![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks
This book deals with the theory, design principles, and application of hybrid intelligent systems using type-2 fuzzy sets in combination with other paradigms of Soft Computing technology such as Neuro-Computing and Evolutionary Computing. It provides a self-contained exposition of the foundation of type-2 fuzzy neural networks and presents a vast compendium of its applications to control, forecasting, decision making, system identification and other real problems. Type-2 Fuzzy Neural Networks and Their Applications is helpful for teachers and students of universities and colleges, for scientists and practitioners from various fields such as control, decision analysis, pattern recognition and similar fields.
- the book provides a short and accessible introduction to AI for learners - it examines seven different educational roles and settings, from AI as a peer to AI as a tutor and AI as textbook, among others - it considers both opportunities and risks: technological developments as well as ethical considerations
This book is a detailed reference on biomedical applications using Deep Learning. Because Deep Learning is an important actor shaping the future of Artificial Intelligence, its specific and innovative solutions for both medical and biomedical are very critical. This book provides a recent view of research works on essential, and advanced topics. The book offers detailed information on the application of Deep Learning for solving biomedical problems. It focuses on different types of data (i.e. raw data, signal-time series, medical images) to enable readers to understand the effectiveness and the potential. It includes topics such as disease diagnosis, image processing perspectives, and even genomics. It takes the reader through different sides of Deep Learning oriented solutions. The specific and innovative solutions covered in this book for both medical and biomedical applications are critical to scientists, researchers, practitioners, professionals, and educations who are working in the context of the topics.
This concise but comprehensive textbook reviews the most popular neural-network methods and their associated techniques. Each chapter provides state-of-the-art descriptions of important major research results of the respective neural-network methods. A range of relevant computational intelligence topics, such as fuzzy logic and evolutionary algorithms - powerful tools for neural-network learning - are introduced. The systematic survey of neural-network models and exhaustive references list will point readers toward topics for future research. The algorithms outlined also make this textbook a valuable reference for scientists and practitioners working in pattern recognition, signal processing, speech and image processing, data analysis and artificial intelligence.
The application of deep learning methods to problems in natural language processing has generated significant progress across a wide range of natural language processing tasks. For some of these applications, deep learning models now approach or surpass human performance. While the success of this approach has transformed the engineering methods of machine learning in artificial intelligence, the significance of these achievements for the modelling of human learning and representation remains unclear. Deep Learning and Linguistic Representation looks at the application of a variety of deep learning systems to several cognitively interesting NLP tasks. It also considers the extent to which this work illuminates our understanding of the way in which humans acquire and represent linguistic knowledge. Key Features: combines an introduction to deep learning in AI and NLP with current research on Deep Neural Networks in computational linguistics. is self-contained and suitable for teaching in computer science, AI, and cognitive science courses; it does not assume extensive technical training in these areas. provides a compact guide to work on state of the art systems that are producing a revolution across a range of difficult natural language tasks.
Provides a comprehensive introduction to multi-robot systems planning and task allocation; Explores multi robot aerial planning, flight planning, orienteering and coverage, and deployment, patrolling, and foraging; Includes real-world case studies; Treats different aspects of cooperation in multi-agent systems.
Metaheuristics for Resource Deployment under Uncertainty in Complex Systems analyzes how to set locations for the deployment of resources to incur the best performance at the lowest cost. Resources can be static nodes and moving nodes while services for a specific area or for customers can be provided. Theories of modeling and solution techniques are used with uncertainty taken into account and real-world applications used. The authors present modeling and metaheuristics for solving resource deployment problems under uncertainty while the models deployed are related to stochastic programming, robust optimization, fuzzy programming, risk management, and single/multi-objective optimization. The resources are heterogeneous and can be sensors and actuators providing different tasks. Both separate and cooperative coverage of the resources are analyzed. Previous research has generally dealt with one type of resource and considers static and deterministic problems, so the book breaks new ground in its analysis of cooperative coverage with heterogeneous resources and the uncertain and dynamic properties of these resources using metaheuristics. This book will help researchers, professionals, academics, and graduate students in related areas to better understand the theory and application of resource deployment problems and theories of uncertainty, including problem formulations, assumptions, and solution methods.
The intensity of global competition and ever-increasing economic uncertainties has led organizations to search for more efficient and effective ways to manage their business operations. Data envelopment analysis (DEA) has been widely used as a conceptually simple yet powerful tool for evaluating organizational productivity and performance. Fuzzy DEA (FDEA) is a promising extension of the conventional DEA proposed for dealing with imprecise and ambiguous data in performance measurement problems. This book is the first volume in the literature to present the state-of-the-art developments and applications of FDEA. It is designed for students, educators, researchers, consultants and practicing managers in business, industry, and government with a basic understanding of the DEA and fuzzy logic concepts.
