0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (4)
  • R250 - R500 (38)
  • R500+ (878)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks

Google Cloud AI Services Quick Start Guide - Build intelligent applications with Google Cloud AI services (Paperback): Arvind... Google Cloud AI Services Quick Start Guide - Build intelligent applications with Google Cloud AI services (Paperback)
Arvind Ravulavaru
R829 Discovery Miles 8 290 Ships in 18 - 22 working days

Leverage the power of various Google Cloud AI Services by building a smart web application using MEAN Stack Key Features Start working with the Google Cloud Platform and the AI services it offers Build smart web applications by combining the power of Google Cloud AI services and the MEAN stack Build a web-based dashboard of smart applications that perform language processing, translation, and computer vision on the cloud Book DescriptionCognitive services are the new way of adding intelligence to applications and services. Now we can use Artificial Intelligence as a service that can be consumed by any application or other service, to add smartness and make the end result more practical and useful. Google Cloud AI enables you to consume Artificial Intelligence within your applications, from a REST API. Text, video and speech analysis are among the powerful machine learning features that can be used. This book is the easiest way to get started with the Google Cloud AI services suite and open up the world of smarter applications. This book will help you build a Smart Exchange, a forum application that will let you upload videos, images and perform text to speech conversions and translation services. You will use the power of Google Cloud AI Services to make our simple forum application smart by validating the images, videos, and text provided by users to Google Cloud AI Services and make sure the content which is uploaded follows the forum standards, without a human curator involvement. You will learn how to work with the Vision API, Video Intelligence API, Speech Recognition API, Cloud Language Process, and Cloud Translation API services to make your application smarter. By the end of this book, you will have a strong understanding of working with Google Cloud AI Services, and be well on the way to building smarter applications. What you will learn Understand Google Cloud Platform and its Cloud AI services Explore the Google ML Services Work with an Angular 5 MEAN stack application Integrate Vision API, Video Intelligence API for computer vision Be ready for conversational experiences with the Speech Recognition API, Cloud Language Process and Cloud Translation API services Build a smart web application that uses the power of Google Cloud AI services to make apps smarter Who this book is forThis book is ideal for data professionals and web developers who want to use the power of Google Cloud AI services in their projects, without the going through the pain of mastering machine learning for images, videos and text. Some familiarity with the Google Cloud Platform will be helpful.

OpenCV 4 Computer Vision Application Programming Cookbook - Build complex computer vision applications with OpenCV and C++, 4th... OpenCV 4 Computer Vision Application Programming Cookbook - Build complex computer vision applications with OpenCV and C++, 4th Edition (Paperback, 4th Revised edition)
David Millan Escriva, Robert Laganiere
R1,132 Discovery Miles 11 320 Ships in 18 - 22 working days

Discover interesting recipes to help you understand the concepts of object detection, image processing, and facial detection Key Features Explore the latest features and APIs in OpenCV 4 and build computer vision algorithms Develop effective, robust, and fail-safe vision for your applications Build computer vision algorithms with machine learning capabilities Book DescriptionOpenCV is an image and video processing library used for all types of image and video analysis. Throughout the book, you'll work through recipes that implement a variety of tasks, such as facial recognition and detection. With 70 self-contained tutorials, this book examines common pain points and best practices for computer vision (CV) developers. Each recipe addresses a specific problem and offers a proven, best-practice solution with insights into how it works, so that you can copy the code and configuration files and modify them to suit your needs. This book begins by setting up OpenCV, and explains how to manipulate pixels. You'll understand how you can process images with classes and count pixels with histograms. You'll also learn detecting, describing, and matching interest points. As you advance through the chapters, you'll get to grips with estimating projective relations in images, reconstructing 3D scenes, processing video sequences, and tracking visual motion. In the final chapters, you'll cover deep learning concepts such as face and object detection. By the end of the book, you'll be able to confidently implement a range to computer vision algorithms to meet the technical requirements of your complex CV projects What you will learn Install and create a program using the OpenCV library Segment images into homogenous regions and extract meaningful objects Apply image filters to enhance image content Exploit image geometry to relay different views of a pictured scene Calibrate the camera from different image observations Detect people and objects in images using machine learning techniques Reconstruct a 3D scene from images Explore face detection using deep learning Who this book is forIf you're a CV developer or professional who already uses or would like to use OpenCV for building computer vision software, this book is for you. You'll also find this book useful if you're a C++ programmer looking to extend your computer vision skillset by learning OpenCV.

