![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks
- the book provides a short and accessible introduction to AI for learners - it examines seven different educational roles and settings, from AI as a peer to AI as a tutor and AI as textbook, among others - it considers both opportunities and risks: technological developments as well as ethical considerations
Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically.This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as
Provides a comprehensive introduction to multi-robot systems planning and task allocation; Explores multi robot aerial planning, flight planning, orienteering and coverage, and deployment, patrolling, and foraging; Includes real-world case studies; Treats different aspects of cooperation in multi-agent systems.
Covers deep learning fundamentals; Focuses on applications; Covers human emotion analysis and deep learning; Explains how to use web based techniques for deep learning applications; Includes coverage of autonomous vehicles and deep learning
- Includes industrial case studies - Includes chapters on cyber physical systems, machine learning, deep learning, cyber security, robotics, smart manufacturing and predictive analytics - surveys current trends and challenges in metaheuristics and industry 4.0
Metaheuristics for Resource Deployment under Uncertainty in Complex Systems analyzes how to set locations for the deployment of resources to incur the best performance at the lowest cost. Resources can be static nodes and moving nodes while services for a specific area or for customers can be provided. Theories of modeling and solution techniques are used with uncertainty taken into account and real-world applications used. The authors present modeling and metaheuristics for solving resource deployment problems under uncertainty while the models deployed are related to stochastic programming, robust optimization, fuzzy programming, risk management, and single/multi-objective optimization. The resources are heterogeneous and can be sensors and actuators providing different tasks. Both separate and cooperative coverage of the resources are analyzed. Previous research has generally dealt with one type of resource and considers static and deterministic problems, so the book breaks new ground in its analysis of cooperative coverage with heterogeneous resources and the uncertain and dynamic properties of these resources using metaheuristics. This book will help researchers, professionals, academics, and graduate students in related areas to better understand the theory and application of resource deployment problems and theories of uncertainty, including problem formulations, assumptions, and solution methods.
Addresses real-world challenges in using AI Covers the entire AI process in a holistic manner Explains the technical issues in an easy to use manner Provides real-world examples of AI enablement Addresses the challenges of complex enterprises, coalitions and consortia Avoids the hype, with balanced perspective on benefits and drawbacks of AI
This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.
The resurgence of artificial intelligence has been fueled by the availability of the present generation of high-performance computational tools and techniques. This book is designed to provide introductory guidance to artificial intelligence, particularly from the perspective of digital systems engineering. Artificial Intelligence and Digital Systems Engineering provides a general introduction to the origin of AI and covers the wide application areas and software and hardware interfaces. It will prove to be instrumental in helping new users expand their knowledge horizon to the growing market of AI tools, as well as showing how AI is applicable to the development of games, simulation, and consumer products, particularly using artificial neural networks. This book is for the general reader, university students, and instructors of industrial, production, civil, mechanical, and manufacturing engineering. It will also be of interest to managers of technology, projects, business, plants, and operations.
AI for Digital Warfare explores how the weaponising of artificial intelligence can and will change how warfare is being conducted, and what impact it will have on the corporate world. With artificial intelligence tools becoming increasingly advanced, and in many cases more humanlike, their potential in psychological warfare is being recognised, which means digital warfare can move beyond just shutting down IT systems into more all-encompassing hybrid war strategies.
This book is a detailed reference on biomedical applications using Deep Learning. Because Deep Learning is an important actor shaping the future of Artificial Intelligence, its specific and innovative solutions for both medical and biomedical are very critical. This book provides a recent view of research works on essential, and advanced topics. The book offers detailed information on the application of Deep Learning for solving biomedical problems. It focuses on different types of data (i.e. raw data, signal-time series, medical images) to enable readers to understand the effectiveness and the potential. It includes topics such as disease diagnosis, image processing perspectives, and even genomics. It takes the reader through different sides of Deep Learning oriented solutions. The specific and innovative solutions covered in this book for both medical and biomedical applications are critical to scientists, researchers, practitioners, professionals, and educations who are working in the context of the topics.