This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.
- Includes industrial case studies - Includes chapters on cyber physical systems, machine learning, deep learning, cyber security, robotics, smart manufacturing and predictive analytics - surveys current trends and challenges in metaheuristics and industry 4.0
Addresses real-world challenges in using AI Covers the entire AI process in a holistic manner Explains the technical issues in an easy to use manner Provides real-world examples of AI enablement Addresses the challenges of complex enterprises, coalitions and consortia Avoids the hype, with balanced perspective on benefits and drawbacks of AI
Recent progress in artificial intelligence (AI) has revolutionized our everyday life. Many AI algorithms have reached human-level performance and AI agents are replacing humans in most professions. It is predicted that this trend will continue and 30% of work activities in 60% of current occupations will be automated. This success, however, is conditioned on availability of huge annotated datasets to training AI models. Data annotation is a time-consuming and expensive task which still is being performed by human workers. Learning efficiently from less data is a next step for making AI more similar to natural intelligence. Transfer learning has been suggested a remedy to relax the need for data annotation. The core idea in transfer learning is to transfer knowledge across similar tasks and use similarities and previously learned knowledge to learn more efficiently. In this book, we provide a brief background on transfer learning and then focus on the idea of transferring knowledge through intermediate embedding spaces. The idea is to couple and relate different learning through embedding spaces that encode task-level relations and similarities. We cover various machine learning scenarios and demonstrate that this idea can be used to overcome challenges of zero-shot learning, few-shot learning, domain adaptation, continual learning, lifelong learning, and collaborative learning.
AI for Digital Warfare explores how the weaponising of artificial intelligence can and will change how warfare is being conducted, and what impact it will have on the corporate world. With artificial intelligence tools becoming increasingly advanced, and in many cases more humanlike, their potential in psychological warfare is being recognised, which means digital warfare can move beyond just shutting down IT systems into more all-encompassing hybrid war strategies.
The resurgence of artificial intelligence has been fueled by the availability of the present generation of high-performance computational tools and techniques. This book is designed to provide introductory guidance to artificial intelligence, particularly from the perspective of digital systems engineering. Artificial Intelligence and Digital Systems Engineering provides a general introduction to the origin of AI and covers the wide application areas and software and hardware interfaces. It will prove to be instrumental in helping new users expand their knowledge horizon to the growing market of AI tools, as well as showing how AI is applicable to the development of games, simulation, and consumer products, particularly using artificial neural networks. This book is for the general reader, university students, and instructors of industrial, production, civil, mechanical, and manufacturing engineering. It will also be of interest to managers of technology, projects, business, plants, and operations.
a short and accessible introduction on AI and Cars written by leading experts
We do not perceive the present as it is and in totality, nor do we infer the future from the present with any high degree of dependability, nor yet do we accurately know the consequences of our own actions. In addition, there is a fourth source of error to be taken into account, for we do not execute actions in the precise form in which they are imaged and willed. Frank H. Knight [R4.34, p. 202] The "degree" of certainty of confidence felt in the conclusion after it is reached cannot be ignored, for it is of the greatest practical signi- cance. The action which follows upon an opinion depends as much upon the amount of confidence in that opinion as it does upon fav- ableness of the opinion itself. The ultimate logic, or psychology, of these deliberations is obscure, a part of the scientifically unfathomable mystery of life and mind. Frank H. Knight [R4.34, p. 226-227] With some inaccuracy, description of uncertain consequences can be classified into two categories, those which use exclusively the language of probability distributions and those which call for some other principle, either to replace or supplement.
The application of deep learning methods to problems in natural language processing has generated significant progress across a wide range of natural language processing tasks. For some of these applications, deep learning models now approach or surpass human performance. While the success of this approach has transformed the engineering methods of machine learning in artificial intelligence, the significance of these achievements for the modelling of human learning and representation remains unclear. Deep Learning and Linguistic Representation looks at the application of a variety of deep learning systems to several cognitively interesting NLP tasks. It also considers the extent to which this work illuminates our understanding of the way in which humans acquire and represent linguistic knowledge. Key Features: combines an introduction to deep learning in AI and NLP with current research on Deep Neural Networks in computational linguistics. is self-contained and suitable for teaching in computer science, AI, and cognitive science courses; it does not assume extensive technical training in these areas. provides a compact guide to work on state of the art systems that are producing a revolution across a range of difficult natural language tasks.