Natural Language Processing and Computational Linguistics - A practical guide to text analysis with Python, Gensim, spaCy, and... Natural Language Processing and Computational Linguistics - A practical guide to text analysis with Python, Gensim, spaCy, and Keras (Paperback)
Bhargav Srinivasa-Desikan
R1,075 Discovery Miles 10 750 Ships in 18 - 22 working days

Work with Python and powerful open source tools such as Gensim and spaCy to perform modern text analysis, natural language processing, and computational linguistics algorithms. Key Features Discover the open source Python text analysis ecosystem, using spaCy, Gensim, scikit-learn, and Keras Hands-on text analysis with Python, featuring natural language processing and computational linguistics algorithms Learn deep learning techniques for text analysis Book DescriptionModern text analysis is now very accessible using Python and open source tools, so discover how you can now perform modern text analysis in this era of textual data. This book shows you how to use natural language processing, and computational linguistics algorithms, to make inferences and gain insights about data you have. These algorithms are based on statistical machine learning and artificial intelligence techniques. The tools to work with these algorithms are available to you right now - with Python, and tools like Gensim and spaCy. You'll start by learning about data cleaning, and then how to perform computational linguistics from first concepts. You're then ready to explore the more sophisticated areas of statistical NLP and deep learning using Python, with realistic language and text samples. You'll learn to tag, parse, and model text using the best tools. You'll gain hands-on knowledge of the best frameworks to use, and you'll know when to choose a tool like Gensim for topic models, and when to work with Keras for deep learning. This book balances theory and practical hands-on examples, so you can learn about and conduct your own natural language processing projects and computational linguistics. You'll discover the rich ecosystem of Python tools you have available to conduct NLP - and enter the interesting world of modern text analysis. What you will learn Why text analysis is important in our modern age Understand NLP terminology and get to know the Python tools and datasets Learn how to pre-process and clean textual data Convert textual data into vector space representations Using spaCy to process text Train your own NLP models for computational linguistics Use statistical learning and Topic Modeling algorithms for text, using Gensim and scikit-learn Employ deep learning techniques for text analysis using Keras Who this book is forThis book is for you if you want to dive in, hands-first, into the interesting world of text analysis and NLP, and you're ready to work with the rich Python ecosystem of tools and datasets waiting for you!

Neural Network Projects with Python - The ultimate guide to using Python to explore the true power of neural networks through... Neural Network Projects with Python - The ultimate guide to using Python to explore the true power of neural networks through six projects (Paperback)
James Loy
R1,070 Discovery Miles 10 700 Ships in 18 - 22 working days

Build your Machine Learning portfolio by creating 6 cutting-edge Artificial Intelligence projects using neural networks in Python Key Features Discover neural network architectures (like CNN and LSTM) that are driving recent advancements in AI Build expert neural networks in Python using popular libraries such as Keras Includes projects such as object detection, face identification, sentiment analysis, and more Book DescriptionNeural networks are at the core of recent AI advances, providing some of the best resolutions to many real-world problems, including image recognition, medical diagnosis, text analysis, and more. This book goes through some basic neural network and deep learning concepts, as well as some popular libraries in Python for implementing them. It contains practical demonstrations of neural networks in domains such as fare prediction, image classification, sentiment analysis, and more. In each case, the book provides a problem statement, the specific neural network architecture required to tackle that problem, the reasoning behind the algorithm used, and the associated Python code to implement the solution from scratch. In the process, you will gain hands-on experience with using popular Python libraries such as Keras to build and train your own neural networks from scratch. By the end of this book, you will have mastered the different neural network architectures and created cutting-edge AI projects in Python that will immediately strengthen your machine learning portfolio. What you will learn Learn various neural network architectures and its advancements in AI Master deep learning in Python by building and training neural network Master neural networks for regression and classification Discover convolutional neural networks for image recognition Learn sentiment analysis on textual data using Long Short-Term Memory Build and train a highly accurate facial recognition security system Who this book is forThis book is a perfect match for data scientists, machine learning engineers, and deep learning enthusiasts who wish to create practical neural network projects in Python. Readers should already have some basic knowledge of machine learning and neural networks.