This concise but comprehensive textbook reviews the most popular neural-network methods and their associated techniques. Each chapter provides state-of-the-art descriptions of important major research results of the respective neural-network methods. A range of relevant computational intelligence topics, such as fuzzy logic and evolutionary algorithms - powerful tools for neural-network learning - are introduced. The systematic survey of neural-network models and exhaustive references list will point readers toward topics for future research. The algorithms outlined also make this textbook a valuable reference for scientists and practitioners working in pattern recognition, signal processing, speech and image processing, data analysis and artificial intelligence.
Recent progress in artificial intelligence (AI) has revolutionized our everyday life. Many AI algorithms have reached human-level performance and AI agents are replacing humans in most professions. It is predicted that this trend will continue and 30% of work activities in 60% of current occupations will be automated. This success, however, is conditioned on availability of huge annotated datasets to training AI models. Data annotation is a time-consuming and expensive task which still is being performed by human workers. Learning efficiently from less data is a next step for making AI more similar to natural intelligence. Transfer learning has been suggested a remedy to relax the need for data annotation. The core idea in transfer learning is to transfer knowledge across similar tasks and use similarities and previously learned knowledge to learn more efficiently. In this book, we provide a brief background on transfer learning and then focus on the idea of transferring knowledge through intermediate embedding spaces. The idea is to couple and relate different learning through embedding spaces that encode task-level relations and similarities. We cover various machine learning scenarios and demonstrate that this idea can be used to overcome challenges of zero-shot learning, few-shot learning, domain adaptation, continual learning, lifelong learning, and collaborative learning.
The application of deep learning methods to problems in natural language processing has generated significant progress across a wide range of natural language processing tasks. For some of these applications, deep learning models now approach or surpass human performance. While the success of this approach has transformed the engineering methods of machine learning in artificial intelligence, the significance of these achievements for the modelling of human learning and representation remains unclear. Deep Learning and Linguistic Representation looks at the application of a variety of deep learning systems to several cognitively interesting NLP tasks. It also considers the extent to which this work illuminates our understanding of the way in which humans acquire and represent linguistic knowledge. Key Features: combines an introduction to deep learning in AI and NLP with current research on Deep Neural Networks in computational linguistics. is self-contained and suitable for teaching in computer science, AI, and cognitive science courses; it does not assume extensive technical training in these areas. provides a compact guide to work on state of the art systems that are producing a revolution across a range of difficult natural language tasks.
The application of deep learning methods to problems in natural language processing has generated significant progress across a wide range of natural language processing tasks. For some of these applications, deep learning models now approach or surpass human performance. While the success of this approach has transformed the engineering methods of machine learning in artificial intelligence, the significance of these achievements for the modelling of human learning and representation remains unclear. Deep Learning and Linguistic Representation looks at the application of a variety of deep learning systems to several cognitively interesting NLP tasks. It also considers the extent to which this work illuminates our understanding of the way in which humans acquire and represent linguistic knowledge. Key Features: combines an introduction to deep learning in AI and NLP with current research on Deep Neural Networks in computational linguistics. is self-contained and suitable for teaching in computer science, AI, and cognitive science courses; it does not assume extensive technical training in these areas. provides a compact guide to work on state of the art systems that are producing a revolution across a range of difficult natural language tasks.
This is volume 2 of the two-volume Soft Computing and Its Applications. This volume discusses several advanced features of soft computing and hybrid methodologies. This new book essentially contains the advanced features of soft computing and different hybrid methodologies for soft computing. The book contains an abundance of examples and detailed design studies. The tool soft computing can be a landmark paradigm of computation with cognition that directly or indirectly tries to replicate the rationality of human beings. The book explains several advanced features of soft computing, such as cognitive maps, complex valued fuzzy sets and fuzzy logic, quantum fuzzy sets and quantum fuzzy logic, and rough sets and hybrid methods that combine neural net fuzzy logic and genetic algorithms. The book contains several real-life applications to present the utility and potential of soft computing. The book: * Discusses the present state of art of soft computing * Includes the existing application areas of soft computing * Presents original research contributions * Discusses the future scope of work in soft computing The book is unique in that it bridges the gap between theory and practice, and it presents several experimental results on synthetic data and real-life data. The book provides a unified platform for applied scientists and engineers in different fields and industries for the application of soft computing tools in many diverse domains of engineering. This book can be used as a textbook and/or reference book by undergraduate and postgraduate students of many different engineering branches, such as electrical engineering, control engineering, electronics and communication engineering, computer sciences, and information sciences.