Metaheuristic optimization is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information or limited computation capacity. This is usually applied when two or more objectives are to be optimized simultaneously. This book is presented with two major objectives. Firstly, it features chapters by eminent researchers in the field providing the readers about the current status of the subject. Secondly, algorithm-based optimization or advanced optimization techniques, which are applied to mostly non-engineering problems, are applied to engineering problems. This book will also serve as an aid to both research and industry. Usage of these methodologies would enable the improvement in engineering and manufacturing technology and support an organization in this era of low product life cycle. Features: Covers the application of recent and new algorithms Focuses on the development aspects such as including surrogate modeling, parallelization, game theory, and hybridization Presents the advances of engineering applications for both single-objective and multi-objective optimization problems Offers recent developments from a variety of engineering fields Discusses Optimization using Evolutionary Algorithms and Metaheuristics applications in engineering
This is volume 2 of the two-volume Soft Computing and Its Applications. This volume discusses several advanced features of soft computing and hybrid methodologies. This new book essentially contains the advanced features of soft computing and different hybrid methodologies for soft computing. The book contains an abundance of examples and detailed design studies. The tool soft computing can be a landmark paradigm of computation with cognition that directly or indirectly tries to replicate the rationality of human beings. The book explains several advanced features of soft computing, such as cognitive maps, complex valued fuzzy sets and fuzzy logic, quantum fuzzy sets and quantum fuzzy logic, and rough sets and hybrid methods that combine neural net fuzzy logic and genetic algorithms. The book contains several real-life applications to present the utility and potential of soft computing. The book: * Discusses the present state of art of soft computing * Includes the existing application areas of soft computing * Presents original research contributions * Discusses the future scope of work in soft computing The book is unique in that it bridges the gap between theory and practice, and it presents several experimental results on synthetic data and real-life data. The book provides a unified platform for applied scientists and engineers in different fields and industries for the application of soft computing tools in many diverse domains of engineering. This book can be used as a textbook and/or reference book by undergraduate and postgraduate students of many different engineering branches, such as electrical engineering, control engineering, electronics and communication engineering, computer sciences, and information sciences.
This book covers the issues related to optimization of engineering and management problems using soft computing techniques with an industrial outlook. It covers a broad area related to real life complex decision making problems using a heuristics approach. It also explores a wide perspective and future directions in industrial engineering research on a global platform/scenario. The book highlights the concept of optimization, presents various soft computing techniques, offers sample problems, and discusses related software programs complete with illustrations. Features Explains the concept of optimization and relevance to soft computing techniques towards optimal solution in engineering and management Presents various soft computing techniques Offers problems and their optimization using various soft computing techniques Discusses related software programs, with illustrations Provides a step-by-step tutorial on how to handle relevant software for obtaining the optimal solution to various engineering problems
Philosophy involves a criticism of scientific knowledge, not from a point of view ultimately different from that of science, but from a point of view less concerned with details and more concerned with the h- mony of the body of special sciences. Here as elsewhere, while the older logic shut out possibilities and imprisoned imagination within the walls of the familiar, the newer logic shows rather what may happen, and refuses to decide as to what must happen. Bertrand Russell At any particular stage in the development of humanity knowledge comes up against limits set by the necessarily limited character of the experience available and the existing means of obtaining knowledge. But humanity advances by overcoming such limits. New experience throws down the limits of old experience; new techniques, new means of obtaining knowledge throw down the limits of old techniques and old means of obtaining knowledge. New limits then once again appear. But there is no more reason to suppose these new limits absolute and final than there was to suppose the old ones absolute and final.
Have over a hundred years of brain research revealed all its secrets? This book is motivated by a realization that cortical structure and behavior can be explained by a synergy of seemingly different mathematical notions: global attractors, which define non-invertible neural firing rate dynamics, random graphs, which define connectivity of neural circuit, and prime numbers, which define the dimension and category of cortical operation. Quantum computation is shown to ratify the main conclusion of the book: loosely connected small neural circuits facilitate higher information storage and processing capacities than highly connected large circuits. While these essentially separate mathematical notions have not been commonly involved in the evolution of neuroscience, they are shown in this book to be strongly inter-related in the cortical arena. Furthermore, neurophysiological experiments, as well as observations of natural behavior and evidence found in medical testing of neurologically impaired patients, are shown to support, and to be supported by the mathematical findings.Related Link(s)
Businesses today are faced with a highly competitive market and fast-changing technologies. In order to meet demanding customers' needs, they rely on high quality software. A new field of study, soft computing techniques, is needed to estimate the efforts invested in component-based software. Component-Based Systems: Estimating Efforts Using Soft Computing Techniques is an important resource that uses computer-based models for estimating efforts of software. It provides an overview of component-based software engineering, while addressing uncertainty involved in effort estimation and expert opinions. This book will also instruct the reader how to develop mathematical models. This book is an excellent source of information for students and researchers to learn soft computing models, their applications in software management, and will help software developers, managers, and those in the industry to apply soft computing techniques to estimate efforts. |
You may like...
Computational Linear and Commutative…
Martin Kreuzer, Lorenzo Robbiano
Hardcover
R2,477
Discovery Miles 24 770
|