![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks
This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.
This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.
Neural Network Parallel Computing is the first book available to the professional market on neural network computing for optimization problems. This introductory book is not only for the novice reader, but for experts in a variety of areas including parallel computing, neural network computing, computer science, communications, graph theory, computer aided design for VLSI circuits, molecular biology, management science, and operations research. The goal of the book is to facilitate an understanding as to the uses of neural network models in real-world applications. Neural Network Parallel Computing presents a major breakthrough in science and a variety of engineering fields. The computational power of neural network computing is demonstrated by solving numerous problems such as N-queen, crossbar switch scheduling, four-coloring and k-colorability, graph planarization and channel routing, RNA secondary structure prediction, knight's tour, spare allocation, sorting and searching, and tiling. Neural Network Parallel Computing is an excellent reference for researchers in all areas covered by the book. Furthermore, the text may be used in a senior or graduate level course on the topic.
Modern research in neural networks has led to powerful artificial learning systems, while recent work in the psychology of human memory has revealed much about how natural systems really learn, including the role of unconscious, implicit, memory processes. Regrettably, the two approaches typically ignore each other. This book, combining the approaches, should contribute to their mutual benefit. New empirical work is presented showing dissociations between implicit and explicit memory performance. Recently proposed explanations for such data lead to a new connectionist learning procedure: CALM (Categorizing and Learning Module), which can learn with or without supervision, and shows practical advantages over many existing procedures. Specific experiments are simulated by a network model (ELAN) composed of CALM modules. A working memory extension to the model is also discussed that could give it symbol manipulation abilities. The book will be of interest to memory psychologists and connectionists, as well as to cognitive scientists who in the past have tended to restrict themselves to symbolic models.
This book presents a novel approach to neural nets and thus offers a genuine alternative to the hitherto known neuro-computers. The new edition includes a section on transformation properties of the equations of the synergetic computer and on the invariance properties of the order parameter equations. Further additions are a new section on stereopsis and recent developments in the use of pulse-coupled neural nets for pattern recognition.
In the last two decades the artificial neural networks have been
refined and widely used by the researchers and application
engineers. We have not witnessed such a large degree of evolution
in any other artificial neural network as in the Adaptive Resonance
Theory (ART) neural network. The ART network remains plastic, or
adaptive, in response to significant events and yet remains stable
in response to irrelevant events. This stability-plasticity
property is a great step towards realizing intelligent machines
capable of autonomous learning in real time environment.
The pursuit of artificial intelligence has been a highly active domain of research for decades, yielding exciting scientific insights and productive new technologies. In terms of generating intelligence, however, this pursuit has yielded only limited success. This book explores the hypothesis that adaptive growth is a means of moving forward. By emulating the biological process of development, we can incorporate desirable characteristics of natural neural systems into engineered designs and thus move closer towards the creation of brain-like systems. The particular focus is on how to design artificial neural networks for engineering tasks. The book consists of contributions from 18 researchers, ranging from detailed reviews of recent domains by senior scientists, to exciting new contributions representing the state of the art in machine learning research. The book begins with broad overviews of artificial neurogenesis and bio-inspired machine learning, suitable both as an introduction to the domains and as a reference for experts. Several contributions provide perspectives and future hypotheses on recent highly successful trains of research, including deep learning, the Hyper NEAT model of developmental neural network design, and a simulation of the visual cortex. Other contributions cover recent advances in the design of bio-inspired artificial neural networks, including the creation of machines for classification, the behavioural control of virtual agents, the design of virtual multi-component robots and morphologies and the creation of flexible intelligence. Throughout, the contributors share their vast expertise on the means and benefits of creating brain-like machines. This book is appropriate for advanced students and practitioners of artificial intelligence and machine learning.
Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Among these properties are their universal approximation ability, their parallel network structure and the availability of on- and off-line learning methods for the interconnection weights. However, dynamic models that contain neural network architectures might be highly non-linear and difficult to analyse as a result. Artificial Neural Networks for Modelling and Control of Non-Linear Systems investigates the subject from a system theoretical point of view. However the mathematical theory that is required from the reader is limited to matrix calculus, basic analysis, differential equations and basic linear system theory. No preliminary knowledge of neural networks is explicitly required. The book presents both classical and novel network architectures and learning algorithms for modelling and control. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems. A major contribution of this book is to introduce NLq Theory as an extension towards modern control theory, in order to analyze and synthesize non-linear systems that contain linear together with static non-linear operators that satisfy a sector condition: neural state space control systems are an example. Moreover, it turns out that NLq Theory is unifying with respect to many problems arising in neural networks, systems and control. Examples show that complex non-linear systems can be modelled and controlled within NLq theory, including mastering chaos. The didactic flavor of this book makes it suitable for use as a text for a course on Neural Networks. In addition, researchers and designers will find many important new techniques, in particular NLq Theory, that have applications in control theory, system theory, circuit theory and Time Series Analysis.