This book covers the issues related to optimization of engineering and management problems using soft computing techniques with an industrial outlook. It covers a broad area related to real life complex decision making problems using a heuristics approach. It also explores a wide perspective and future directions in industrial engineering research on a global platform/scenario. The book highlights the concept of optimization, presents various soft computing techniques, offers sample problems, and discusses related software programs complete with illustrations. Features Explains the concept of optimization and relevance to soft computing techniques towards optimal solution in engineering and management Presents various soft computing techniques Offers problems and their optimization using various soft computing techniques Discusses related software programs, with illustrations Provides a step-by-step tutorial on how to handle relevant software for obtaining the optimal solution to various engineering problems
Metaheuristic optimization is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information or limited computation capacity. This is usually applied when two or more objectives are to be optimized simultaneously. This book is presented with two major objectives. Firstly, it features chapters by eminent researchers in the field providing the readers about the current status of the subject. Secondly, algorithm-based optimization or advanced optimization techniques, which are applied to mostly non-engineering problems, are applied to engineering problems. This book will also serve as an aid to both research and industry. Usage of these methodologies would enable the improvement in engineering and manufacturing technology and support an organization in this era of low product life cycle. Features: Covers the application of recent and new algorithms Focuses on the development aspects such as including surrogate modeling, parallelization, game theory, and hybridization Presents the advances of engineering applications for both single-objective and multi-objective optimization problems Offers recent developments from a variety of engineering fields Discusses Optimization using Evolutionary Algorithms and Metaheuristics applications in engineering
Businesses today are faced with a highly competitive market and fast-changing technologies. In order to meet demanding customers' needs, they rely on high quality software. A new field of study, soft computing techniques, is needed to estimate the efforts invested in component-based software. Component-Based Systems: Estimating Efforts Using Soft Computing Techniques is an important resource that uses computer-based models for estimating efforts of software. It provides an overview of component-based software engineering, while addressing uncertainty involved in effort estimation and expert opinions. This book will also instruct the reader how to develop mathematical models. This book is an excellent source of information for students and researchers to learn soft computing models, their applications in software management, and will help software developers, managers, and those in the industry to apply soft computing techniques to estimate efforts.
Businesses today are faced with a highly competitive market and fast-changing technologies. In order to meet demanding customers' needs, they rely on high quality software. A new field of study, soft computing techniques, is needed to estimate the efforts invested in component-based software. Component-Based Systems: Estimating Efforts Using Soft Computing Techniques is an important resource that uses computer-based models for estimating efforts of software. It provides an overview of component-based software engineering, while addressing uncertainty involved in effort estimation and expert opinions. This book will also instruct the reader how to develop mathematical models. This book is an excellent source of information for students and researchers to learn soft computing models, their applications in software management, and will help software developers, managers, and those in the industry to apply soft computing techniques to estimate efforts.
We create technology enabling us to do things never before possible and it ultimately changes the way we live, work, play, and interact with each other. Throughout human history, the democratization of technology making a technology available to the masses, has brought about sweeping cultural, social, political, and societal changes. In the last half-century, the democratization of computers, information, the Internet, and social media have revolutionized and transformed our lives. We now stand at the beginning of a new era sure to bring about waves of new revolutions, the cognitive systems era. Until now, humans have done all of the thinking. However, our lives are about to be infused with artificial entities capable of performing high-level cognitive processing previously possible only in the human mind. Systems capable of this kind of "synthetic cognition" will achieve and surpass the level of human experts in almost every field of endeavor. Far from replacing humans, these cognitive systems will be our collaborators, teachers, confidants, colleagues, and companions. The future will belong to those who can better partner with these cognitive systems. Made available to the average person via the Internet, handheld devices, and through ordinary objects all around us, expertise will become democratized. Everything will change when anyone has access to expertise in any field and new things will be possible. The democratization of expertise is the foundation on which our society's revolutions will be built over the next half-century. This book discusses societal and cultural revolutions throughout history brought about by the adoption of new technology and gives brief histories of human cognitive augmentation and artificial intelligence. In the coming cognitive systems era, humans, by collaboratively partnering with cognitive systems, will together achieve expert-level performance-synthetic expertise-with humans performing some of the cognitive processing and cognitive systems performing some. As the capabilities of cognitive systems improve over time, the balance of thinking will shift from being mostly human to mostly artificial. This book introduces the Levels of Cognitive Augmentation to describe this shift. Drawing from previous research in cognitive systems and intelligent agent theory, the knowledge stores required for expertise are identified in a Knowledge Level description of expertise. This book introduces a new abstract level, called the Expertise Level to describe the skills needed for expertise. Combining the knowledge-level and expertise-level descriptions, this book introduces the Model of Expertise. This book demonstrates use of the Model of Expertise by presenting several synthetic expert architectures: a synthetic teacher (Synthia), a synthetic friend/therapist (Sy), a synthetic elderly companion (Lois), a synthetic research companion (Synclair), and an automated scientific hypothesis explorer (Ashe). This book is intended for anyone interested in the fields of cognitive systems, cognitive computing, cognitive augmentation, or artificial intelligence or the impact of technologies from these fields on society. Anyone doing research and development in the area of cognitive systems or artificial intelligence will find this book particularly useful.
