![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks
Hybrid Neural Network and Expert Systems presents the basics of expert systems and neural networks, and the important characteristics relevant to the integration of these two technologies. Through case studies of actual working systems, the author demonstrates the use of these hybrid systems in practical situations. Guidelines and models are described to help those who want to develop their own hybrid systems. Neural networks and expert systems together represent two major aspects of human intelligence and therefore are appropriate for integration. Neural networks represent the visual, pattern-recognition types of intelligence, while expert systems represent the logical, reasoning processes. Together, these technologies allow applications to be developed that are more powerful than when each technique is used individually. Hybrid Neural Network and Expert Systems provides frameworks for understanding how the combination of neural networks and expert systems can produce useful hybrid systems, and illustrates the issues and opportunities in this dynamic field.
Fully Tuned Radial Basis Function Neural Networks for Flight Control presents the use of the Radial Basis Function (RBF) neural networks for adaptive control of nonlinear systems with emphasis on flight control applications. A Lyapunov synthesis approach is used to derive the tuning rules for the RBF controller parameters in order to guarantee the stability of the closed loop system. Unlike previous methods that tune only the weights of the RBF network, this book presents the derivation of the tuning law for tuning the centers, widths, and weights of the RBF network, and compares the results with existing algorithms. It also includes a detailed review of system identification, including indirect and direct adaptive control of nonlinear systems using neural networks. Fully Tuned Radial Basis Function Neural Networks for Flight Control is an excellent resource for professionals using neural adaptive controllers for flight control applications.
Explains concepts of Internet of Everything problems, research challenge goals, and vision in smart cities Based on the most recent innovations, and covering the major challenges in smart cities, between IoT and Big Data Examines security issues and challenges related to data-intensive advances in IoT Addresses the total information science challenges in Internet of Everything enabled technologies Covers the exploring and creating IoT environment related self-adaptive systems
The topic of consciousness is truly multidisciplinary, attracting researchers and theorists from diverse backgrounds. It is now widely accepted that previously disparate areas all have contributions to make to the understanding of the nature of consciousness. Thus, we now have computational scientists, neuroscientists, and philosophers all engaged in the same effort. This book illustrates these three approaches, with chapters provided by some of the most important and provocative figures in the field. The first section is concerned with philosophical approaches to consciousness. One of the fundamental issues here is that of subjective feeling or qualia. The second section focuses on approaches from cognitive neuroscience. Patients with different types of neurological problems, and new imaging techniques, provide rich sources of data for studying how consciousness relates to brain function. The third section includes computational approaches looking at the quantitative relationship between brain processes and conscious experience. Cognition, Computation, and Consciousness represents a uniquely integrated and current account of this most fascinating and intractable subject.
The importance of Trustworthy and Explainable Artificial Intelligence (XAI) is recognized in academia, industry and society. This book introduces tools for dealing with imprecision and uncertainty in XAI applications where explanations are demanded, mainly in natural language. Design of Explainable Fuzzy Systems (EXFS) is rooted in Interpretable Fuzzy Systems, which are thoroughly covered in the book. The idea of interpretability in fuzzy systems, which is grounded on mathematical constraints and assessment functions, is firstly introduced. Then, design methodologies are described. Finally, the book shows with practical examples how to design EXFS from interpretable fuzzy systems and natural language generation. This approach is supported by open source software. The book is intended for researchers, students and practitioners who wish to explore EXFS from theoretical and practical viewpoints. The breadth of coverage will inspire novel applications and scientific advancements.
bridges ML and Optimisation; discusses optimisation techniques to improve ML algorithms for big data problems; identifies key research areas to solve large-scale machine learning problems; identifies recent research directions to solve major areas to tackle the challenge
This reference text presents the usage of artificial intelligence in healthcare and discusses the challenges and solutions of using advanced techniques like wearable technologies and image processing in the sector. Features: Focuses on the use of artificial intelligence (AI) in healthcare with issues, applications, and prospects Presents the application of artificial intelligence in medical imaging, fractionalization of early lung tumour detection using a low intricacy approach, etc Discusses an artificial intelligence perspective on wearable technology Analyses cardiac dynamics and assessment of arrhythmia by classifying heartbeat using electrocardiogram (ECG) Elaborates machine learning models for early diagnosis of depressive mental affliction This book serves as a reference for students and researchers analyzing healthcare data. It can also be used by graduate and post graduate students as an elective course.
