![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks
Neural networks as the commonly used machine learning algorithms, such as artificial neural networks (ANNs) and convolutional neural networks (CNNs), have been extensively used in the GIScience domain to explore the nonlinear and complex geographic phenomena. However, there are a few studies that investigate the parameter settings of neural networks in GIScience. Moreover, the model performance of neural networks often depends on the parameter setting for a given dataset. Meanwhile, adjusting the parameter configuration of neural networks will increase the overall running time. Therefore, an automated approach is necessary for addressing these limitations in current studies. This book proposes an automated spatially explicit hyperparameter optimization approach to identify optimal or near-optimal parameter settings for neural networks in the GIScience field. Also, the approach improves the computing performance at both model and computing levels. This book is written for researchers of the GIScience field as well as social science subjects.
The result of the 1993 Connectionist Models Summer School, the
papers in this volume exemplify the tremendous breadth and depth of
research underway in the field of neural networks. Although the
slant of the summer school has always leaned toward cognitive
science and artificial intelligence, the diverse scientific
backgrounds and research interests of accepted students and invited
faculty reflect the broad spectrum of areas contributing to neural
networks, including artificial intelligence, cognitive science,
computer science, engineering, mathematics, neuroscience, and
physics. Providing an accurate picture of the state of the art in
this fast-moving field, the proceedings of this intense two-week
program of lectures, workshops, and informal discussions contains
timely and high-quality work by the best and the brightest in the
neural networks field.
Multi-Valued and Universal Binary Neurons deals with two new types of neurons: multi-valued neurons and universal binary neurons. These neurons are based on complex number arithmetic and are hence much more powerful than the typical neurons used in artificial neural networks. Therefore, networks with such neurons exhibit a broad functionality. They can not only realise threshold input/output maps but can also implement any arbitrary Boolean function. Two learning methods are presented whereby these networks can be trained easily. The broad applicability of these networks is proven by several case studies in different fields of application: image processing, edge detection, image enhancement, super resolution, pattern recognition, face recognition, and prediction. The book is hence partitioned into three almost equally sized parts: a mathematical study of the unique features of these new neurons, learning of networks of such neurons, and application of such neural networks. Most of this work was developed by the first two authors over a period of more than 10 years and was only available in the Russian literature. With this book we present the first comprehensive treatment of this important class of neural networks in the open Western literature. Multi-Valued and Universal Binary Neurons is intended for anyone with a scholarly interest in neural network theory, applications and learning. It will also be of interest to researchers and practitioners in the fields of image processing, pattern recognition, control and robotics.
This book focuses on artifi cial intelligence in the field of digital signal processing and wireless communication. The implementation of machine learning and deep learning in audio, image, and video processing is presented, while adaptive signal processing and biomedical signal processing are also explored through DL algorithms, as well as 5G and green communication. Finally, metaheuristic algorithms of related mathematical problems are explored.
Cellular Neural Networks and Analog VLSI brings together in one place important contributions and up-to-date research results in this fast moving area. Cellular Neural Networks and Analog VLSI serves as an excellent reference, providing insight into some of the most challenging research issues in the field.
The articles gathered in this volume represent examples of a unique
approach to the study of mental phenomena: a blend of theory and
experiment, informed not just by easily measurable laboratory data
but also by human introspection. Subjects such as approach and
avoidance, desire and fear, and novelty and habit are studied as
natural events that may not exactly correspond to, but at least
correlate with, some (known or unknown) electrical and chemical
events in the brain.
