0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (4)
  • R250 - R500 (40)
  • R500+ (891)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks

Hands-On Deep Learning with Go - A practical guide to building and implementing neural network models using Go (Paperback):... Hands-On Deep Learning with Go - A practical guide to building and implementing neural network models using Go (Paperback)
Gareth Seneque, Darrell Chua
R1,243 Discovery Miles 12 430 Ships in 10 - 15 working days

Apply modern deep learning techniques to build and train deep neural networks using Gorgonia Key Features Gain a practical understanding of deep learning using Golang Build complex neural network models using Go libraries and Gorgonia Take your deep learning model from design to deployment with this handy guide Book DescriptionGo is an open source programming language designed by Google for handling large-scale projects efficiently. The Go ecosystem comprises some really powerful deep learning tools such as DQN and CUDA. With this book, you'll be able to use these tools to train and deploy scalable deep learning models from scratch. This deep learning book begins by introducing you to a variety of tools and libraries available in Go. It then takes you through building neural networks, including activation functions and the learning algorithms that make neural networks tick. In addition to this, you'll learn how to build advanced architectures such as autoencoders, restricted Boltzmann machines (RBMs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more. You'll also understand how you can scale model deployments on the AWS cloud infrastructure for training and inference. By the end of this book, you'll have mastered the art of building, training, and deploying deep learning models in Go to solve real-world problems. What you will learn Explore the Go ecosystem of libraries and communities for deep learning Get to grips with Neural Networks, their history, and how they work Design and implement Deep Neural Networks in Go Get a strong foundation of concepts such as Backpropagation and Momentum Build Variational Autoencoders and Restricted Boltzmann Machines using Go Build models with CUDA and benchmark CPU and GPU models Who this book is forThis book is for data scientists, machine learning engineers, and AI developers who want to build state-of-the-art deep learning models using Go. Familiarity with basic machine learning concepts and Go programming is required to get the best out of this book.

Hands-On Artificial Intelligence for Beginners - An introduction to AI concepts, algorithms, and their implementation... Hands-On Artificial Intelligence for Beginners - An introduction to AI concepts, algorithms, and their implementation (Paperback)
Patrick D Smith
R1,412 Discovery Miles 14 120 Ships in 10 - 15 working days

Grasp the fundamentals of Artificial Intelligence and build your own intelligent systems with ease Key Features Enter the world of AI with the help of solid concepts and real-world use cases Explore AI components to build real-world automated intelligence Become well versed with machine learning and deep learning concepts Book DescriptionVirtual Assistants, such as Alexa and Siri, process our requests, Google's cars have started to read addresses, and Amazon's prices and Netflix's recommended videos are decided by AI. Artificial Intelligence is one of the most exciting technologies and is becoming increasingly significant in the modern world. Hands-On Artificial Intelligence for Beginners will teach you what Artificial Intelligence is and how to design and build intelligent applications. This book will teach you to harness packages such as TensorFlow in order to create powerful AI systems. You will begin with reviewing the recent changes in AI and learning how artificial neural networks (ANNs) have enabled more intelligent AI. You'll explore feedforward, recurrent, convolutional, and generative neural networks (FFNNs, RNNs, CNNs, and GNNs), as well as reinforcement learning methods. In the concluding chapters, you'll learn how to implement these methods for a variety of tasks, such as generating text for chatbots, and playing board and video games. By the end of this book, you will be able to understand exactly what you need to consider when optimizing ANNs and how to deploy and maintain AI applications. What you will learn Use TensorFlow packages to create AI systems Build feedforward, convolutional, and recurrent neural networks Implement generative models for text generation Build reinforcement learning algorithms to play games Assemble RNNs, CNNs, and decoders to create an intelligent assistant Utilize RNNs to predict stock market behavior Create and scale training pipelines and deployment architectures for AI systems Who this book is forThis book is designed for beginners in AI, aspiring AI developers, as well as machine learning enthusiasts with an interest in leveraging various algorithms to build powerful AI applications.

Keras Deep Learning Cookbook - Over 30 recipes for implementing deep neural networks in Python (Paperback): Rajdeep Dua,... Keras Deep Learning Cookbook - Over 30 recipes for implementing deep neural networks in Python (Paperback)
Rajdeep Dua, Manpreet Singh Ghotra
R972 Discovery Miles 9 720 Ships in 10 - 15 working days