Neural Networks - Neural Networks Tools and Techniques for Beginners (Paperback): John Slavio Neural Networks - Neural Networks Tools and Techniques for Beginners (Paperback)
John Slavio
R487 Discovery Miles 4 870 Ships in 18 - 22 working days
Design, Implementation, and Analysis of Next Generation Optical Networks - Emerging Research and Opportunities (Paperback):... Design, Implementation, and Analysis of Next Generation Optical Networks - Emerging Research and Opportunities (Paperback)
Waqas Ahmed Imtiaz, Rastislav Roka
R4,114 Discovery Miles 41 140 Ships in 18 - 22 working days

By the end of the decade, approximately 50 billion devices will be connected over the internet using multiple services such as online gaming, ultra-high definition videos, and 5G mobile services. The associated data traffic demand in both fixed and mobile networks is increasing dramatically, causing network operators to have to migrate the existing optical networks towards next-generation solutions. The main challenge within this development stems from network operators having difficulties finding cost-effective next-generation optical network solutions that can match future high capacity demand in terms of data, reach, and the number of subscribers to support multiple network services on a common network infrastructure. Design, Implementation, and Analysis of Next Generation Optical Networks: Emerging Research and Opportunities is an essential reference source that discusses the next generation of high capacity passive optical access networks (PON) in terms of design, implementation, and analysis and offers a complete reference of technology solutions for next-generation optical networks. Featuring research on topics such as artificial intelligence, electromagnetic interface, and wireless communication, this book is ideally designed for researchers, engineers, scientists, and students interested in understanding, designing, and analyzing the next generation of optical networks.

Genes vs Cultures vs Consciousness - A Brief Story of Our Computational Minds (Paperback): Andres Campero Genes vs Cultures vs Consciousness - A Brief Story of Our Computational Minds (Paperback)
Andres Campero
R164 Discovery Miles 1 640 Ships in 18 - 22 working days
Deep Learning With Python - A Comprehensive Guide Beyond The Basics (Paperback): Travis Booth Deep Learning With Python - A Comprehensive Guide Beyond The Basics (Paperback)
Travis Booth
R508 Discovery Miles 5 080 Ships in 18 - 22 working days
Generative Adversarial Networks Cookbook - Over 100 recipes to build generative models using Python, TensorFlow, and Keras... Generative Adversarial Networks Cookbook - Over 100 recipes to build generative models using Python, TensorFlow, and Keras (Paperback)
Josh Kalin
R1,159 Discovery Miles 11 590 Ships in 18 - 22 working days

Simplify next-generation deep learning by implementing powerful generative models using Python, TensorFlow and Keras Key Features Understand the common architecture of different types of GANs Train, optimize, and deploy GAN applications using TensorFlow and Keras Build generative models with real-world data sets, including 2D and 3D data Book DescriptionDeveloping Generative Adversarial Networks (GANs) is a complex task, and it is often hard to find code that is easy to understand. This book leads you through eight different examples of modern GAN implementations, including CycleGAN, simGAN, DCGAN, and 2D image to 3D model generation. Each chapter contains useful recipes to build on a common architecture in Python, TensorFlow and Keras to explore increasingly difficult GAN architectures in an easy-to-read format. The book starts by covering the different types of GAN architecture to help you understand how the model works. This book also contains intuitive recipes to help you work with use cases involving DCGAN, Pix2Pix, and so on. To understand these complex applications, you will take different real-world data sets and put them to use. By the end of this book, you will be equipped to deal with the challenges and issues that you may face while working with GAN models, thanks to easy-to-follow code solutions that you can implement right away. What you will learn Structure a GAN architecture in pseudocode Understand the common architecture for each of the GAN models you will build Implement different GAN architectures in TensorFlow and Keras Use different datasets to enable neural network functionality in GAN models Combine different GAN models and learn how to fine-tune them Produce a model that can take 2D images and produce 3D models Develop a GAN to do style transfer with Pix2Pix Who this book is forThis book is for data scientists, machine learning developers, and deep learning practitioners looking for a quick reference to tackle challenges and tasks in the GAN domain. Familiarity with machine learning concepts and working knowledge of Python programming language will help you get the most out of the book.