VLSI-Compatible Implementations for Artificial Neural Networks introduces the basic premise of the authors' approach to biologically-inspired and VLSI-compatible definition, simulation, and implementation of artificial neural networks. In addition, the book develops a set of guidelines for general hardware implementation of ANNs. These guidelines are then used to find solutions for the usual difficulties encountered in any potential work, and as guidelines by which to reach the best compromise when several options exist. Furthermore, system-level consequences of using the proposed techniques in future submicron technologies with almost-linear MOS devices are discussed. While the major emphasis in this book is to develop neural networks optimized for compatibility with their implementation media, the work has also been extended to the design and implementation of a fully-quadratic ANN based on the desire to have network definitions epitomized for both efficient discrimination of closed-boundary circular areas and ease of implementation in a CMOS technology. VLSI-Compatible Implementations for Artificial Neural Networks implements a comprehensive approach which starts with an analytical evaluation of specific artificial networks. This provides a clear geometrical interpretation of the behavior of different variants of these networks. In combination with the guidelines developed towards a better final implementation, these concepts have allowed the authors to conquer various problems encountered and to make effective compromises. Then, to facilitate the investigation of the models needed when more difficult problems must be faced, a custom simulating program for various cases is developed.Finally, in order to demonstrate the authors' findings and expectations, several VLSI integrated circuits have been designed, fabricated, and tested. VLSI-Compatible Implementations for Artificial Neural Networks serves as an excellent reference source and may be used as a text for advanced courses on the subject.
Neural computing is one of the most interesting and rapidly growing areas of research, attracting researchers from a wide variety of scientific disciplines. Starting from the basics, Neural Computing covers all the major approaches, putting each in perspective in terms of their capabilities, advantages, and disadvantages. The book also highlights the applications of each approach and explores the relationships among models developed and between the brain and its function. A comprehensive and comprehensible introduction to the subject, this book is ideal for undergraduates in computer science, physicists, communications engineers, workers involved in artificial intelligence, biologists, psychologists, and physiologists.
The focus of this book is on establishing theories and methods of both decision and game analysis in management using intuitionistic fuzzy sets. It proposes a series of innovative theories, models and methods such as the representation theorem and extension principle of intuitionistic fuzzy sets, ranking methods of intuitionistic fuzzy numbers, non-linear and linear programming methods for intuitionistic fuzzy multi-attribute decision making and (interval-valued) intuitionistic fuzzy matrix games. These theories and methods form the theory system of intuitionistic fuzzy decision making and games, which is not only remarkably different from those of the traditional, Bayes and/or fuzzy decision theory but can also provide an effective and efficient tool for solving complex management problems. Since there is a certain degree of inherent hesitancy in real-life management, which cannot always be described by the traditional mathematical methods and/or fuzzy set theory, this book offers an effective approach to using the intuitionistic fuzzy set expressed with membership and non-membership functions. This book is addressed to all those involved in theoretical research and practical applications from a variety of fields/disciplines: decision science, game theory, management science, fuzzy sets, operational research, applied mathematics, systems engineering, industrial engineering, economics, etc.
In this book, an easily understandable account of modelling methods with artificial neuronal networks for practical applications in ecology and evolution is provided. Special features include examples of applications using both supervised and unsupervised training, comparative analysis of artificial neural networks and conventional statistical methods, and proposals to deal with poor datasets. Extensive references and a large range of topics make this book a useful guide for ecologists, evolutionary ecologists and population geneticists.
Explains concepts of Internet of Everything problems, research challenge goals, and vision in smart cities Based on the most recent innovations, and covering the major challenges in smart cities, between IoT and Big Data Examines security issues and challenges related to data-intensive advances in IoT Addresses the total information science challenges in Internet of Everything enabled technologies Covers the exploring and creating IoT environment related self-adaptive systems
This book introduces selected recent findings on the analysis and control of dynamical behaviors for coupled reaction-diffusion neural networks. It presents novel research ideas and essential definitions concerning coupled reaction-diffusion neural networks, such as passivity, adaptive coupling, spatial diffusion coupling, and the relationship between synchronization and output strict passivity. Further, it gathers research results previously published in many flagship journals, presenting them in a unified form. As such, the book will be of interest to all university researchers and graduate students in Engineering and Mathematics who wish to study the dynamical behaviors of coupled reaction-diffusion neural networks.
This volume gives a state of the art view of recent developments in the use of artificial neural networks for the analysis of remotely sensed satellite data. Remote sensing has now become a discipline in which ever increasing volumes of data, gathered from space together with growing application needs for high precision spatial products, need to be interpreted in shorter times and with increasing accuracy. Neural networks, as a new form of computational paradigm, seem well suited to many of the tasks involved in remotely sensed image analysis. This book demonstrates a wide range of uses of neural networks for remote sensing applications and provides the views of a large number European experts brought together in the framework of a concerted action supported by the European Commission.