Leverage the power of deep learning and Keras to develop smarter and more efficient data models Key Features Understand different neural networks and their implementation using Keras Explore recipes for training and fine-tuning your neural network models Put your deep learning knowledge to practice with real-world use-cases, tips, and tricks Book DescriptionKeras has quickly emerged as a popular deep learning library. Written in Python, it allows you to train convolutional as well as recurrent neural networks with speed and accuracy. The Keras Deep Learning Cookbook shows you how to tackle different problems encountered while training efficient deep learning models, with the help of the popular Keras library. Starting with installing and setting up Keras, the book demonstrates how you can perform deep learning with Keras in the TensorFlow. From loading data to fitting and evaluating your model for optimal performance, you will work through a step-by-step process to tackle every possible problem faced while training deep models. You will implement convolutional and recurrent neural networks, adversarial networks, and more with the help of this handy guide. In addition to this, you will learn how to train these models for real-world image and language processing tasks. By the end of this book, you will have a practical, hands-on understanding of how you can leverage the power of Python and Keras to perform effective deep learning What you will learn Install and configure Keras in TensorFlow Master neural network programming using the Keras library Understand the different Keras layers Use Keras to implement simple feed-forward neural networks, CNNs and RNNs Work with various datasets and models used for image and text classification Develop text summarization and reinforcement learning models using Keras Who this book is forKeras Deep Learning Cookbook is for you if you are a data scientist or machine learning expert who wants to find practical solutions to common problems encountered while training deep learning models. A basic understanding of Python and some experience in machine learning and neural networks is required for this book.

Robotics - What Beginners Need to Know about Robotic Process Automation, Mobile Robots, Artificial Intelligence, Machine... Robotics - What Beginners Need to Know about Robotic Process Automation, Mobile Robots, Artificial Intelligence, Machine Learning, Autonomous Vehicles, Speech Recognition, Drones, and Our Future (Paperback)
Neil Wilkins
R377 Discovery Miles 3 770 Ships in 10 - 15 working days
Pioneering Advances for AI Driverless Cars - Practical Innovations in Artificial Intelligence and Machine Learning (Paperback):... Pioneering Advances for AI Driverless Cars - Practical Innovations in Artificial Intelligence and Machine Learning (Paperback)
Lance Eliot
R729 Discovery Miles 7 290 Ships in 10 - 15 working days
Introduction to Deep Learning (Black/White version) - with complete Python and TensorFlow examples (Paperback): Prof Dr Juergen... Introduction to Deep Learning (Black/White version) - with complete Python and TensorFlow examples (Paperback)
Prof Dr Juergen Brauer
R735 Discovery Miles 7 350 Ships in 10 - 15 working days
Hands-On Neural Networks - Learn how to build and train your first neural network model using Python (Paperback): Leonardo De... Hands-On Neural Networks - Learn how to build and train your first neural network model using Python (Paperback)
Leonardo De Marchi, Laura Mitchell
R1,038 Discovery Miles 10 380 Ships in 10 - 15 working days

Design and create neural networks with deep learning and artificial intelligence principles using OpenAI Gym, TensorFlow, and Keras Key Features Explore neural network architecture and understand how it functions Learn algorithms to solve common problems using back propagation and perceptrons Understand how to apply neural networks to applications with the help of useful illustrations Book DescriptionNeural networks play a very important role in deep learning and artificial intelligence (AI), with applications in a wide variety of domains, right from medical diagnosis, to financial forecasting, and even machine diagnostics. Hands-On Neural Networks is designed to guide you through learning about neural networks in a practical way. The book will get you started by giving you a brief introduction to perceptron networks. You will then gain insights into machine learning and also understand what the future of AI could look like. Next, you will study how embeddings can be used to process textual data and the role of long short-term memory networks (LSTMs) in helping you solve common natural language processing (NLP) problems. The later chapters will demonstrate how you can implement advanced concepts including transfer learning, generative adversarial networks (GANs), autoencoders, and reinforcement learning. Finally, you can look forward to further content on the latest advancements in the field of neural networks. By the end of this book, you will have the skills you need to build, train, and optimize your own neural network model that can be used to provide predictable solutions. What you will learn Learn how to train a network by using backpropagation Discover how to load and transform images for use in neural networks Study how neural networks can be applied to a varied set of applications Solve common challenges faced in neural network development Understand the transfer learning concept to solve tasks using Keras and Visual Geometry Group (VGG) network Get up to speed with advanced and complex deep learning concepts like LSTMs and NLP Explore innovative algorithms like GANs and deep reinforcement learning Who this book is forIf you are interested in artificial intelligence and deep learning and want to further your skills, then this intermediate-level book is for you. Some knowledge of statistics will help you get the most out of this book.

