Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks
Neural Networks in Telecommunications consists of a carefully edited collection of chapters that provides an overview of a wide range of telecommunications tasks being addressed with neural networks. These tasks range from the design and control of the underlying transport network to the filtering, interpretation and manipulation of the transported media. The chapters focus on specific applications, describe specific solutions and demonstrate the benefits that neural networks can provide. By doing this, the authors demonstrate that neural networks should be another tool in the telecommunications engineer's toolbox. Neural networks offer the computational power of nonlinear techniques, while providing a natural path to efficient massively-parallel hardware implementations. In addition, the ability of neural networks to learn allows them to be used on problems where straightforward heuristic or rule-based solutions do not exist. Together these capabilities mean that neural networks offer unique solutions to problems in telecommunications. For engineers and managers in telecommunications, Neural Networks in Telecommunications provides a single point of access to the work being done by leading researchers in this field, and furnishes an in-depth description of neural network applications.
The recentexplosionofactivity inneural modelingseemsto have beendriven more by advances inthe theories and applicationsoflearning paradigms for artificial neural networks than by advances in our knowledge of real nervous systems. In the past few years, major conferences on neural networks and neural modeling have emerged and, appropriately, have focussed on technological exploitation of these advances. Sensingthat the recentleaps in both computational powerand knowledge ofthe nervous system may have setthe stage for a revolution intheoretical neurobiology, neuroscientists have welcomed thenew neural modeling; butmanyofthem would like tosee itdirected as heavily toward understanding of the nervou$ system as it is presently directed toward computertechnology and control-system engineering. Furthermore, some neuroscientists believe thattechnologists shouldnotbe satisfiedonly with exploiting or extending the recent advances in learning paradigms, that emerging knowledge about real nervous systems will suggest other, comparably valuable, paradigms forsignal processingand control. Ourmotive as organizers was to have a conference that focussed on both of these areas -- emerging modeling tools and concepts for neurobiologists, and emerging neurobiological concepts and neurobiological knowledge ofpotential use to technologists. Ourprinciple ofdesign was simple. We attempted to organize aconference withagroup ofspeakers that would be most illuminating and exciting to us and to our students. We succeeded. EdwinR. Lewis INTRODUCTION This volume contains the collected papers of the 1990 Conference on Analysis and ModelingofNeural Systems, held July 25-27, in Berkeley, California. There were 21 invited talks at the meeting, covering aspects ofanalysis and modeling from the subcellularlevel to the networklevel. Inaddition, thirty six posters were accepted forpresentation.
Neural Networks and Fuzzy Systems: Theory and Applications discusses theories that have proven useful in applying neural networks and fuzzy systems to real world problems. The book includes performance comparison of neural networks and fuzzy systems using data gathered from real systems. Topics covered include the Hopfield network for combinatorial optimization problems, multilayered neural networks for pattern classification and function approximation, fuzzy systems that have the same functions as multilayered networks, and composite systems that have been successfully applied to real world problems. The author also includes representative neural network models such as the Kohonen network and radial basis function network. New fuzzy systems with learning capabilities are also covered. The advantages and disadvantages of neural networks and fuzzy systems are examined. The performance of these two systems in license plate recognition, a water purification plant, blood cell classification, and other real world problems is compared.
This monograph is the continuation and completion of the monograph, "Intelligent Systems: Approximation by Artificial Neural Networks" written by the same author and published 2011 by Springer. The book you hold in hand presents the complete recent and original work of the author in approximation by neural networks. Chapters are written in a self-contained style and can be read independently. Advanced courses and seminars can be taught out of this brief book. All necessary background and motivations are given per chapter. A related list of references is given also per chapter. The book's results are expected to find applications in many areas of applied mathematics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also for all science and engineering libraries.
- The author is one of the most influential AI reseachers of recent decades. - Written in an accessible language, the book provides a probing account of AI today and proposes a new narrative to connect and make sense of events that happened in the recent tumultuous past and enable us to think soberly about the road ahead. - The book is divided into ten carefully crafted and easily-digestible chapters, each grapples with an important question for AI, ranging from the scientific concepts that underpin the technology to wider implications for society, using real examples wherever possible.
