding cost-effective next-generation optical network solutions that can match future high capacity demand in terms of data, reach, and the number of subscribers to support multiple network services on a common network infrastructure. Design, Implementation, and Analysis of Next Generation Optical Networks: Emerging Research and Opportunities is an essential reference source that discusses the next generation of high capacity passive optical access networks (PON) in terms of design, implementation, and analysis and offers a complete reference of technology solutions for next-generation optical networks. Featuring research on topics such as artificial intelligence, electromagnetic interface, and wireless communication, this book is ideally designed for researchers, engineers, scientists, and students interested in understanding, designing, and analyzing the next generation of optical networks.
In this monograph, the authors introduce a novel fuzzy rule-base, referred to as the Fuzzy All-permutations Rule-Base (FARB). They show that inferring the FARB, using standard tools from fuzzy logic theory, yields an input-output map that is mathematically equivalent to that of an artificial neural network. Conversely, every standard artificial neural network has an equivalent FARB. The FARB-ANN equivalence integrates the merits of symbolic fuzzy rule-bases and sub-symbolic artificial neural networks, and yields a new approach for knowledge-based neurocomputing in artificial neural networks.
Principal Component Neural Networks Theory and Applications
This is volume 2 of the two-volume Soft Computing and Its Applications. This volume discusses several advanced features of soft computing and hybrid methodologies. This new book essentially contains the advanced features of soft computing and different hybrid methodologies for soft computing. The book contains an abundance of examples and detailed design studies. The tool soft computing can be a landmark paradigm of computation with cognition that directly or indirectly tries to replicate the rationality of human beings. The book explains several advanced features of soft computing, such as cognitive maps, complex valued fuzzy sets and fuzzy logic, quantum fuzzy sets and quantum fuzzy logic, and rough sets and hybrid methods that combine neural net fuzzy logic and genetic algorithms. The book contains several real-life applications to present the utility and potential of soft computing. The book: * Discusses the present state of art of soft computing * Includes the existing application areas of soft computing * Presents original research contributions * Discusses the future scope of work in soft computing The book is unique in that it bridges the gap between theory and practice, and it presents several experimental results on synthetic data and real-life data. The book provides a unified platform for applied scientists and engineers in different fields and industries for the application of soft computing tools in many diverse domains of engineering. This book can be used as a textbook and/or reference book by undergraduate and postgraduate students of many different engineering branches, such as electrical engineering, control engineering, electronics and communication engineering, computer sciences, and information sciences.
Nonlinear modelling has become increasingly important and widely used in economics. This valuable book brings together recent advances in the area including contributions covering cross-sectional studies of income distribution and discrete choice models, time series models of exchange rate dynamics and jump processes, and artificial neural network and genetic algorithm models of financial markets. Attention is given to the development of theoretical models as well as estimation and testing methods with a wide range of applications in micro and macroeconomics, labour and finance. The book provides valuable introductory material that is accessible to students and scholars interested in this exciting research area, as well as presenting the results of new and original research. Nonlinear Economic Models provides a sequel to Chaos and Nonlinear Models in Economics by the same editors.
On the basis of fuzzy sets and some of their relevant generalizations, this book systematically presents the fundamental principles and applications of group decision making under different scenarios of preference relations. By using intuitionistic knowledge as the field of discourse, this work investigates by utilizing innovative research means the fundamental principles and methods of group decision making with various different intuitionistic preferences: Mathematical reasoning is employed to study the consistency of group decision making; Methods of fusing information are applied to look at the aggregation of multiple preferences; Techniques of soft computing and optimization are utilized to search for satisfactory decision alternatives. Each chapter follows the following structurally clear format of presentation: literature review, development of basic theory, verification and reasoning of principles , construction of models and computational schemes, and numerical examples, which cover such areas as technology, enterprise competitiveness, selection of airlines, experts decision making in weather-sensitive enterprises, etc. In terms of theoretical principles, this book can be used as a reference for researchers in the areas of management science, information science, systems engineering, operations research, and other relevant fields. It can also be employed as textbook for upper level undergraduate students and graduate students. In terms of applications, this book will be a good companion for all those decision makers in government, business, and technology areas.