Advanced Machine Learning with R - Tackle data analytics and machine learning challenges and build complex applications with R... Advanced Machine Learning with R - Tackle data analytics and machine learning challenges and build complex applications with R 3.5 (Paperback)
Cory Lesmeister, Dr. Sunil Kumar Chinnamgari
R1,417 Discovery Miles 14 170 Ships in 10 - 15 working days

Master machine learning techniques with real-world projects that interface TensorFlow with R, H2O, MXNet, and other languages Key Features Gain expertise in machine learning, deep learning and other techniques Build intelligent end-to-end projects for finance, social media, and a variety of domains Implement multi-class classification, regression, and clustering Book DescriptionR is one of the most popular languages when it comes to exploring the mathematical side of machine learning and easily performing computational statistics. This Learning Path shows you how to leverage the R ecosystem to build efficient machine learning applications that carry out intelligent tasks within your organization. You'll tackle realistic projects such as building powerful machine learning models with ensembles to predict employee attrition. You'll explore different clustering techniques to segment customers using wholesale data and use TensorFlow and Keras-R for performing advanced computations. You'll also be introduced to reinforcement learning along with its various use cases and models. Additionally, it shows you how some of these black-box models can be diagnosed and understood. By the end of this Learning Path, you'll be equipped with the skills you need to deploy machine learning techniques in your own projects. This Learning Path includes content from the following Packt products: R Machine Learning Projects by Dr. Sunil Kumar Chinnamgari Mastering Machine Learning with R - Third Edition by Cory Lesmeister What you will learn Develop a joke recommendation engine to recommend jokes that match users' tastes Build autoencoders for credit card fraud detection Work with image recognition and convolutional neural networks Make predictions for casino slot machine using reinforcement learning Implement NLP techniques for sentiment analysis and customer segmentation Produce simple and effective data visualizations for improved insights Use NLP to extract insights for text Implement tree-based classifiers including random forest and boosted tree Who this book is forIf you are a data analyst, data scientist, or machine learning developer this is an ideal Learning Path for you. Each project will help you test your skills in implementing machine learning algorithms and techniques. A basic understanding of machine learning and working knowledge of R programming is necessary to get the most out of this Learning Path.

Deep Learning with R for Beginners - Design neural network models in R 3.5 using TensorFlow, Keras, and MXNet (Paperback): Mark... Deep Learning with R for Beginners - Design neural network models in R 3.5 using TensorFlow, Keras, and MXNet (Paperback)
Mark Hodnett, Joshua F. Wiley, Yuxi (Hayden) Liu, Pablo Maldonado
R1,600 Discovery Miles 16 000 Ships in 10 - 15 working days

Explore the world of neural networks by building powerful deep learning models using the R ecosystem Key Features Get to grips with the fundamentals of deep learning and neural networks Use R 3.5 and its libraries and APIs to build deep learning models for computer vision and text processing Implement effective deep learning systems in R with the help of end-to-end projects Book DescriptionDeep learning finds practical applications in several domains, while R is the preferred language for designing and deploying deep learning models. This Learning Path introduces you to the basics of deep learning and even teaches you to build a neural network model from scratch. As you make your way through the chapters, you'll explore deep learning libraries and understand how to create deep learning models for a variety of challenges, right from anomaly detection to recommendation systems. The book will then help you cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud, in addition to model optimization, overfitting, and data augmentation. Through real-world projects, you'll also get up to speed with training convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory networks (LSTMs) in R. By the end of this Learning Path, you'll be well versed with deep learning and have the skills you need to implement a number of deep learning concepts in your research work or projects. This Learning Path includes content from the following Packt products: R Deep Learning Essentials - Second Edition by Joshua F. Wiley and Mark Hodnett R Deep Learning Projects by Yuxi (Hayden) Liu and Pablo Maldonado What you will learn Implement credit card fraud detection with autoencoders Train neural networks to perform handwritten digit recognition using MXNet Reconstruct images using variational autoencoders Explore the applications of autoencoder neural networks in clustering and dimensionality reduction Create natural language processing (NLP) models using Keras and TensorFlow in R Prevent models from overfitting the data to improve generalizability Build shallow neural network prediction models Who this book is forThis Learning Path is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. A fundamental understanding of R programming and familiarity with the basic concepts of deep learning are necessary to get the most out of this Learning Path.

Top Trends in AI Self-Driving Cars - Practical Advances in AI and Machine Learning (Paperback): Lance B. Eliot Top Trends in AI Self-Driving Cars - Practical Advances in AI and Machine Learning (Paperback)
Lance B. Eliot
R723 Discovery Miles 7 230 Ships in 10 - 15 working days
scikit-learn : Machine Learning Simplified (Paperback): Raul Garreta, Guillermo Moncecchi, Trent Hauck, Gavin Hackeling scikit-learn : Machine Learning Simplified (Paperback)
Raul Garreta, Guillermo Moncecchi, Trent Hauck, Gavin Hackeling
R2,444 Discovery Miles 24 440 Ships in 10 - 15 working days