People are facing more and more NP-complete or NP-hard problems of a combinatorial nature and of a continuous nature in economic, military and management practice. There are two ways in which one can enhance the efficiency of searching for the solutions of these problems. The first is to improve the speed and memory capacity of hardware. We all have witnessed the computer industry's amazing achievements with hardware and software developments over the last twenty years. On one hand many computers, bought only a few years ago, are being sent to elementary schools for children to learn the ABC's of computing. On the other hand, with economic, scientific and military developments, it seems that the increase of intricacy and the size of newly arising problems have no end. We all realize then that the second way, to design good algorithms, will definitely compensate for the hardware limitations in the case of complicated problems. It is the collective and parallel computation property of artificial neural net works that has activated the enthusiasm of researchers in the field of computer science and applied mathematics. It is hard to say that artificial neural networks are solvers of the above-mentioned dilemma, but at least they throw some new light on the difficulties we face. We not only anticipate that there will be neural computers with intelligence but we also believe that the research results of artificial neural networks might lead to new algorithms on von Neumann's computers."
Neural Networks in Telecommunications consists of a carefully edited collection of chapters that provides an overview of a wide range of telecommunications tasks being addressed with neural networks. These tasks range from the design and control of the underlying transport network to the filtering, interpretation and manipulation of the transported media. The chapters focus on specific applications, describe specific solutions and demonstrate the benefits that neural networks can provide. By doing this, the authors demonstrate that neural networks should be another tool in the telecommunications engineer's toolbox. Neural networks offer the computational power of nonlinear techniques, while providing a natural path to efficient massively-parallel hardware implementations. In addition, the ability of neural networks to learn allows them to be used on problems where straightforward heuristic or rule-based solutions do not exist. Together these capabilities mean that neural networks offer unique solutions to problems in telecommunications. For engineers and managers in telecommunications, Neural Networks in Telecommunications provides a single point of access to the work being done by leading researchers in this field, and furnishes an in-depth description of neural network applications.
The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable - and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community.
The recentexplosionofactivity inneural modelingseemsto have beendriven more by advances inthe theories and applicationsoflearning paradigms for artificial neural networks than by advances in our knowledge of real nervous systems. In the past few years, major conferences on neural networks and neural modeling have emerged and, appropriately, have focussed on technological exploitation of these advances. Sensingthat the recentleaps in both computational powerand knowledge ofthe nervous system may have setthe stage for a revolution intheoretical neurobiology, neuroscientists have welcomed thenew neural modeling; butmanyofthem would like tosee itdirected as heavily toward understanding of the nervou$ system as it is presently directed toward computertechnology and control-system engineering. Furthermore, some neuroscientists believe thattechnologists shouldnotbe satisfiedonly with exploiting or extending the recent advances in learning paradigms, that emerging knowledge about real nervous systems will suggest other, comparably valuable, paradigms forsignal processingand control. Ourmotive as organizers was to have a conference that focussed on both of these areas -- emerging modeling tools and concepts for neurobiologists, and emerging neurobiological concepts and neurobiological knowledge ofpotential use to technologists. Ourprinciple ofdesign was simple. We attempted to organize aconference withagroup ofspeakers that would be most illuminating and exciting to us and to our students. We succeeded. EdwinR. Lewis INTRODUCTION This volume contains the collected papers of the 1990 Conference on Analysis and ModelingofNeural Systems, held July 25-27, in Berkeley, California. There were 21 invited talks at the meeting, covering aspects ofanalysis and modeling from the subcellularlevel to the networklevel. Inaddition, thirty six posters were accepted forpresentation.
Neural Networks and Fuzzy Systems: Theory and Applications discusses theories that have proven useful in applying neural networks and fuzzy systems to real world problems. The book includes performance comparison of neural networks and fuzzy systems using data gathered from real systems. Topics covered include the Hopfield network for combinatorial optimization problems, multilayered neural networks for pattern classification and function approximation, fuzzy systems that have the same functions as multilayered networks, and composite systems that have been successfully applied to real world problems. The author also includes representative neural network models such as the Kohonen network and radial basis function network. New fuzzy systems with learning capabilities are also covered. The advantages and disadvantages of neural networks and fuzzy systems are examined. The performance of these two systems in license plate recognition, a water purification plant, blood cell classification, and other real world problems is compared.
This monograph is the continuation and completion of the monograph, "Intelligent Systems: Approximation by Artificial Neural Networks" written by the same author and published 2011 by Springer. The book you hold in hand presents the complete recent and original work of the author in approximation by neural networks. Chapters are written in a self-contained style and can be read independently. Advanced courses and seminars can be taught out of this brief book. All necessary background and motivations are given per chapter. A related list of references is given also per chapter. The book's results are expected to find applications in many areas of applied mathematics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also for all science and engineering libraries.