Since the invention of computers or machines, scientists and researchers are trying very hard to enhance their capabilities to perform various tasks. As a consequence, the capabilities of computers are growing exponentially day by day in terms of diverse working domains, versatile jobs, processing speed, and reduced size. Now, we are in the race to make the computers or machines as intelligent as human beings. Artificial Intelligence (AI) came up as a way of making a computer or computer software think in the similar manner the intelligent humans think. AI is inspired by the study of human brain like how humans think, learn, decide and act while trying to solve a problem. The outcomes of this study are the basis of developing intelligent software and systems or Intelligent Computing (IC). An IC system has the capability of reasoning, learning, problem solving, perception, and linguistic intelligence. The IC systems consist of AI techniques as well as other emerging techniques that make a system intelligent. The use of intelligent computing has been seen in almost every sub-domain of computer science such as networking, software engineering, gaming, natural language processing, computer vision, image processing, data science, robotics, expert systems, and security. Now a days, the use of IC can also be seen for solving various complex problems in diverse domains such as for predicting disease in medical science, predicting land fertility or crop productivity in agriculture science, predicting market growth in economics, weather forecasting and so on. For all these reasons, this book presents the advances in AI techniques, under the umbrella of IC. In this context, the book includes the recent research works have been done in the areas of machine learning, neural networks, deep learning, evolutionary algorithms, genetic algorithms, swarm intelligence, fuzzy systems and so on. This book provides theoretical, algorithmic, simulation, and implementation-based recent research advancements related to the Intelligent Computing.
This intriguing book was born out of the many discussions the authors had in the past 10 years about the role of scale-free structure and dynamics in producing intelligent behavior in brains. The microscopic dynamics of neural networks is well described by the prevailing paradigm based in a narrow interpretation of the neuron doctrine. This book broadens the doctrine by incorporating the dynamics of neural fields, as first revealed by modeling with differential equations (K-sets). The book broadens that approach by application of random graph theory (neuropercolation). The book concludes with diverse commentaries that exemplify the wide range of mathematical/conceptual approaches to neural fields. This book is intended for researchers, postdocs, and graduate students, who see the limitations of network theory and seek a beachhead from which to embark on mesoscopic and macroscopic neurodynamics.
Neural Network Simulation Environments describes some of the best examples of neural simulation environments. All current neural simulation tools can be classified into four overlapping categories of increasing sophistication in software engineering. The least sophisticated are undocumented and dedicated programs, developed to solve just one specific problem; these tools cannot easily be used by the larger community and have not been included in this volume. The next category is a collection of custom-made programs, some perhaps borrowed from other application domains, and organized into libraries, sometimes with a rudimentary user interface. More recently, very sophisticated programs started to appear that integrate advanced graphical user interface and other data analysis tools. These are frequently dedicated to just one neural architecture/algorithm as, for example, three layers of interconnected artificial neurons' learning to generalize input vectors using a backpropagation algorithm. Currently, the most sophisticated simulation tools are complete, system-level environments, incorporating the most advanced concepts in software engineering that can support experimentation and model development of a wide range of neural networks. These environments include sophisticated graphical user interfaces as well as an array of tools for analysis, manipulation and visualization of neural data. Neural Network Simulation Environments is an excellent reference for researchers in both academia and industry, and can be used as a text for advanced courses on the subject.
Artificial intelligence is at the forefront of research and implementation in many industries including healthcare and agriculture. Whether it's detecting disease or generating algorithms, deep learning techniques are advancing exponentially. Researchers and professionals need a platform in which they can keep up with machine learning trends and their developments in the real world. The Handbook of Research on Applications and Implementations of Machine Learning Techniques provides innovative insights into the multi-disciplinary applications of machine learning algorithms for data analytics. The content within this publication examines disease identification, neural networks, and language support. It is designed for IT professionals, developers, data analysts, technology specialists, R&D professionals, industrialists, practitioners, researchers, academicians, and students seeking research on deep learning procedures and their enactments in the fields of medicine, engineering, and computer science.