Implement scikit-learn into every step of the data science pipeline About This Book * Use Python and scikit-learn to create intelligent applications * Discover how to apply algorithms in a variety of situations to tackle common and not-so common challenges in the machine learning domain * A practical, example-based guide to help you gain expertise in implementing and evaluating machine learning systems using scikit-learn Who This Book Is For If you are a programmer and want to explore machine learning and data-based methods to build intelligent applications and enhance your programming skills, this is the course for you. No previous experience with machine-learning algorithms is required. What You Will Learn * Review fundamental concepts including supervised and unsupervised experiences, common tasks, and performance metrics * Classify objects (from documents to human faces and flower species) based on some of their features, using a variety of methods from Support Vector Machines to Naive Bayes * Use Decision Trees to explain the main causes of certain phenomena such as passenger survival on the Titanic * Evaluate the performance of machine learning systems in common tasks * Master algorithms of various levels of complexity and learn how to analyze data at the same time * Learn just enough math to think about the connections between various algorithms * Customize machine learning algorithms to fit your problem, and learn how to modify them when the situation calls for it * Incorporate other packages from the Python ecosystem to munge and visualize your dataset * Improve the way you build your models using parallelization techniques In Detail Machine learning, the art of creating applications that learn from experience and data, has been around for many years. Python is quickly becoming the go-to language for analysts and data scientists due to its simplicity and flexibility; moreover, within the Python data space, scikit-learn is the unequivocal choice for machine learning. The course combines an introduction to some of the main concepts and methods in machine learning with practical, hands-on examples of real-world problems. The course starts by walking through different methods to prepare your data-be it a dataset with missing values or text columns that require the categories to be turned into indicator variables. After the data is ready, you'll learn different techniques aligned with different objectives-be it a dataset with known outcomes such as sales by state, or more complicated problems such as clustering similar customers. Finally, you'll learn how to polish your algorithm to ensure that it's both accurate and resilient to new datasets. You will learn to incorporate machine learning in your applications. Ranging from handwritten digit recognition to document classification, examples are solved step-by-step using scikit-learn and Python. By the end of this course you will have learned how to build applications that learn from experience, by applying the main concepts and techniques of machine learning. Style and Approach Implement scikit-learn using engaging examples and fun exercises, and with a gentle and friendly but comprehensive "learn-by-doing" approach. This is a practical course, which analyzes compelling data about life, health, and death with the help of tutorials. It offers you a useful way of interpreting the data that's specific to this course, but that can also be applied to any other data. This course is designed to be both a guide and a reference for moving beyond the basics of scikit-learn.

Artificial Intelligence Engines - A Tutorial Introduction to the Mathematics of Deep Learning (Paperback): James V Stone Artificial Intelligence Engines - A Tutorial Introduction to the Mathematics of Deep Learning (Paperback)
James V Stone
R937 R842 Discovery Miles 8 420 Save R95 (10%) Ships in 10 - 15 working days
The Singularity - Building a Better Future (Paperback): Nishanth Mudkey The Singularity - Building a Better Future (Paperback)
Nishanth Mudkey
R1,157 R964 Discovery Miles 9 640 Save R193 (17%) Ships in 10 - 15 working days
Google Cloud AI Services Quick Start Guide - Build intelligent applications with Google Cloud AI services (Paperback): Arvind... Google Cloud AI Services Quick Start Guide - Build intelligent applications with Google Cloud AI services (Paperback)
Arvind Ravulavaru
R893 Discovery Miles 8 930 Ships in 10 - 15 working days

Leverage the power of various Google Cloud AI Services by building a smart web application using MEAN Stack Key Features Start working with the Google Cloud Platform and the AI services it offers Build smart web applications by combining the power of Google Cloud AI services and the MEAN stack Build a web-based dashboard of smart applications that perform language processing, translation, and computer vision on the cloud Book DescriptionCognitive services are the new way of adding intelligence to applications and services. Now we can use Artificial Intelligence as a service that can be consumed by any application or other service, to add smartness and make the end result more practical and useful. Google Cloud AI enables you to consume Artificial Intelligence within your applications, from a REST API. Text, video and speech analysis are among the powerful machine learning features that can be used. This book is the easiest way to get started with the Google Cloud AI services suite and open up the world of smarter applications. This book will help you build a Smart Exchange, a forum application that will let you upload videos, images and perform text to speech conversions and translation services. You will use the power of Google Cloud AI Services to make our simple forum application smart by validating the images, videos, and text provided by users to Google Cloud AI Services and make sure the content which is uploaded follows the forum standards, without a human curator involvement. You will learn how to work with the Vision API, Video Intelligence API, Speech Recognition API, Cloud Language Process, and Cloud Translation API services to make your application smarter. By the end of this book, you will have a strong understanding of working with Google Cloud AI Services, and be well on the way to building smarter applications. What you will learn Understand Google Cloud Platform and its Cloud AI services Explore the Google ML Services Work with an Angular 5 MEAN stack application Integrate Vision API, Video Intelligence API for computer vision Be ready for conversational experiences with the Speech Recognition API, Cloud Language Process and Cloud Translation API services Build a smart web application that uses the power of Google Cloud AI services to make apps smarter Who this book is forThis book is ideal for data professionals and web developers who want to use the power of Google Cloud AI services in their projects, without the going through the pain of mastering machine learning for images, videos and text. Some familiarity with the Google Cloud Platform will be helpful.