Neural Network Simulation Environments describes some of the best examples of neural simulation environments. All current neural simulation tools can be classified into four overlapping categories of increasing sophistication in software engineering. The least sophisticated are undocumented and dedicated programs, developed to solve just one specific problem; these tools cannot easily be used by the larger community and have not been included in this volume. The next category is a collection of custom-made programs, some perhaps borrowed from other application domains, and organized into libraries, sometimes with a rudimentary user interface. More recently, very sophisticated programs started to appear that integrate advanced graphical user interface and other data analysis tools. These are frequently dedicated to just one neural architecture/algorithm as, for example, three layers of interconnected artificial neurons' learning to generalize input vectors using a backpropagation algorithm. Currently, the most sophisticated simulation tools are complete, system-level environments, incorporating the most advanced concepts in software engineering that can support experimentation and model development of a wide range of neural networks. These environments include sophisticated graphical user interfaces as well as an array of tools for analysis, manipulation and visualization of neural data. Neural Network Simulation Environments is an excellent reference for researchers in both academia and industry, and can be used as a text for advanced courses on the subject.
This intriguing book was born out of the many discussions the authors had in the past 10 years about the role of scale-free structure and dynamics in producing intelligent behavior in brains. The microscopic dynamics of neural networks is well described by the prevailing paradigm based in a narrow interpretation of the neuron doctrine. This book broadens the doctrine by incorporating the dynamics of neural fields, as first revealed by modeling with differential equations (K-sets). The book broadens that approach by application of random graph theory (neuropercolation). The book concludes with diverse commentaries that exemplify the wide range of mathematical/conceptual approaches to neural fields. This book is intended for researchers, postdocs, and graduate students, who see the limitations of network theory and seek a beachhead from which to embark on mesoscopic and macroscopic neurodynamics.
This book describes new theories and applications of artificial neural networks, with a special focus on answering questions in neuroscience, biology and biophysics and cognitive research. It covers a wide range of methods and technologies, including deep neural networks, large scale neural models, brain computer interface, signal processing methods, as well as models of perception, studies on emotion recognition, self-organization and many more. The book includes both selected and invited papers presented at the XXII International Conference on Neuroinformatics, held on October 12-16, 2020, Moscow, Russia.
Artificial intelligence is at the forefront of research and implementation in many industries including healthcare and agriculture. Whether it's detecting disease or generating algorithms, deep learning techniques are advancing exponentially. Researchers and professionals need a platform in which they can keep up with machine learning trends and their developments in the real world. The Handbook of Research on Applications and Implementations of Machine Learning Techniques provides innovative insights into the multi-disciplinary applications of machine learning algorithms for data analytics. The content within this publication examines disease identification, neural networks, and language support. It is designed for IT professionals, developers, data analysts, technology specialists, R&D professionals, industrialists, practitioners, researchers, academicians, and students seeking research on deep learning procedures and their enactments in the fields of medicine, engineering, and computer science.
This book summarizes years of research in the field of fuzzy relational programming, with a special emphasis on geometric models. It discusses the state-of-the-art in fuzzy relational geometric problems, together with key open issues that must be resolved to achieve a more efficient application of this method. Though chiefly based on research conducted by the authors, who were the first to introduce fuzzy geometric problems, it also covers important findings obtained in the field of linear and non-linear programming. Thanks to its balance of basic and advanced concepts, and its wealth of practical examples, the book offers a valuable guide for both newcomers and experienced researcher in the fields of soft computing and mathematical optimization.
The unification of symbolist and connectionist models is a major trend in AI. The key is to keep the symbolic semantics unchanged. Unfortunately, present embedding approaches cannot. The approach in this book makes the unification possible. It is indeed a new and promising approach in AI. -Bo Zhang, Director of AI Institute, Tsinghua It is indeed wonderful to see the reviving of the important theme Nural Symbolic Model. Given the popularity and prevalence of deep learning, symbolic processing is often neglected or downplayed. This book confronts this old issue head on, with a historical look, incorporating recent advances and new perspectives, thus leading to promising new methods and approaches. -Ron Sun (RPI), on Governing Board of Cognitive Science Society Both for language and humor, approaches like those described in this book are the way to snickerdoodle wombats. -Christian F. Hempelmann (Texas A&M-Commerce) on Executive Board of International Society for Humor Studies
This book reviews and presents a number of approaches to Fuzzy-based system safety and reliability assessment. For each proposed approach, it provides case studies demonstrating their applicability, which will enable readers to implement them into their own risk analysis process. The book begins by giving a review of using linguistic terms in system safety and reliability analysis methods and their extension by fuzzy sets. It then progresses in a logical fashion, dedicating a chapter to each approach, including the 2-tuple fuzzy-based linguistic term set approach, fuzzy bow-tie analysis, optimizing the allocation of risk control measures using fuzzy MCDM approach, fuzzy sets theory and human reliability, and emergency decision making fuzzy-expert aided disaster management system. This book will be of interest to professionals and researchers working in the field of system safety and reliability, as well as postgraduate and undergraduate students studying applications of fuzzy systems.