Artificial Intelligence - An Essential Beginner's Guide to AI, Machine Learning, Robotics, The Internet of Things, Neural... Artificial Intelligence - An Essential Beginner's Guide to AI, Machine Learning, Robotics, The Internet of Things, Neural Networks, Deep Learning, Reinforcement Learning, and Our Future (Paperback)
Neil Wilkins
R354 R328 Discovery Miles 3 280 Save R26 (7%) Ships in 18 - 22 working days
The Singularity - Building a Better Future (Paperback): Nishanth Mudkey The Singularity - Building a Better Future (Paperback)
Nishanth Mudkey
R1,066 R894 Discovery Miles 8 940 Save R172 (16%) Ships in 18 - 22 working days
Robotics - What Beginners Need to Know about Robotic Process Automation, Mobile Robots, Artificial Intelligence, Machine... Robotics - What Beginners Need to Know about Robotic Process Automation, Mobile Robots, Artificial Intelligence, Machine Learning, Autonomous Vehicles, Speech Recognition, Drones, and Our Future (Paperback)
Neil Wilkins
R348 Discovery Miles 3 480 Ships in 18 - 22 working days
Data Science Algorithms in a Week - Top 7 algorithms for scientific computing, data analysis, and machine learning, 2nd Edition... Data Science Algorithms in a Week - Top 7 algorithms for scientific computing, data analysis, and machine learning, 2nd Edition (Paperback, 2nd Revised edition)
David Natingga
R1,002 Discovery Miles 10 020 Ships in 18 - 22 working days

Build a strong foundation of machine learning algorithms in 7 days Key Features Use Python and its wide array of machine learning libraries to build predictive models Learn the basics of the 7 most widely used machine learning algorithms within a week Know when and where to apply data science algorithms using this guide Book DescriptionMachine learning applications are highly automated and self-modifying, and continue to improve over time with minimal human intervention, as they learn from the trained data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed. Through algorithmic and statistical analysis, these models can be leveraged to gain new knowledge from existing data as well. Data Science Algorithms in a Week addresses all problems related to accurate and efficient data classification and prediction. Over the course of seven days, you will be introduced to seven algorithms, along with exercises that will help you understand different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. This book also guides you in predicting data based on existing trends in your dataset. This book covers algorithms such as k-nearest neighbors, Naive Bayes, decision trees, random forest, k-means, regression, and time-series analysis. By the end of this book, you will understand how to choose machine learning algorithms for clustering, classification, and regression and know which is best suited for your problem What you will learn Understand how to identify a data science problem correctly Implement well-known machine learning algorithms efficiently using Python Classify your datasets using Naive Bayes, decision trees, and random forest with accuracy Devise an appropriate prediction solution using regression Work with time series data to identify relevant data events and trends Cluster your data using the k-means algorithm Who this book is forThis book is for aspiring data science professionals who are familiar with Python and have a little background in statistics. You'll also find this book useful if you're currently working with data science algorithms in some capacity and want to expand your skill set

Keras 2.x Projects - 9 projects demonstrating faster experimentation of neural network and deep learning applications using... Keras 2.x Projects - 9 projects demonstrating faster experimentation of neural network and deep learning applications using Keras (Paperback)
Giuseppe Ciaburro
R1,200 Discovery Miles 12 000 Ships in 18 - 22 working days