Natural Language Processing and Computational Linguistics - A practical guide to text analysis with Python, Gensim, spaCy, and... Natural Language Processing and Computational Linguistics - A practical guide to text analysis with Python, Gensim, spaCy, and Keras (Paperback)
Bhargav Srinivasa-Desikan
R1,160 Discovery Miles 11 600 Ships in 10 - 15 working days

Work with Python and powerful open source tools such as Gensim and spaCy to perform modern text analysis, natural language processing, and computational linguistics algorithms. Key Features Discover the open source Python text analysis ecosystem, using spaCy, Gensim, scikit-learn, and Keras Hands-on text analysis with Python, featuring natural language processing and computational linguistics algorithms Learn deep learning techniques for text analysis Book DescriptionModern text analysis is now very accessible using Python and open source tools, so discover how you can now perform modern text analysis in this era of textual data. This book shows you how to use natural language processing, and computational linguistics algorithms, to make inferences and gain insights about data you have. These algorithms are based on statistical machine learning and artificial intelligence techniques. The tools to work with these algorithms are available to you right now - with Python, and tools like Gensim and spaCy. You'll start by learning about data cleaning, and then how to perform computational linguistics from first concepts. You're then ready to explore the more sophisticated areas of statistical NLP and deep learning using Python, with realistic language and text samples. You'll learn to tag, parse, and model text using the best tools. You'll gain hands-on knowledge of the best frameworks to use, and you'll know when to choose a tool like Gensim for topic models, and when to work with Keras for deep learning. This book balances theory and practical hands-on examples, so you can learn about and conduct your own natural language processing projects and computational linguistics. You'll discover the rich ecosystem of Python tools you have available to conduct NLP - and enter the interesting world of modern text analysis. What you will learn Why text analysis is important in our modern age Understand NLP terminology and get to know the Python tools and datasets Learn how to pre-process and clean textual data Convert textual data into vector space representations Using spaCy to process text Train your own NLP models for computational linguistics Use statistical learning and Topic Modeling algorithms for text, using Gensim and scikit-learn Employ deep learning techniques for text analysis using Keras Who this book is forThis book is for you if you want to dive in, hands-first, into the interesting world of text analysis and NLP, and you're ready to work with the rich Python ecosystem of tools and datasets waiting for you!

Neural Network Projects with Python - The ultimate guide to using Python to explore the true power of neural networks through... Neural Network Projects with Python - The ultimate guide to using Python to explore the true power of neural networks through six projects (Paperback)
James Loy
R1,155 Discovery Miles 11 550 Ships in 10 - 15 working days

Build your Machine Learning portfolio by creating 6 cutting-edge Artificial Intelligence projects using neural networks in Python Key Features Discover neural network architectures (like CNN and LSTM) that are driving recent advancements in AI Build expert neural networks in Python using popular libraries such as Keras Includes projects such as object detection, face identification, sentiment analysis, and more Book DescriptionNeural networks are at the core of recent AI advances, providing some of the best resolutions to many real-world problems, including image recognition, medical diagnosis, text analysis, and more. This book goes through some basic neural network and deep learning concepts, as well as some popular libraries in Python for implementing them. It contains practical demonstrations of neural networks in domains such as fare prediction, image classification, sentiment analysis, and more. In each case, the book provides a problem statement, the specific neural network architecture required to tackle that problem, the reasoning behind the algorithm used, and the associated Python code to implement the solution from scratch. In the process, you will gain hands-on experience with using popular Python libraries such as Keras to build and train your own neural networks from scratch. By the end of this book, you will have mastered the different neural network architectures and created cutting-edge AI projects in Python that will immediately strengthen your machine learning portfolio. What you will learn Learn various neural network architectures and its advancements in AI Master deep learning in Python by building and training neural network Master neural networks for regression and classification Discover convolutional neural networks for image recognition Learn sentiment analysis on textual data using Long Short-Term Memory Build and train a highly accurate facial recognition security system Who this book is forThis book is a perfect match for data scientists, machine learning engineers, and deep learning enthusiasts who wish to create practical neural network projects in Python. Readers should already have some basic knowledge of machine learning and neural networks.