Nonlinear modelling has become increasingly important and widely used in economics. This valuable book brings together recent advances in the area including contributions covering cross-sectional studies of income distribution and discrete choice models, time series models of exchange rate dynamics and jump processes, and artificial neural network and genetic algorithm models of financial markets. Attention is given to the development of theoretical models as well as estimation and testing methods with a wide range of applications in micro and macroeconomics, labour and finance. The book provides valuable introductory material that is accessible to students and scholars interested in this exciting research area, as well as presenting the results of new and original research. Nonlinear Economic Models provides a sequel to Chaos and Nonlinear Models in Economics by the same editors.
The purpose of this book is to present an up to date account of fuzzy ideals of a semiring. The book concentrates on theoretical aspects and consists of eleven chapters including three invited chapters. Among the invited chapters, two are devoted to applications of Semirings to automata theory, and one deals with some generalizations of Semirings. This volume may serve as a useful hand book for graduate students and researchers in the areas of Mathematics and Theoretical Computer Science.
This book develops applications of novel generalizations of fuzzy information measures in the field of pattern recognition, medical diagnosis, multi-criteria and multi-attribute decision making and suitability in linguistic variables. The focus of this presentation lies on introducing consistently strong and efficient generalizations of information and information-theoretic divergence measures in fuzzy and intuitionistic fuzzy environment covering different practical examples. The target audience comprises primarily researchers and practitioners in the involved fields but the book may also be beneficial for graduate students.
The primary purpose of this book is to present information about selected topics on the interactions and applications of fuzzy + neural. Most of the discussion centers around our own research in these areas. Fuzzy + neural can mean many things: (1) approximations between fuzzy systems and neu ral nets (Chapter 4); (2) building hybrid neural nets to equal fuzzy systems (Chapter 5); (3) using neura.l nets to solve fuzzy problems (Chapter 6); (4) approximations between fuzzy neural nets and other fuzzy systems (Chap ter 8); (5) constructing hybrid fuzzy neural nets for certain fuzzy systems (Chapters 9, 10); or (6) computing with words (Chapter 11). This book is not intend to be used primarily as a text book for a course in fuzzy + neural because we have not included problems at the end of each chapter, we have omitted most proofs (given in the references), and we have given very few references. We wanted to keep the mathematical prerequisites to a minimum so all longer, involved, proofs were omitted. Elementary dif ferential calculus is the only prerequisite needed since we do mention partial derivatives once or twice."
This volume contains the text of papers presented at the NATO Advanced Research Workshop on Emergent Computing Methods in Engineering Design, held in Nafplio, Greece, August 25-27, 1994. The workshop convened together some thirty or so researchers from Canada, France, Germany, Greece, Israel, Taiwan, The Netherlands, United Kingdom and the United States of America, to address issues related to the application of such emergent computing methods as genetic algorithms, neural networks and simulated annealing in problems of engineering design. The volume is essentially organized into three parts, with each part having some theoretical papers and other papers of a more practical nature. The frrst part, which comprises the largest number of papers, deals with genetic algorithms and evolutionary computing and presents subject matter ranging from proposed improvements to the computing methodology to specific applications in engineering design. The second part deals with neural networks and considers such topics as their application as approximation tools in design, their adaptation in control system design and theoretical issues of interpretation. The third part of the volume presents a collection of papers that examine such diverse topics as the combined use of genetic algorithms and neural networks, the application of simulated annealing techniques, problem decomposition techniques and the computer recognition and interpretation of emerging objects in engineering design.
Humans are often extraordinary at performing practical reasoning. There are cases where the human computer, slow as it is, is faster than any artificial intelligence system. Are we faster because of the way we perceive knowledge as opposed to the way we represent it? The authors address this question by presenting neural network models that integrate the two most fundamental phenomena of cognition: our ability to learn from experience, and our ability to reason from what has been learned. This book is the first to offer a self-contained presentation of neural network models for a number of computer science logics, including modal, temporal, and epistemic logics. By using a graphical presentation, it explains neural networks through a sound neural-symbolic integration methodology, and it focuses on the benefits of integrating effective robust learning with expressive reasoning capabilities. The book will be invaluable reading for academic researchers, graduate students, and senior undergraduates in computer science, artificial intelligence, machine learning, cognitive science and engineering. It will also be of interest to computational logicians, and professional specialists on applications of cognitive, hybrid and artificial intelligence systems.