Innovative examination of augmentation technologies in terms of technical, social, and ethical considerations Usable as a supplemental text for a variety of courses, and also of interest to researchers and professionals in fields including: technical communication, digital communication, UX design, information technology, informatics, human factors, artificial intelligence, ethics, philosophy of technology, and sociology of technology First major work to combine technological, ethical, social, and rhetorical perspectives on human augmentation Additional cases and research material available at the authors' Fabric of Digital Life research database at https://fabricofdigitallife.com/
A comprehensive introduction to network flows that brings together the classic and the contemporary aspects of the field, and provides an integrative view of theory, algorithms, and applications.
This book offers a systematic introduction to the clustering algorithms for intuitionistic fuzzy values, the latest research results in intuitionistic fuzzy aggregation techniques, the extended results in interval-valued intuitionistic fuzzy environments, and their applications in multi-attribute decision making, such as supply chain management, military system performance evaluation, project management, venture capital, information system selection, building materials classification, and operational plan assessment, etc.
Neural Networks Modelling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time focuses on modeling and control of discrete-time unknown nonlinear delayed systems under uncertainties based on Artificial Neural Networks. First, a Recurrent High Order Neural Network (RHONN) is used to identify discrete-time unknown nonlinear delayed systems under uncertainties, then a RHONN is used to design neural observers for the same class of systems. Therefore, both neural models are used to synthesize controllers for trajectory tracking based on two methodologies: sliding mode control and Inverse Optimal Neural Control. As well as considering the different neural control models and complications that are associated with them, this book also analyzes potential applications, prototypes and future trends.
It's time to dispel the myth that machine learning is difficult. Grokking Machine Learning teaches you how to apply ML to your projects using only standard Python code and high school-level math. No specialist knowledge is required to tackle the hands-on exercises using readily available machine learning tools! In Grokking Machine Learning, expert machine learning engineer Luis Serrano introduces the most valuable ML techniques and teaches you how to make them work for you. Practical examples illustrate each new concept to ensure you're grokking as you go. You'll build models for spam detection, language analysis, and image recognition as you lock in each carefully-selected skill. Packed with easy-to-follow Python-based exercises and mini-projects, this book sets you on the path to becoming a machine learning expert. Key Features * Different types of machine learning, including supervised and unsupervised learning * Algorithms for simplifying, classifying, and splitting data * Machine learning packages and tools * Hands-on exercises with fully-explained Python code samples For readers with intermediate programming knowledge in Python or a similar language. About the technology Machine learning is a collection of mathematically-based techniques and algorithms that enable computers to identify patterns and generate predictions from data. This revolutionary data analysis approach is behind everything from recommendation systems to self-driving cars, and is transforming industries from finance to art. Luis G. Serrano has worked as the Head of Content for Artificial Intelligence at Udacity and as a Machine Learning Engineer at Google, where he worked on the YouTube recommendations system. He holds a PhD in mathematics from the University of Michigan, a Bachelor and Masters from the University of Waterloo, and worked as a postdoctoral researcher at the University of Quebec at Montreal. He shares his machine learning expertise on a YouTube channel with over 2 million views and 35 thousand subscribers, and is a frequent speaker at artificial intelligence and data science conferences. |
You may like...
Limits of Stability and Stabilization of…
Jing Zhu, Tian Qi, …
Hardcover
R2,681
Discovery Miles 26 810
Algebraic Topology - The Abel Symposium…
Nils Baas, Eric Friedlander, …
Paperback
R5,178
Discovery Miles 51 780
Introduction to Large Truncated Toeplitz…
Albrecht Boettcher, Bernd Silbermann
Hardcover
R2,797
Discovery Miles 27 970
Variational Models and Methods in Solid…
Francesco Dell'Isola, Sergey Gavrilyuk
Hardcover
R4,059
Discovery Miles 40 590
Math for the Digital Factory
Luca Ghezzi, Dietmar Homberg, …
Hardcover
R4,111
Discovery Miles 41 110
|