Artificial Intelligence - A Comprehensive Guide to AI, Machine Learning, Internet of Things, Robotics, Deep Learning,... Artificial Intelligence - A Comprehensive Guide to AI, Machine Learning, Internet of Things, Robotics, Deep Learning, Predictive Analytics, Neural Networks, Reinforcement Learning, and Our Future (Paperback)
Neil Wilkins
R444 Discovery Miles 4 440 Ships in 10 - 15 working days
Python Reinforcement Learning - Solve complex real-world problems by mastering reinforcement learning algorithms using OpenAI... Python Reinforcement Learning - Solve complex real-world problems by mastering reinforcement learning algorithms using OpenAI Gym and TensorFlow (Paperback)
Sudharsan Ravichandiran, Sean Saito, Rajalingappaa shanmugamani, Yang Wenzhuo
R1,545 Discovery Miles 15 450 Ships in 10 - 15 working days

Apply modern reinforcement learning and deep reinforcement learning methods using Python and its powerful libraries Key Features Your entry point into the world of artificial intelligence using the power of Python An example-rich guide to master various RL and DRL algorithms Explore the power of modern Python libraries to gain confidence in building self-trained applications Book DescriptionReinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL. By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems. This Learning Path includes content from the following Packt products: Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran Python Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa Shanmugamani What you will learn Train an agent to walk using OpenAI Gym and TensorFlow Solve multi-armed-bandit problems using various algorithms Build intelligent agents using the DRQN algorithm to play the Doom game Teach your agent to play Connect4 using AlphaGo Zero Defeat Atari arcade games using the value iteration method Discover how to deal with discrete and continuous action spaces in various environments Who this book is forIf you're an ML/DL enthusiast interested in AI and want to explore RL and deep RL from scratch, this Learning Path is for you. Prior knowledge of linear algebra is expected.

Neural Networks - Neural Networks Tools and Techniques for Beginners (Paperback): John Slavio Neural Networks - Neural Networks Tools and Techniques for Beginners (Paperback)
John Slavio
R522 Discovery Miles 5 220 Ships in 10 - 15 working days
Generative Adversarial Networks Cookbook - Over 100 recipes to build generative models using Python, TensorFlow, and Keras... Generative Adversarial Networks Cookbook - Over 100 recipes to build generative models using Python, TensorFlow, and Keras (Paperback)
Josh Kalin
R1,251 Discovery Miles 12 510 Ships in 10 - 15 working days

Simplify next-generation deep learning by implementing powerful generative models using Python, TensorFlow and Keras Key Features Understand the common architecture of different types of GANs Train, optimize, and deploy GAN applications using TensorFlow and Keras Build generative models with real-world data sets, including 2D and 3D data Book DescriptionDeveloping Generative Adversarial Networks (GANs) is a complex task, and it is often hard to find code that is easy to understand. This book leads you through eight different examples of modern GAN implementations, including CycleGAN, simGAN, DCGAN, and 2D image to 3D model generation. Each chapter contains useful recipes to build on a common architecture in Python, TensorFlow and Keras to explore increasingly difficult GAN architectures in an easy-to-read format. The book starts by covering the different types of GAN architecture to help you understand how the model works. This book also contains intuitive recipes to help you work with use cases involving DCGAN, Pix2Pix, and so on. To understand these complex applications, you will take different real-world data sets and put them to use. By the end of this book, you will be equipped to deal with the challenges and issues that you may face while working with GAN models, thanks to easy-to-follow code solutions that you can implement right away. What you will learn Structure a GAN architecture in pseudocode Understand the common architecture for each of the GAN models you will build Implement different GAN architectures in TensorFlow and Keras Use different datasets to enable neural network functionality in GAN models Combine different GAN models and learn how to fine-tune them Produce a model that can take 2D images and produce 3D models Develop a GAN to do style transfer with Pix2Pix Who this book is forThis book is for data scientists, machine learning developers, and deep learning practitioners looking for a quick reference to tackle challenges and tasks in the GAN domain. Familiarity with machine learning concepts and working knowledge of Python programming language will help you get the most out of the book.

Hands-On Machine Learning for Algorithmic Trading - Design and implement investment strategies based on smart algorithms that... Hands-On Machine Learning for Algorithmic Trading - Design and implement investment strategies based on smart algorithms that learn from data using Python (Paperback)
Stefan Jansen
R1,720 Discovery Miles 17 200 Ships in 10 - 15 working days

Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and Keras Key Features Implement machine learning algorithms to build, train, and validate algorithmic models Create your own algorithmic design process to apply probabilistic machine learning approaches to trading decisions Develop neural networks for algorithmic trading to perform time series forecasting and smart analytics Book DescriptionThe explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies. This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You'll practice the ML workflow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies. Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym. What you will learn Implement machine learning techniques to solve investment and trading problems Leverage market, fundamental, and alternative data to research alpha factors Design and fine-tune supervised, unsupervised, and reinforcement learning models Optimize portfolio risk and performance using pandas, NumPy, and scikit-learn Integrate machine learning models into a live trading strategy on Quantopian Evaluate strategies using reliable backtesting methodologies for time series Design and evaluate deep neural networks using Keras, PyTorch, and TensorFlow Work with reinforcement learning for trading strategies in the OpenAI Gym Who this book is forHands-On Machine Learning for Algorithmic Trading is for data analysts, data scientists, and Python developers, as well as investment analysts and portfolio managers working within the finance and investment industry. If you want to perform efficient algorithmic trading by developing smart investigating strategies using machine learning algorithms, this is the book for you. Some understanding of Python and machine learning techniques is mandatory.