Demonstrate fundamentals of Deep Learning and neural network methodologies using Keras 2.x Key Features Experimental projects showcasing the implementation of high-performance deep learning models with Keras. Use-cases across reinforcement learning, natural language processing, GANs and computer vision. Build strong fundamentals of Keras in the area of deep learning and artificial intelligence. Book DescriptionKeras 2.x Projects explains how to leverage the power of Keras to build and train state-of-the-art deep learning models through a series of practical projects that look at a range of real-world application areas. To begin with, you will quickly set up a deep learning environment by installing the Keras library. Through each of the projects, you will explore and learn the advanced concepts of deep learning and will learn how to compute and run your deep learning models using the advanced offerings of Keras. You will train fully-connected multilayer networks, convolutional neural networks, recurrent neural networks, autoencoders and generative adversarial networks using real-world training datasets. The projects you will undertake are all based on real-world scenarios of all complexity levels, covering topics such as language recognition, stock volatility, energy consumption prediction, faster object classification for self-driving vehicles, and more. By the end of this book, you will be well versed with deep learning and its implementation with Keras. You will have all the knowledge you need to train your own deep learning models to solve different kinds of problems. What you will learn Apply regression methods to your data and understand how the regression algorithm works Understand the basic concepts of classification methods and how to implement them in the Keras environment Import and organize data for neural network classification analysis Learn about the role of rectified linear units in the Keras network architecture Implement a recurrent neural network to classify the sentiment of sentences from movie reviews Set the embedding layer and the tensor sizes of a network Who this book is forIf you are a data scientist, machine learning engineer, deep learning practitioner or an AI engineer who wants to build speedy intelligent applications with minimal lines of codes, then this book is the best fit for you. Sound knowledge of machine learning and basic familiarity with Keras library would be useful.

Python Reinforcement Learning - Solve complex real-world problems by mastering reinforcement learning algorithms using OpenAI... Python Reinforcement Learning - Solve complex real-world problems by mastering reinforcement learning algorithms using OpenAI Gym and TensorFlow (Paperback)
Sudharsan Ravichandiran, Sean Saito, Rajalingappaa shanmugamani, Yang Wenzhuo
R1,429 Discovery Miles 14 290 Ships in 18 - 22 working days

Apply modern reinforcement learning and deep reinforcement learning methods using Python and its powerful libraries Key Features Your entry point into the world of artificial intelligence using the power of Python An example-rich guide to master various RL and DRL algorithms Explore the power of modern Python libraries to gain confidence in building self-trained applications Book DescriptionReinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL. By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems. This Learning Path includes content from the following Packt products: Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran Python Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa Shanmugamani What you will learn Train an agent to walk using OpenAI Gym and TensorFlow Solve multi-armed-bandit problems using various algorithms Build intelligent agents using the DRQN algorithm to play the Doom game Teach your agent to play Connect4 using AlphaGo Zero Defeat Atari arcade games using the value iteration method Discover how to deal with discrete and continuous action spaces in various environments Who this book is forIf you're an ML/DL enthusiast interested in AI and want to explore RL and deep RL from scratch, this Learning Path is for you. Prior knowledge of linear algebra is expected.

Keras Reinforcement Learning Projects - 9 projects exploring popular reinforcement learning techniques to build self-learning... Keras Reinforcement Learning Projects - 9 projects exploring popular reinforcement learning techniques to build self-learning agents (Paperback)
Giuseppe Ciaburro
R1,223 Discovery Miles 12 230 Ships in 18 - 22 working days