Principal Component Neural Networks Theory and Applications
Information and communication technologies are increasingly prolific worldwide, exposing the issues and challenges of the assimilation of existing living environments to the shift in technological communication infrastructure. ""Reflexing Interfaces"" discusses the application of complex theories in information and communication technology, with a focus on the interaction between living systems and information technologies. This innovative view provides researcher, scholars, and IT professionals with a fundamental resource on such compelling topics as virtual reality; fuzzy logic systems; and complexity science in artificial intelligence, evolutionary computation, neural networks, and 3-D modeling.
Neural networks provide a powerful new technology to model and control nonlinear and complex systems. In this book, the authors present a detailed formulation of neural networks from the information-theoretic viewpoint. They show how this perspective provides new insights into the design theory of neural networks. In particular they show how these methods may be applied to the topics of supervised and unsupervised learning including feature extraction, linear and non-linear independent component analysis, and Boltzmann machines. Readers are assumed to have a basic understanding of neural networks, but all the relevant concepts from information theory are carefully introduced and explained. Consequently, readers from several different scientific disciplines, notably cognitive scientists, engineers, physicists, statisticians, and computer scientists, will find this to be a very valuable introduction to this topic.
One of the most challenging and fascinating problems of the theory of neural nets is that of asymptotic behavior, of how a system behaves as time proceeds. This is of particular relevance to many practical applications. Here we focus on association, generalization, and representation. We turn to the last topic first. The introductory chapter, "Global Analysis of Recurrent Neural Net works," by Andreas Herz presents an in-depth analysis of how to construct a Lyapunov function for various types of dynamics and neural coding. It includes a review of the recent work with John Hopfield on integrate-and fire neurons with local interactions. The chapter, "Receptive Fields and Maps in the Visual Cortex: Models of Ocular Dominance and Orientation Columns" by Ken Miller, explains how the primary visual cortex may asymptotically gain its specific structure through a self-organization process based on Hebbian learning. His argu ment since has been shown to be rather susceptible to generalization."
Aimed at graduates and potential researchers, this is a comprehensive introduction to the mathematical aspects of spin glasses and neural networks. It should be useful to mathematicians in probability theory and theoretical physics, and to engineers working in theoretical computer science.
This volume is devoted to interactive and iterative processes of decision-making- I2 Fuzzy Decision Making, in brief. Decision-making is inherently interactive. Fuzzy sets help realize human-machine communication in an efficient way by facilitating a two-way interaction in a friendly and transparent manner. Human-centric interaction is of paramount relevance as a leading guiding design principle of decision support systems. The volume provides the reader with an updated and in-depth material on the conceptually appealing and practically sound methodology and practice of I2 Fuzzy Decision Making. The book engages a wealth of methods of fuzzy sets and Granular Computing, brings new concepts, architectures and practice of fuzzy decision-making providing the reader with various application studies. The book is aimed at a broad audience of researchers and practitioners in numerous disciplines in which decision-making processes play a pivotal role and serve as a vehicle to produce solutions to existing problems. Those involved in operations research, management, various branches of engineering, social sciences, logistics, and economics will benefit from the exposure to the subject matter. The book may serve as a useful and timely reference material for graduate students and senior undergraduate students in courses on decision-making, Computational Intelligence, operations research, pattern recognition, risk management, and knowledge-based systems.
Increasingly, neural networks are used and implemented in a wide range of fields and have become useful tools in probabilistic analysis and prediction theory. This booka "unique in the literaturea "studies the application of neural networks to the analysis of time series of sea data, namely significant wave heights and sea levels. The particular problem examined as a starting point is the reconstruction of missing data, a general problem that appears in many cases of data analysis. Specific topics covered include: * Presentation of general information on the phenomenology of waves and tides, as well as related technical details of various measuring processes used in the study * Description of the model of wind waves (WAM) used to determine the spectral function of waves and predict the behavior of SWH (significant wave heights); a comparison is made of the reconstruction of SWH time series obtained by means of neural network algorithms versus SWH computed by WAM * Principles of artificial neural networks, approximation theory, and extreme-value theory necessary to understand the main applications of the book. * Application of artificial neural networks (ANN) to reconstruct SWH and sea levels (SL) * Comparison of the ANN approach and the approximation operator approach, displaying the advantages of ANN * Examination of extreme-event analysis applied to the time series of sea data in specific locations * Generalizations of ANN to treat analogous problems for other types of phenomena and data This book, a careful blend of theory and applications, is an excellent introduction to the use of ANN, which may encourage readers to try analogous approachesin other important application areas. Researchers, practitioners, and advanced graduate students in neural networks, hydraulic and marine engineering, prediction theory, and data analysis will benefit from the results and novel ideas presented in this useful resource.