Recurrent Neural Networks with Python Quick Start Guide - Sequential learning and language modeling with TensorFlow... Recurrent Neural Networks with Python Quick Start Guide - Sequential learning and language modeling with TensorFlow (Paperback)
Simeon Kostadinov
R840 Discovery Miles 8 400 Ships in 10 - 15 working days

Learn how to develop intelligent applications with sequential learning and apply modern methods for language modeling with neural network architectures for deep learning with Python's most popular TensorFlow framework. Key Features Train and deploy Recurrent Neural Networks using the popular TensorFlow library Apply long short-term memory units Expand your skills in complex neural network and deep learning topics Book DescriptionDevelopers struggle to find an easy-to-follow learning resource for implementing Recurrent Neural Network (RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve results. This book will teach you the fundamentals of RNNs, with example applications in Python and the TensorFlow library. The examples are accompanied by the right combination of theoretical knowledge and real-world implementations of concepts to build a solid foundation of neural network modeling. Your journey starts with the simplest RNN model, where you can grasp the fundamentals. The book then builds on this by proposing more advanced and complex algorithms. We use them to explain how a typical state-of-the-art RNN model works. From generating text to building a language translator, we show how some of today's most powerful AI applications work under the hood. After reading the book, you will be confident with the fundamentals of RNNs, and be ready to pursue further study, along with developing skills in this exciting field. What you will learn Use TensorFlow to build RNN models Use the correct RNN architecture for a particular machine learning task Collect and clear the training data for your models Use the correct Python libraries for any task during the building phase of your model Optimize your model for higher accuracy Identify the differences between multiple models and how you can substitute them Learn the core deep learning fundamentals applicable to any machine learning model Who this book is forThis book is for Machine Learning engineers and data scientists who want to learn about Recurrent Neural Network models with practical use-cases. Exposure to Python programming is required. Previous experience with TensorFlow will be helpful, but not mandatory.

Data Science Algorithms in a Week - Top 7 algorithms for scientific computing, data analysis, and machine learning, 2nd Edition... Data Science Algorithms in a Week - Top 7 algorithms for scientific computing, data analysis, and machine learning, 2nd Edition (Paperback, 2nd Revised edition)
David Natingga
R1,081 Discovery Miles 10 810 Ships in 10 - 15 working days

Build a strong foundation of machine learning algorithms in 7 days Key Features Use Python and its wide array of machine learning libraries to build predictive models Learn the basics of the 7 most widely used machine learning algorithms within a week Know when and where to apply data science algorithms using this guide Book DescriptionMachine learning applications are highly automated and self-modifying, and continue to improve over time with minimal human intervention, as they learn from the trained data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed. Through algorithmic and statistical analysis, these models can be leveraged to gain new knowledge from existing data as well. Data Science Algorithms in a Week addresses all problems related to accurate and efficient data classification and prediction. Over the course of seven days, you will be introduced to seven algorithms, along with exercises that will help you understand different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. This book also guides you in predicting data based on existing trends in your dataset. This book covers algorithms such as k-nearest neighbors, Naive Bayes, decision trees, random forest, k-means, regression, and time-series analysis. By the end of this book, you will understand how to choose machine learning algorithms for clustering, classification, and regression and know which is best suited for your problem What you will learn Understand how to identify a data science problem correctly Implement well-known machine learning algorithms efficiently using Python Classify your datasets using Naive Bayes, decision trees, and random forest with accuracy Devise an appropriate prediction solution using regression Work with time series data to identify relevant data events and trends Cluster your data using the k-means algorithm Who this book is forThis book is for aspiring data science professionals who are familiar with Python and have a little background in statistics. You'll also find this book useful if you're currently working with data science algorithms in some capacity and want to expand your skill set

Keras Reinforcement Learning Projects - 9 projects exploring popular reinforcement learning techniques to build self-learning... Keras Reinforcement Learning Projects - 9 projects exploring popular reinforcement learning techniques to build self-learning agents (Paperback)
Giuseppe Ciaburro
R1,321 Discovery Miles 13 210 Ships in 10 - 15 working days