The big challenge for a successful AI project isn't deciding which problems you can solve. It's deciding which problems you should solve. In Managing Successful AI Projects, author and AI consultant Veljko Krunic reveals secrets for succeeding in AI that he developed with Fortune 500 companies, early-stage start-ups, and other business across multiple industries. Key Features * Selecting the right AI project to meet specific business goals * Economizing resources to deliver the best value for money * How to measure the success of your AI efforts in the business terms * Predict if you are you on the right track to deliver your intended business results For executives, managers, team leaders, and business-focused data scientists. No specific technical knowledge or programming skills required. About the technology Companies small and large are initiating AI projects, investing vast sums of money on software, developers, and data scientists. Too often, these AI projects focus on technology at the expense of actionable or tangible business results, resulting in scattershot results and wasted investment. Managing Successful AI Projects sets out a blueprint for AI projects to ensure they are predictable, successful, and profitable. It's filled with practical techniques for running data science programs that ensure they're cost effective and focused on the right business goals. Veljko Krunic is an independent data science consultant who has worked with companies that range from start-ups to Fortune 10 enterprises. He holds a PhD in Computer Science and an MS in Engineering Management, both from the University of Colorado at Boulder. He is also a Six Sigma Master Black Belt.
Artificial Intelligence and Deep Learning for Computer Network: Management and Analysis aims to systematically collect quality research spanning AI, ML and Deep Learning (DL) applications to diverse sub-topics of computer networks, communications, and security, under a single cover. It also aspires to provide more insights on the applicability of the theoretical similitudes, otherwise a rarity in many such books. Features: A diverse collection of important and cutting-edge topics covered in a single volume. Several chapters on cyber security, an extremely active research area. Recent research results from leading researchers and some pointers to future advancements in methodology. Detailed experimental results obtained from standard data sets. This book serves as a valuable reference book for students, researchers and practitioners who wish to study and get acquainted with the application of cutting-edge AI, ML and DL techniques to network management and cyber security.
This book provides a first course on deep learning in computational mechanics. The book starts with a short introduction to machine learning's fundamental concepts before neural networks are explained thoroughly. It then provides an overview of current topics in physics and engineering, setting the stage for the book's main topics: physics-informed neural networks and the deep energy method. The idea of the book is to provide the basic concepts in a mathematically sound manner and yet to stay as simple as possible. To achieve this goal, mostly one-dimensional examples are investigated, such as approximating functions by neural networks or the simulation of the temperature's evolution in a one-dimensional bar. Each chapter contains examples and exercises which are either solved analytically or in PyTorch, an open-source machine learning framework for python.
Fuzzy logic control (FLC) has proven to be a popular control methodology for many complex systems in industry, and is often used with great success as an alternative to conventional control techniques. However, because it is fundamentally model free, conventional FLC suffers from a lack of tools for systematic stability analysis and controller design. To address this problem, many model-based fuzzy control approaches have been developed, with the fuzzy dynamic model or the Takagi and Sugeno (T S) fuzzy model-based approaches receiving the greatest attention. Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach offers a unique reference devoted to the systematic analysis and synthesis of model-based fuzzy control systems. After giving a brief review of the varieties of FLC, including the T S fuzzy model-based control, it fully explains the fundamental concepts of fuzzy sets, fuzzy logic, and fuzzy systems. This enables the book to be self-contained and provides a basis for later chapters, which cover:
A reference for scientists and engineers in systems and control, the book also serves the needs of graduate students exploring fuzzy logic control. It readily demonstrates that conventional control technology and fuzzy logic control can be elegantly combined and further developed so that disadvantages of conventional FLC can be avoided and the horizon of conventional control technology greatly extended. Many chapters feature application simulation examples and practical numerical examples based on MATLAB(r).
Cognitive computing simulates human thought processes with self-learning algorithms that utilize data mining, pattern recognition, and natural language processing. The integration of deep learning improves the performance of Cognitive computing systems in many applications, helping in utilizing heterogeneous data sets and generating meaningful insights.
This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts.
The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable - and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community. |
You may like...
Research Anthology on Artificial Neural…
Information R Management Association
Hardcover
R13,686
Discovery Miles 136 860
Handbook of Research on Advanced…
Madhumangal Pal, Sovan Samanta, …
Hardcover
R7,051
Discovery Miles 70 510
Research Anthology on Artificial Neural…
Information R Management Association
Hardcover
R13,702
Discovery Miles 137 020
Fuzzy Systems - Theory and Applications
Constantin Volosencu
Hardcover
Research Anthology on Artificial Neural…
Information R Management Association
Hardcover
R13,692
Discovery Miles 136 920
Intelligent Analysis Of Fundus Images…
Yuanyuan Chen, Yi Zhang, …
Hardcover
R2,249
Discovery Miles 22 490
Deep Neural Networks for Multimodal…
Annamalai Suresh, R. Udendhran, …
Hardcover
R7,950
Discovery Miles 79 500
Avatar-Based Control, Estimation…
Vardan Mkrttchian, Ekaterina Aleshina, …
Hardcover
R7,046
Discovery Miles 70 460
|