Artificial neural network research is one of the promising new directions for the next generation of computers and open box artificial Higher Order Neural Networks (HONNs) play an important role in this future. Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks. Since HONNs are open box models, they can be easily used in information science, information technology, management, economics, and business. This book details the techniques, theory and applications essential to engaging and capitalizing on this developing technology.
Metaheuristic Procedures for Training Neural Networks provides successful implementations of metaheuristic methods for neural network training. Moreover, the basic principles and fundamental ideas given in the book will allow the readers to create successful training methods on their own. Apart from Chapter 1, which reviews classical training methods, the chapters are divided into three main categories. The first one is devoted to local search based methods, including Simulated Annealing, Tabu Search, and Variable Neighborhood Search. The second part of the book presents population based methods, such as Estimation Distribution algorithms, Scatter Search, and Genetic Algorithms. The third part covers other advanced techniques, such as Ant Colony Optimization, Co-evolutionary methods, GRASP, and Memetic algorithms. Overall, the book's objective is engineered to provide a broad coverage of the concepts, methods, and tools of this important area of ANNs within the realm of continuous optimization.
Hybrid Neural Network and Expert Systems presents the basics of expert systems and neural networks, and the important characteristics relevant to the integration of these two technologies. Through case studies of actual working systems, the author demonstrates the use of these hybrid systems in practical situations. Guidelines and models are described to help those who want to develop their own hybrid systems. Neural networks and expert systems together represent two major aspects of human intelligence and therefore are appropriate for integration. Neural networks represent the visual, pattern-recognition types of intelligence, while expert systems represent the logical, reasoning processes. Together, these technologies allow applications to be developed that are more powerful than when each technique is used individually. Hybrid Neural Network and Expert Systems provides frameworks for understanding how the combination of neural networks and expert systems can produce useful hybrid systems, and illustrates the issues and opportunities in this dynamic field.
Fully Tuned Radial Basis Function Neural Networks for Flight Control presents the use of the Radial Basis Function (RBF) neural networks for adaptive control of nonlinear systems with emphasis on flight control applications. A Lyapunov synthesis approach is used to derive the tuning rules for the RBF controller parameters in order to guarantee the stability of the closed loop system. Unlike previous methods that tune only the weights of the RBF network, this book presents the derivation of the tuning law for tuning the centers, widths, and weights of the RBF network, and compares the results with existing algorithms. It also includes a detailed review of system identification, including indirect and direct adaptive control of nonlinear systems using neural networks. Fully Tuned Radial Basis Function Neural Networks for Flight Control is an excellent resource for professionals using neural adaptive controllers for flight control applications.
bridges ML and Optimisation; discusses optimisation techniques to improve ML algorithms for big data problems; identifies key research areas to solve large-scale machine learning problems; identifies recent research directions to solve major areas to tackle the challenge
The topic of consciousness is truly multidisciplinary, attracting researchers and theorists from diverse backgrounds. It is now widely accepted that previously disparate areas all have contributions to make to the understanding of the nature of consciousness. Thus, we now have computational scientists, neuroscientists, and philosophers all engaged in the same effort. This book illustrates these three approaches, with chapters provided by some of the most important and provocative figures in the field. The first section is concerned with philosophical approaches to consciousness. One of the fundamental issues here is that of subjective feeling or qualia. The second section focuses on approaches from cognitive neuroscience. Patients with different types of neurological problems, and new imaging techniques, provide rich sources of data for studying how consciousness relates to brain function. The third section includes computational approaches looking at the quantitative relationship between brain processes and conscious experience. Cognition, Computation, and Consciousness represents a uniquely integrated and current account of this most fascinating and intractable subject.
This reference text presents the usage of artificial intelligence in healthcare and discusses the challenges and solutions of using advanced techniques like wearable technologies and image processing in the sector. Features: Focuses on the use of artificial intelligence (AI) in healthcare with issues, applications, and prospects Presents the application of artificial intelligence in medical imaging, fractionalization of early lung tumour detection using a low intricacy approach, etc Discusses an artificial intelligence perspective on wearable technology Analyses cardiac dynamics and assessment of arrhythmia by classifying heartbeat using electrocardiogram (ECG) Elaborates machine learning models for early diagnosis of depressive mental affliction This book serves as a reference for students and researchers analyzing healthcare data. It can also be used by graduate and post graduate students as an elective course.