We create technology enabling us to do things never before possible and it ultimately changes the way we live, work, play, and interact with each other. Throughout human history, the democratization of technology making a technology available to the masses, has brought about sweeping cultural, social, political, and societal changes. In the last half-century, the democratization of computers, information, the Internet, and social media have revolutionized and transformed our lives. We now stand at the beginning of a new era sure to bring about waves of new revolutions, the cognitive systems era. Until now, humans have done all of the thinking. However, our lives are about to be infused with artificial entities capable of performing high-level cognitive processing previously possible only in the human mind. Systems capable of this kind of "synthetic cognition" will achieve and surpass the level of human experts in almost every field of endeavor. Far from replacing humans, these cognitive systems will be our collaborators, teachers, confidants, colleagues, and companions. The future will belong to those who can better partner with these cognitive systems. Made available to the average person via the Internet, handheld devices, and through ordinary objects all around us, expertise will become democratized. Everything will change when anyone has access to expertise in any field and new things will be possible. The democratization of expertise is the foundation on which our society's revolutions will be built over the next half-century. This book discusses societal and cultural revolutions throughout history brought about by the adoption of new technology and gives brief histories of human cognitive augmentation and artificial intelligence. In the coming cognitive systems era, humans, by collaboratively partnering with cognitive systems, will together achieve expert-level performance-synthetic expertise-with humans performing some of the cognitive processing and cognitive systems performing some. As the capabilities of cognitive systems improve over time, the balance of thinking will shift from being mostly human to mostly artificial. This book introduces the Levels of Cognitive Augmentation to describe this shift. Drawing from previous research in cognitive systems and intelligent agent theory, the knowledge stores required for expertise are identified in a Knowledge Level description of expertise. This book introduces a new abstract level, called the Expertise Level to describe the skills needed for expertise. Combining the knowledge-level and expertise-level descriptions, this book introduces the Model of Expertise. This book demonstrates use of the Model of Expertise by presenting several synthetic expert architectures: a synthetic teacher (Synthia), a synthetic friend/therapist (Sy), a synthetic elderly companion (Lois), a synthetic research companion (Synclair), and an automated scientific hypothesis explorer (Ashe). This book is intended for anyone interested in the fields of cognitive systems, cognitive computing, cognitive augmentation, or artificial intelligence or the impact of technologies from these fields on society. Anyone doing research and development in the area of cognitive systems or artificial intelligence will find this book particularly useful.