A First Course in Fuzzy Logic, Fourth Edition is an expanded version of the successful third edition. It provides a comprehensive introduction to the theory and applications of fuzzy logic. This popular text offers a firm mathematical basis for the calculus of fuzzy concepts necessary for designing intelligent systems and a solid background for readers to pursue further studies and real-world applications. New in the Fourth Edition: Features new results on fuzzy sets of type-2 Provides more information on copulas for modeling dependence structures Includes quantum probability for uncertainty modeling in social sciences, especially in economics With its comprehensive updates, this new edition presents all the background necessary for students, instructors and professionals to begin using fuzzy logic in its many-applications in computer science, mathematics, statistics, and engineering. About the Authors: Hung T. Nguyen is a Professor Emeritus at the Department of Mathematical Sciences, New Mexico State University. He is also an Adjunct Professor of Economics at Chiang Mai University, Thailand. Carol L. Walker is also a Professor Emeritus at the Department of Mathematical Sciences, New Mexico State University. Elbert A. Walker is a Professor Emeritus, Department of Mathematical Sciences, New Mexico State University.
The rise in living standards increases the expectation of people in almost every field. At the forefront is health. Over the past few centuries, there have been major developments in healthcare. Medical device technology and developments in artificial intelligence (AI) are among the most important ones. The improving technology and our ability to harness the technology effectively by means such as AI have led to unprecedented advances, resulting in early diagnosis of diseases. AI algorithms enable the fast and early evaluation of images from medical devices to maximize the benefits. While developments in the field of AI were quickly adapted to the field of health, in some cases this contributed to the formation of innovative artificial intelligence algorithms. Today, the most effective artificial intelligence method is accepted as deep learning. Convolutional neural network (CNN) architectures are deep learning algorithms used for image processing. This book contains applications of CNN methods. The content is quite extensive, including the application of different CNN methods to various medical image processing problems. Readers will be able to analyze the effects of CNN methods presented in the book in medical applications.
This book offers a systematic introduction to the clustering algorithms for intuitionistic fuzzy values, the latest research results in intuitionistic fuzzy aggregation techniques, the extended results in interval-valued intuitionistic fuzzy environments, and their applications in multi-attribute decision making, such as supply chain management, military system performance evaluation, project management, venture capital, information system selection, building materials classification, and operational plan assessment, etc.
This book provides concise yet thorough coverage of the fundamentals and technology of fuzzy sets. Readers will find a lucid and systematic introduction to the essential concepts of fuzzy set-based information granules, their processing and detailed algorithms. Timely topics and recent advances in fuzzy modeling and its principles, neurocomputing, fuzzy set estimation, granulation-degranulation, and fuzzy sets of higher type and order are discussed. In turn, a wealth of examples, case studies, problems and motivating arguments, spread throughout the text and linked with various areas of artificial intelligence, will help readers acquire a solid working knowledge. Given the book's well-balanced combination of the theory and applied facets of fuzzy sets, it will appeal to a broad readership in both academe and industry. It is also ideally suited as a textbook for graduate and undergraduate students in science, engineering, and operations research.
This book helps to enhance the application of fuzzy logic optimization in the areas of science and engineering. It includes implementation and models and paradigms, such as path planning and routing design for different wireless networks, organization behavior strategies models, and so forth. It also: Explains inventory control management, uncertainties management, loss minimization, game optimization, data analysis and prediction, different decision-making system and management, and so forth Describes applicability of fuzzy optimization techniques in areas of science and management Resolves several issues based on uncertainty using member function Helps map different problems based on mathematical models Includes issues and problems based on linear and nonlinear optimizations Focuses on management science such as manpower management and inventory planning This book is aimed at researchers and graduate students in signal processing, power systems, systems and industrial engineering, and computer networks.
Nowadays, many aspects of electrical and electronic engineering are essentially applications of DSP. This is due to the focus on processing information in the form of digital signals, using certain DSP hardware designed to execute software. Fundamental topics in digital signal processing are introduced with theory, analytical tables, and applications with simulation tools. The book provides a collection of solved problems on digital signal processing and statistical signal processing. The solutions are based directly on the math-formulas given in extensive tables throughout the book, so the reader can solve practical problems on signal processing quickly and efficiently. FEATURES Explains how applications of DSP can be implemented in certain programming environments designed for real time systems, ex. biomedical signal analysis and medical image processing. Pairs theory with basic concepts and supporting analytical tables. Includes an extensive collection of solved problems throughout the text. Fosters the ability to solve practical problems on signal processing without focusing on extended theory. Covers the modeling process and addresses broader fundamental issues.