People are facing more and more NP-complete or NP-hard problems of a combinatorial nature and of a continuous nature in economic, military and management practice. There are two ways in which one can enhance the efficiency of searching for the solutions of these problems. The first is to improve the speed and memory capacity of hardware. We all have witnessed the computer industry's amazing achievements with hardware and software developments over the last twenty years. On one hand many computers, bought only a few years ago, are being sent to elementary schools for children to learn the ABC's of computing. On the other hand, with economic, scientific and military developments, it seems that the increase of intricacy and the size of newly arising problems have no end. We all realize then that the second way, to design good algorithms, will definitely compensate for the hardware limitations in the case of complicated problems. It is the collective and parallel computation property of artificial neural net works that has activated the enthusiasm of researchers in the field of computer science and applied mathematics. It is hard to say that artificial neural networks are solvers of the above-mentioned dilemma, but at least they throw some new light on the difficulties we face. We not only anticipate that there will be neural computers with intelligence but we also believe that the research results of artificial neural networks might lead to new algorithms on von Neumann's computers."
"Calculus of Thought: Neuromorphic Logistic Regression in Cognitive Machines" is a must-read for all scientists about a very simple computation method designed to simulate big-data neural processing. This book is inspired by the Calculus Ratiocinator idea of Gottfried Leibniz, which is that machine computation should be developed to simulate human cognitive processes, thus avoiding problematic subjective bias in analytic solutions to practical and scientific problems. The reduced error logistic regression (RELR) method is proposed
as such a "Calculus of Thought." This book reviews how RELR's
completely automated processing may parallel important aspects of
explicit and implicit learning in neural processes. It emphasizes
the fact that RELR is really just a simple adjustment to already
widely used logistic regression, along with RELR's new applications
that go well beyond standard logistic regression in prediction and
explanation. Readers will learn how RELR solves some of the most
basic problems in today s big and small data related to high
dimensionality, multi-colinearity, and cognitive bias in capricious
outcomes commonly involving human behavior.
Neural Networks in Telecommunications consists of a carefully edited collection of chapters that provides an overview of a wide range of telecommunications tasks being addressed with neural networks. These tasks range from the design and control of the underlying transport network to the filtering, interpretation and manipulation of the transported media. The chapters focus on specific applications, describe specific solutions and demonstrate the benefits that neural networks can provide. By doing this, the authors demonstrate that neural networks should be another tool in the telecommunications engineer's toolbox. Neural networks offer the computational power of nonlinear techniques, while providing a natural path to efficient massively-parallel hardware implementations. In addition, the ability of neural networks to learn allows them to be used on problems where straightforward heuristic or rule-based solutions do not exist. Together these capabilities mean that neural networks offer unique solutions to problems in telecommunications. For engineers and managers in telecommunications, Neural Networks in Telecommunications provides a single point of access to the work being done by leading researchers in this field, and furnishes an in-depth description of neural network applications.
This book reviews and presents a number of approaches to Fuzzy-based system safety and reliability assessment. For each proposed approach, it provides case studies demonstrating their applicability, which will enable readers to implement them into their own risk analysis process. The book begins by giving a review of using linguistic terms in system safety and reliability analysis methods and their extension by fuzzy sets. It then progresses in a logical fashion, dedicating a chapter to each approach, including the 2-tuple fuzzy-based linguistic term set approach, fuzzy bow-tie analysis, optimizing the allocation of risk control measures using fuzzy MCDM approach, fuzzy sets theory and human reliability, and emergency decision making fuzzy-expert aided disaster management system. This book will be of interest to professionals and researchers working in the field of system safety and reliability, as well as postgraduate and undergraduate students studying applications of fuzzy systems. |
![]() ![]() You may like...
Photogrammetric Survey for the Recording…
Efstratios Stylianidis
Hardcover
R4,737
Discovery Miles 47 370
|