This book is devoted to a novel conceptual theoretical framework of neuro science and is an attempt to show that we can postulate a very small number of assumptions and utilize their heuristics to explain a very large spectrum of brain phenomena. The major assumption made in this book is that inborn and acquired neural automatisms are generated according to the same func tional principles. Accordingly, the principles that have been revealed experi mentally to govern inborn motor automatisms, such as locomotion and scratching, are used to elucidate the nature of acquired or learned automat isms. This approach allowed me to apply the language of control theory to describe functions of biological neural networks. You, the reader, can judge the logic of the conclusions regarding brain phenomena that the book derives from these assumptions. If you find the argument flawless, one can call it common sense and consider that to be the best praise for a chain of logical conclusions. For the sake of clarity, I have attempted to make this monograph as readable as possible. Special attention has been given to describing some of the concepts of optimal control theory in such a way that it will be under standable to a biologist or physician. I have also included plenty of illustra tive examples and references designed to demonstrate the appropriateness and applicability of these conceptual theoretical notions for the neurosciences."
Computation in Neurons and Neural Systems contains the collected papers of the 1993 Conference on Computation and Neural Systems which was held between July 31--August 7, in Washington, DC. These papers represent a cross-section of the state-of-the-art research work in the field of computational neuroscience, and includes coverage of analysis and modeling work as well as results of new biological experimentation.
Written for developers with some understanding of deep learning algorithms. Experience with reinforcement learning is not required. Grokking Deep Reinforcement Learning introduces this powerful machine learning approach, using examples, illustrations, exercises, and crystal-clear teaching. You'll love the perfectly paced teaching and the clever, engaging writing style as you dig into this awesome exploration of reinforcement learning fundamentals, effective deep learning techniques, and practical applications in this emerging field. We all learn through trial and error. We avoid the things that cause us to experience pain and failure. We embrace and build on the things that give us reward and success. This common pattern is the foundation of deep reinforcement learning: building machine learning systems that explore and learn based on the responses of the environment. * Foundational reinforcement learning concepts and methods * The most popular deep reinforcement learning agents solving high-dimensional environments * Cutting-edge agents that emulate human-like behavior and techniques for artificial general intelligence Deep reinforcement learning is a form of machine learning in which AI agents learn optimal behavior on their own from raw sensory input. The system perceives the environment, interprets the results of its past decisions and uses this information to optimize its behavior for maximum long-term return.
Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding through coherent firing of the neurons and functional feedback. Information coding through coherent neuronal firing exploits time as a cardinal degree of freedom. This capacity of a neural network rests on the fact that the neuronal action potential is a short, say 1 ms, spike, localized in space and time. Spatial as well as temporal correlations of activity may represent different states of a network. In particular, temporal correlations of activity may express that neurons process the same "object" of, for example, a visual scene by spiking at the very same time. The traditional description of a neural network through a firing rate, the famous S-shaped curve, presupposes a wide time window of, say, at least 100 ms. It thus fails to exploit the capacity to "bind" sets of coherently firing neurons for the purpose of both scene segmentation and figure-ground segregation. Feedback is a dominant feature of the structural organization of the brain. Recurrent neural networks have been studied extensively in the physical literature, starting with the ground breaking work of John Hop field (1982)." |
![]() ![]() You may like...
CONCUR 2002 - Concurrency Theory - 13th…
Lubos Brim, Petr Jancar, …
Paperback
R3,160
Discovery Miles 31 600
Software Engineering for Parallel and…
Innes Jelly, Ian Gorton, …
Hardcover
R5,771
Discovery Miles 57 710
Pearson REVISE Edexcel GCSE History…
Brian Dowse
Digital product license key
![]() R254 Discovery Miles 2 540
X-Kit Presteer Essensiele Verwysings…
M Peacock, R. Scheepers, …
Paperback
![]() R202 Discovery Miles 2 020
|