This book presents a comprehensive study of different tools and techniques available to perform network forensics. Also, various aspects of network forensics are reviewed as well as related technologies and their limitations. This helps security practitioners and researchers in better understanding of the problem, current solution space, and future research scope to detect and investigate various network intrusions against such attacks efficiently. Forensic computing is rapidly gaining importance since the amount of crime involving digital systems is steadily increasing. Furthermore, the area is still underdeveloped and poses many technical and legal challenges. The rapid development of the Internet over the past decade appeared to have facilitated an increase in the incidents of online attacks. There are many reasons which are motivating the attackers to be fearless in carrying out the attacks. For example, the speed with which an attack can be carried out, the anonymity provided by the medium, nature of medium where digital information is stolen without actually removing it, increased availability of potential victims and the global impact of the attacks are some of the aspects. Forensic analysis is performed at two different levels: Computer Forensics and Network Forensics. Computer forensics deals with the collection and analysis of data from computer systems, networks, communication streams and storage media in a manner admissible in a court of law. Network forensics deals with the capture, recording or analysis of network events in order to discover evidential information about the source of security attacks in a court of law. Network forensics is not another term for network security. It is an extended phase of network security as the data for forensic analysis are collected from security products like firewalls and intrusion detection systems. The results of this data analysis are utilized for investigating the attacks. Network forensics generally refers to the collection and analysis of network data such as network traffic, firewall logs, IDS logs, etc. Technically, it is a member of the already-existing and expanding the field of digital forensics. Analogously, network forensics is defined as "The use of scientifically proved techniques to collect, fuses, identifies, examine, correlate, analyze, and document digital evidence from multiple, actively processing and transmitting digital sources for the purpose of uncovering facts related to the planned intent, or measured success of unauthorized activities meant to disrupt, corrupt, and or compromise system components as well as providing information to assist in response to or recovery from these activities." Network forensics plays a significant role in the security of today's organizations. On the one hand, it helps to learn the details of external attacks ensuring similar future attacks are thwarted. Additionally, network forensics is essential for investigating insiders' abuses that constitute the second costliest type of attack within organizations. Finally, law enforcement requires network forensics for crimes in which a computer or digital system is either being the target of a crime or being used as a tool in carrying a crime. Network security protects the system against attack while network forensics focuses on recording evidence of the attack. Network security products are generalized and look for possible harmful behaviors. This monitoring is a continuous process and is performed all through the day. However, network forensics involves post mortem investigation of the attack and is initiated after crime notification. There are many tools which assist in capturing data transferred over the networks so that an attack or the malicious intent of the intrusions may be investigated. Similarly, various network forensic frameworks are proposed in the literature.
Python for Scientific Computation and Artificial Intelligence is split into 3 parts: in Section 1, the reader is introduced to the Python programming language and shown how Python can aid in the understanding of advanced High School Mathematics. In Section 2, the reader is shown how Python can be used to solve real-world problems from a broad range of scientific disciplines. Finally, in Section 3, the reader is introduced to neural networks and shown how TensorFlow (written in Python) can be used to solve a large array of problems in Artificial Intelligence (AI). This book was developed from a series of national and international workshops that the author has been delivering for over twenty years. The book is beginner friendly and has a strong practical emphasis on programming and computational modelling. Features: No prior experience of programming is required. Online GitHub repository available with codes for readers to practice. Covers applications and examples from biology, chemistry, computer science, data science, electrical and mechanical engineering, economics, mathematics, physics, statistics and binary oscillator computing. Full solutions to exercises are available as Jupyter notebooks on the Web.
Artificial Intelligence Techniques in IoT Sensor Networks is a technical book which can be read by researchers, academicians, students and professionals interested in artificial intelligence (AI), sensor networks and Internet of Things (IoT). This book is intended to develop a shared understanding of applications of AI techniques in the present and near term. The book maps the technical impacts of AI technologies, applications and their implications on the design of solutions for sensor networks. This text introduces researchers and aspiring academicians to the latest developments and trends in AI applications for sensor networks in a clear and well-organized manner. It is mainly useful for research scholars in sensor networks and AI techniques. In addition, professionals and practitioners working on the design of real-time applications for sensor networks may benefit directly from this book. Moreover, graduate and master's students of any departments related to AI, IoT and sensor networks can find this book fascinating for developing expert systems or real-time applications. This book is written in a simple and easy language, discussing the fundamentals, which relieves the requirement of having early backgrounds in the field. From this expectation and experience, many libraries will be interested in owning copies of this work.