A practical guide to mastering reinforcement learning algorithms using Keras Key Features Build projects across robotics, gaming, and finance fields, putting reinforcement learning (RL) into action Get to grips with Keras and practice on real-world unstructured datasets Uncover advanced deep learning algorithms such as Monte Carlo, Markov Decision, and Q-learning Book DescriptionReinforcement learning has evolved a lot in the last couple of years and proven to be a successful technique in building smart and intelligent AI networks. Keras Reinforcement Learning Projects installs human-level performance into your applications using algorithms and techniques of reinforcement learning, coupled with Keras, a faster experimental library. The book begins with getting you up and running with the concepts of reinforcement learning using Keras. You'll learn how to simulate a random walk using Markov chains and select the best portfolio using dynamic programming (DP) and Python. You'll also explore projects such as forecasting stock prices using Monte Carlo methods, delivering vehicle routing application using Temporal Distance (TD) learning algorithms, and balancing a Rotating Mechanical System using Markov decision processes. Once you've understood the basics, you'll move on to Modeling of a Segway, running a robot control system using deep reinforcement learning, and building a handwritten digit recognition model in Python using an image dataset. Finally, you'll excel in playing the board game Go with the help of Q-Learning and reinforcement learning algorithms. By the end of this book, you'll not only have developed hands-on training on concepts, algorithms, and techniques of reinforcement learning but also be all set to explore the world of AI. What you will learn Practice the Markov decision process in prediction and betting evaluations Implement Monte Carlo methods to forecast environment behaviors Explore TD learning algorithms to manage warehouse operations Construct a Deep Q-Network using Python and Keras to control robot movements Apply reinforcement concepts to build a handwritten digit recognition model using an image dataset Address a game theory problem using Q-Learning and OpenAI Gym Who this book is forKeras Reinforcement Learning Projects is for you if you are data scientist, machine learning developer, or AI engineer who wants to understand the fundamentals of reinforcement learning by developing practical projects. Sound knowledge of machine learning and basic familiarity with Keras is useful to get the most out of this book

Python Deep learning - Develop your first Neural Network in Python Using TensorFlow, Keras, and PyTorch (Paperback): Samuel... Python Deep learning - Develop your first Neural Network in Python Using TensorFlow, Keras, and PyTorch (Paperback)
Samuel Burns
R391 Discovery Miles 3 910 Ships in 18 - 22 working days
Multi-Objective Stochastic Programming in Fuzzy Environments (Paperback): Animesh Biswas, Arnab Kumar De Multi-Objective Stochastic Programming in Fuzzy Environments (Paperback)
Animesh Biswas, Arnab Kumar De
R4,164 Discovery Miles 41 640 Ships in 18 - 22 working days

It is frequently observed that most decision-making problems involve several objectives, and the aim of the decision makers is to find the best decision by fulfilling the aspiration levels of all the objectives. Multi-objective decision making is especially suitable for the design and planning steps and allows a decision maker to achieve the optimal or aspired goals by considering the various interactions of the given constraints. Multi-Objective Stochastic Programming in Fuzzy Environments discusses optimization problems with fuzzy random variables following several types of probability distributions and different types of fuzzy numbers with different defuzzification processes in probabilistic situations. The content within this publication examines such topics as waste management, agricultural systems, and fuzzy set theory. It is designed for academicians, researchers, and students.

Artificial Intelligence Engines - A Tutorial Introduction to the Mathematics of Deep Learning (Paperback): James V Stone Artificial Intelligence Engines - A Tutorial Introduction to the Mathematics of Deep Learning (Paperback)
James V Stone
R863 R782 Discovery Miles 7 820 Save R81 (9%) Ships in 18 - 22 working days
Artificial Intelligence - A Comprehensive Guide to AI, Machine Learning, Internet of Things, Robotics, Deep Learning,... Artificial Intelligence - A Comprehensive Guide to AI, Machine Learning, Internet of Things, Robotics, Deep Learning, Predictive Analytics, Neural Networks, Reinforcement Learning, and Our Future (Paperback)
Neil Wilkins
R409 Discovery Miles 4 090 Ships in 18 - 22 working days
The Machine Learning Toolbox - For Non-Mathematicians (Paperback): Brian Letort The Machine Learning Toolbox - For Non-Mathematicians (Paperback)
Brian Letort
R491 Discovery Miles 4 910 Ships in 18 - 22 working days
Hands-On Artificial Intelligence with Java for Beginners - Build intelligent apps using machine learning and deep learning with... Hands-On Artificial Intelligence with Java for Beginners - Build intelligent apps using machine learning and deep learning with Deeplearning4j (Paperback)
Nisheeth Joshi
R655 Discovery Miles 6 550 Ships in 18 - 22 working days