Diabetes Mellitus (DM, commonly referred to as diabetes, is a metabolic disorder in which there are high blood sugar levels over a prolonged period. Lack of sufficient insulin causes presence of excess sugar levels in the blood. As a result the glucose levels in diabetic patients are more than normal ones. It has symptoms like frequent urination, increased hunger, increase thirst and high blood sugar. There are mainly three types of diabetes namely type-1, type-2 and gestational diabetes. Type-1 DM occurs due to immune system mistakenly attacks and destroys the beta-cells and Type-2 DM occurs due to insulin resistance. Gestational DM occurs in women during pregnancy due to insulin blocking by pregnancy harmones. Among these three types of DM, type-2 DM is more prevalence, and impacting so many millions of people across the world. Classification and predictive systems are actually reliable in the health care sector to explore hidden patterns in the patients data. These systems aid, medical professionals to enhance their diagnosis, prognosis along with remedy organizing techniques. The less percentage of improvement in classifier predictive accuracy is very important for medical diagnosis purposes where mistakes can cause a lot of damage to patient's life. Hence, we need a more accurate classification system for prediction of type-2 DM. Although, most of the above classification algorithms are efficient, they failed to provide good accuracy with low computational cost. In this book, we proposed various classification algorithms using soft computing techniques like Neural Networks (NNs), Fuzzy Systems (FS) and Swarm Intelligence (SI). The experimental results demonstrate that these algorithms are able to produce high classification accuracy at less computational cost. The contributions presented in this book shall attempt to address the following objectives using soft computing approaches for identification of diabetes mellitus. Introuducing an optimized RBFN model called Opt-RBFN. Designing a cost effective rule miner called SM-RuleMiner for type-2 diabetes diagnosis. Generating more interpretable fuzzy rules for accurate diagnosis of type2 diabetes using RST-BatMiner. Developing accurate cascade ensemble frameworks called Diabetes-Network for type-2 diabetes diagnosis. Proposing a Multi-level ensemble framework called Dia-Net for improving the classification accuracy of type-2 diabetes diagnosis. Designing an Intelligent Diabetes Risk score Model called Intelli-DRM estimate the severity of Diabetes mellitus. This book serves as a reference book for scientific investigators who need to analyze disease data and/or numerical data, as well as researchers developing methodology in soft computing field. It may also be used as a textbook for a graduate and post graduate level course in machine learning or soft computing.
This book comprehensively studies fuzzy temporal and spatial information, starting from the basics on fuzzy set theory and temporal/spatial reasoning, the development of a new model to represent fuzzy temporal/spatial information, the study of efficient and complete reasoning algorithms, and their application in an information retrieval context. This useful volume presents the first approach that goes beyond merely representing information, by thoroughly addressing a variety of reasoning tasks. It also focuses on applications in the domain of information retrieval, and demonstrating the practical importance of the proposed framework.
Just Enough R! An Interactive Approach to Machine Learning and Analytics presents just enough of the R language, machine learning algorithms, statistical methodology, and analytics for the reader to learn how to find interesting structure in data. The approach might be called "seeing then doing" as it first gives step-by-step explanations using simple, understandable examples of how the various machine learning algorithms work independent of any programming language. This is followed by detailed scripts written in R that apply the algorithms to solve nontrivial problems with real data. The script code is provided, allowing the reader to execute the scripts as they study the explanations given in the text. Features Gets you quickly using R as a problem-solving tool Uses RStudio's integrated development environment Shows how to interface R with SQLite Includes examples using R's Rattle graphical user interface Requires no prior knowledge of R, machine learning, or computer programming Offers over 50 scripts written in R, including several problem-solving templates that, with slight modification, can be used again and again Covers the most popular machine learning techniques, including ensemble-based methods and logistic regression Includes end-of-chapter exercises, many of which can be solved by modifying existing scripts Includes datasets from several areas, including business, health and medicine, and science About the Author Richard J. Roiger is a professor emeritus at Minnesota State University, Mankato, where he taught and performed research in the Computer and Information Science Department for over 30 years. |
![]() ![]() You may like...
Proceedings of International Conference…
Nabendu Chaki, Jerzy Pejas, …
Hardcover
R7,137
Discovery Miles 71 370
Genealogy and Social Status in the…
Stephane Jettot, Jean-Paul Zuniga
Paperback
R2,622
Discovery Miles 26 220
Practical UNIX and Internet Security
Simson Garfinkel, Gene Spafford, …
Paperback
Blockchain Technology: Applications and…
Sandeep Kumar Panda, Ajay Kumar Jena, …
Hardcover
R5,123
Discovery Miles 51 230
Society 5.0: Cyberspace for Advanced…
Alla G. Kravets, Alexander A. Bolshakov, …
Hardcover
R4,931
Discovery Miles 49 310
|