Industrial revolutions have impacted both, manufacturing and service. From the steam engine to digital automated production, the industrial revolutions have conduced significant changes in operations and supply chain management (SCM) processes. Swift changes in manufacturing and service systems have led to phenomenal improvements in productivity. The fast-paced environment brings new challenges and opportunities for the companies that are associated with the adaptation to the new concepts such as Internet of Things (IoT) and Cyber Physical Systems, artificial intelligence (AI), robotics, cyber security, data analytics, block chain and cloud technology. These emerging technologies facilitated and expedited the birth of Logistics 4.0. Industrial Revolution 4.0 initiatives in SCM has attracted stakeholders' attentions due to it is ability to empower using a set of technologies together that helps to execute more efficient production and distribution systems. This initiative has been called Logistics 4.0 of the fourth Industrial Revolution in SCM due to its high potential. Connecting entities, machines, physical items and enterprise resources to each other by using sensors, devices and the internet along the supply chains are the main attributes of Logistics 4.0. IoT enables customers to make more suitable and valuable decisions due to the data-driven structure of the Industry 4.0 paradigm. Besides that, the system's ability of gathering and analyzing information about the environment at any given time and adapting itself to the rapid changes add significant value to the SCM processes. In this peer-reviewed book, experts from all over the world, in the field present a conceptual framework for Logistics 4.0 and provide examples for usage of Industry 4.0 tools in SCM. This book is a work that will be beneficial for both practitioners and students and academicians, as it covers the theoretical framework, on the one hand, and includes examples of practice and real world.
1) Demonstrates alternative definitions of the fuzzy safety factor 2) Explains properties of materials and their structural deterioration 3) Covers optimal probabilistic design 4) Aids the reader in solving problems associated with uncertainty
Fuzzy classi ers are important tools in exploratory data analysis, which is a vital set of methods used in various engineering, scienti c and business applications. Fuzzy classi ers use fuzzy rules and do not require assumptions common to statistical classi cation. Rough set theory is useful when data sets are incomplete. It de nes a formal approximation of crisp sets by providing the lower and the upper approximation of the original set. Systems based on rough sets have natural ability to work on such data and incomplete vectors do not have to be preprocessed before classi cation. To achieve better performance than existing machine learning systems, fuzzy classifiers and rough sets can be combined in ensembles. Such ensembles consist of a nite set of learning models, usually weak learners. The present book discusses the three aforementioned elds - fuzzy systems, rough sets and ensemble techniques. As the trained ensemble should represent a single hypothesis, a lot of attention is placed on the possibility to combine fuzzy rules from fuzzy systems being members of classi cation ensemble. Furthermore, an emphasis is placed on ensembles that can work on incomplete data, thanks to rough set theory. ."
The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new algorithms for prototype selection, and group structure discovering. Moreover, the book discusses one-class support vector machines for pattern recognition, handwritten digit recognition, time series forecasting and classification, and anomaly identification in data analytics and automated data analysis. By presenting the state-of-the-art and discussing the current challenges in the fields of artificial neural networks, bioinformatics and neuroinformatics, the book is intended to promote the implementation of new methods and improvement of existing ones, and to support advanced students, researchers and professionals in their daily efforts to identify, understand and solve a number of open questions in these fields. |
You may like...
Intelligent Analysis Of Fundus Images…
Yuanyuan Chen, Yi Zhang, …
Hardcover
R2,249
Discovery Miles 22 490
Icle Publications Plc-Powered Data…
Polly Patrick, Angela Peery
Paperback
Research Anthology on Artificial Neural…
Information R Management Association
Hardcover
R13,702
Discovery Miles 137 020
Fuzzy Systems - Theory and Applications
Constantin Volosencu
Hardcover
Research Anthology on Artificial Neural…
Information R Management Association
Hardcover
R13,692
Discovery Miles 136 920
Research Anthology on Artificial Neural…
Information R Management Association
Hardcover
R13,686
Discovery Miles 136 860
Hardware Architectures for Deep Learning
Masoud Daneshtalab, Mehdi Modarressi
Hardcover
Avatar-Based Control, Estimation…
Vardan Mkrttchian, Ekaterina Aleshina, …
Hardcover
R7,046
Discovery Miles 70 460
|