Build, train, and deploy intelligent applications using Java libraries Key Features Leverage the power of Java libraries to build smart applications Build and train deep learning models for implementing artificial intelligence Learn various algorithms to automate complex tasks Book DescriptionArtificial intelligence (AI) is increasingly in demand as well as relevant in the modern world, where everything is driven by technology and data. AI can be used for automating systems or processes to carry out complex tasks and functions in order to achieve optimal performance and productivity. Hands-On Artificial Intelligence with Java for Beginners begins by introducing you to AI concepts and algorithms. You will learn about various Java-based libraries and frameworks that can be used in implementing AI to build smart applications. In addition to this, the book teaches you how to implement easy to complex AI tasks, such as genetic programming, heuristic searches, reinforcement learning, neural networks, and segmentation, all with a practical approach. By the end of this book, you will not only have a solid grasp of AI concepts, but you'll also be able to build your own smart applications for multiple domains. What you will learn Leverage different Java packages and tools such as Weka, RapidMiner, and Deeplearning4j, among others Build machine learning models using supervised and unsupervised machine learning techniques Implement different deep learning algorithms in Deeplearning4j and build applications based on them Study the basics of heuristic searching and genetic programming Differentiate between syntactic and semantic similarity among texts Perform sentiment analysis for effective decision making with LingPipe Who this book is forHands-On Artificial Intelligence with Java for Beginners is for Java developers who want to learn the fundamentals of artificial intelligence and extend their programming knowledge to build smarter applications.

Generative Adversarial Networks Projects - Build next-generation generative models using TensorFlow and Keras (Paperback):... Generative Adversarial Networks Projects - Build next-generation generative models using TensorFlow and Keras (Paperback)
Kailash Ahirwar
R1,174 Discovery Miles 11 740 Ships in 18 - 22 working days

Explore various Generative Adversarial Network architectures using the Python ecosystem Key Features Use different datasets to build advanced projects in the Generative Adversarial Network domain Implement projects ranging from generating 3D shapes to a face aging application Explore the power of GANs to contribute in open source research and projects Book DescriptionGenerative Adversarial Networks (GANs) have the potential to build next-generation models, as they can mimic any distribution of data. Major research and development work is being undertaken in this field since it is one of the rapidly growing areas of machine learning. This book will test unsupervised techniques for training neural networks as you build seven end-to-end projects in the GAN domain. Generative Adversarial Network Projects begins by covering the concepts, tools, and libraries that you will use to build efficient projects. You will also use a variety of datasets for the different projects covered in the book. The level of complexity of the operations required increases with every chapter, helping you get to grips with using GANs. You will cover popular approaches such as 3D-GAN, DCGAN, StackGAN, and CycleGAN, and you'll gain an understanding of the architecture and functioning of generative models through their practical implementation. By the end of this book, you will be ready to build, train, and optimize your own end-to-end GAN models at work or in your own projects. What you will learn Train a network on the 3D ShapeNet dataset to generate realistic shapes Generate anime characters using the Keras implementation of DCGAN Implement an SRGAN network to generate high-resolution images Train Age-cGAN on Wiki-Cropped images to improve face verification Use Conditional GANs for image-to-image translation Understand the generator and discriminator implementations of StackGAN in Keras Who this book is forIf you're a data scientist, machine learning developer, deep learning practitioner, or AI enthusiast looking for a project guide to test your knowledge and expertise in building real-world GANs models, this book is for you.

Natural Language Processing with Java - Techniques for building machine learning and neural network models for NLP, 2nd Edition... Natural Language Processing with Java - Techniques for building machine learning and neural network models for NLP, 2nd Edition (Paperback, 2nd Revised edition)
Richard M Reese, AshishSingh Bhatia
R1,073 Discovery Miles 10 730 Ships in 18 - 22 working days

Explore various approaches to organize and extract useful text from unstructured data using Java Key Features Use deep learning and NLP techniques in Java to discover hidden insights in text Work with popular Java libraries such as CoreNLP, OpenNLP, and Mallet Explore machine translation, identifying parts of speech, and topic modeling Book DescriptionNatural Language Processing (NLP) allows you to take any sentence and identify patterns, special names, company names, and more. The second edition of Natural Language Processing with Java teaches you how to perform language analysis with the help of Java libraries, while constantly gaining insights from the outcomes. You'll start by understanding how NLP and its various concepts work. Having got to grips with the basics, you'll explore important tools and libraries in Java for NLP, such as CoreNLP, OpenNLP, Neuroph, and Mallet. You'll then start performing NLP on different inputs and tasks, such as tokenization, model training, parts-of-speech and parsing trees. You'll learn about statistical machine translation, summarization, dialog systems, complex searches, supervised and unsupervised NLP, and more. By the end of this book, you'll have learned more about NLP, neural networks, and various other trained models in Java for enhancing the performance of NLP applications. What you will learn Understand basic NLP tasks and how they relate to one another Discover and use the available tokenization engines Apply search techniques to find people, as well as things, within a document Construct solutions to identify parts of speech within sentences Use parsers to extract relationships between elements of a document Identify topics in a set of documents Explore topic modeling from a document Who this book is forNatural Language Processing with Java is for you if you are a data analyst, data scientist, or machine learning engineer who wants to extract information from a language using Java. Knowledge of Java programming is needed, while a basic understanding of statistics will be useful but not mandatory.

Hands-On Deep Learning for Images with TensorFlow - Build intelligent computer vision applications using TensorFlow and Keras... Hands-On Deep Learning for Images with TensorFlow - Build intelligent computer vision applications using TensorFlow and Keras (Paperback)
Will Ballard
R661 Discovery Miles 6 610 Ships in 18 - 22 working days

Explore TensorFlow's capabilities to perform efficient deep learning on images Key Features Discover image processing for machine vision Build an effective image classification system using the power of CNNs Leverage TensorFlow's capabilities to perform efficient deep learning Book DescriptionTensorFlow is Google's popular offering for machine learning and deep learning, quickly becoming a favorite tool for performing fast, efficient, and accurate deep learning tasks. Hands-On Deep Learning for Images with TensorFlow shows you the practical implementations of real-world projects, teaching you how to leverage TensorFlow's capabilities to perform efficient image processing using the power of deep learning. With the help of this book, you will get to grips with the different paradigms of performing deep learning such as deep neural nets and convolutional neural networks, followed by understanding how they can be implemented using TensorFlow. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow and Keras. What you will learn Build machine learning models particularly focused on the MNIST digits Work with Docker and Keras to build an image classifier Understand natural language models to process text and images Prepare your dataset for machine learning Create classical, convolutional, and deep neural networks Create a RESTful image classification server Who this book is forHands-On Deep Learning for Images with TensorFlow is for you if you are an application developer, data scientist, or machine learning practitioner looking to integrate machine learning into application software and master deep learning by implementing practical projects in TensorFlow. Knowledge of Python programming and basics of deep learning are required to get the best out of this book.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Excel 2007 Advanced Report Development
T Zapawa Paperback R1,090 R863 Discovery Miles 8 630
Crucial DDR4 3200Mhz 32GB Desktop…
R3,666 Discovery Miles 36 660
Vectors in Two or Three Dimensions
Ann Hirst Paperback R1,019 Discovery Miles 10 190
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek Hardcover R3,328 Discovery Miles 33 280
Transcend JetRam DDR4-2666 U-DIMM 16GB…
R2,500 Discovery Miles 25 000
Transcend JetRam JM3200HSG-8G memory…
R1,217 Discovery Miles 12 170
Stochastic Transport in Upper Ocean…
Bertrand Chapron, Dan Crisan, … Hardcover R1,560 Discovery Miles 15 600
Financial Modeling in Excel For Dummies…
DS Fairhurst Paperback R704 Discovery Miles 7 040
Pointwise Variable Anisotropic Function…
Shai Dekel Hardcover R4,120 Discovery Miles 41 200
Excel 2019 All-In-One For Dummies
G. Harvey Paperback  (1)
R833 R687 Discovery Miles 6 870

 

Partners