A practical guide to mastering reinforcement learning algorithms using Keras Key Features Build projects across robotics, gaming, and finance fields, putting reinforcement learning (RL) into action Get to grips with Keras and practice on real-world unstructured datasets Uncover advanced deep learning algorithms such as Monte Carlo, Markov Decision, and Q-learning Book DescriptionReinforcement learning has evolved a lot in the last couple of years and proven to be a successful technique in building smart and intelligent AI networks. Keras Reinforcement Learning Projects installs human-level performance into your applications using algorithms and techniques of reinforcement learning, coupled with Keras, a faster experimental library. The book begins with getting you up and running with the concepts of reinforcement learning using Keras. You'll learn how to simulate a random walk using Markov chains and select the best portfolio using dynamic programming (DP) and Python. You'll also explore projects such as forecasting stock prices using Monte Carlo methods, delivering vehicle routing application using Temporal Distance (TD) learning algorithms, and balancing a Rotating Mechanical System using Markov decision processes. Once you've understood the basics, you'll move on to Modeling of a Segway, running a robot control system using deep reinforcement learning, and building a handwritten digit recognition model in Python using an image dataset. Finally, you'll excel in playing the board game Go with the help of Q-Learning and reinforcement learning algorithms. By the end of this book, you'll not only have developed hands-on training on concepts, algorithms, and techniques of reinforcement learning but also be all set to explore the world of AI. What you will learn Practice the Markov decision process in prediction and betting evaluations Implement Monte Carlo methods to forecast environment behaviors Explore TD learning algorithms to manage warehouse operations Construct a Deep Q-Network using Python and Keras to control robot movements Apply reinforcement concepts to build a handwritten digit recognition model using an image dataset Address a game theory problem using Q-Learning and OpenAI Gym Who this book is forKeras Reinforcement Learning Projects is for you if you are data scientist, machine learning developer, or AI engineer who wants to understand the fundamentals of reinforcement learning by developing practical projects. Sound knowledge of machine learning and basic familiarity with Keras is useful to get the most out of this book

Artificial Intelligence By Example - Develop machine intelligence from scratch using real artificial intelligence use cases... Artificial Intelligence By Example - Develop machine intelligence from scratch using real artificial intelligence use cases (Paperback)
Denis Rothman
R1,220 Discovery Miles 12 200 Ships in 10 - 15 working days

Publisher's Note: This edition from 2018 is outdated! A new second edition, completely updated for Python 3.x and its latest libraries, and TensorFlow 2.x, is now available. It features new and more practical examples executed on various platforms like TensorBoard, IBMQ, Google Dialogflow, Quirk, and more. Key Features AI-based examples to guide you in designing and implementing machine intelligence Develop your own method for future AI solutions Acquire advanced AI, machine learning, and deep learning design skills Book DescriptionArtificial intelligence has the potential to replicate humans in every field. Artificial Intelligence By Example serves as a starting point for you to understand how AI is built, with the help of intriguing examples and case studies. Artificial Intelligence By Example will make you an adaptive thinker and help you apply concepts to real-life scenarios. Using some of the most interesting AI examples, right from a simple chess engine to a cognitive chatbot, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and IoT, and develop emotional quotient in chatbots using neural networks. You will move on to designing AI solutions in a simple manner rather than get confused by complex architectures and techniques. This comprehensive guide will be a starter kit for you to develop AI applications on your own. By the end of this book, you will have understood the fundamentals of AI and worked through a number of case studies that will help you develop your business vision. What you will learn Use adaptive thinking to solve real-life AI case studies Rise beyond being a modern-day factory code worker Acquire advanced AI, machine learning, and deep learning designing skills Learn about cognitive NLP chatbots, quantum computing, and IoT and blockchain technology Understand future AI solutions and adapt quickly to them Develop out-of-the-box thinking to face any challenge the market presents Who this book is forArtificial Intelligence by Example is a simple, explanatory, and descriptive guide for junior developers, experienced developers, technology consultants, and those interested in AI who want to understand the fundamentals of artificial intelligence and implement it practically by devising smart solutions. Prior experience with Python and statistical knowledge is essential to make the most out of this book.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Data Structures and Algorithms in Java…
Peter Drake Paperback R2,543 Discovery Miles 25 430
Oracle SQL By Example
Alice Rischert Paperback  (1)
R1,488 Discovery Miles 14 880
Blue Pelican Java
Charles E. Cook Hardcover R1,230 Discovery Miles 12 300
Agile Project Management - The Complete…
Greg Caldwell Hardcover R800 R700 Discovery Miles 7 000
Advances in Object-oriented Database…
Asuman Dogac, Alexandros Biliris, … Hardcover R2,625 Discovery Miles 26 250
Advanced Transact-SQL for SQL Server…
Itzik Ben-Gan, Tom Moreau Paperback R1,651 R1,403 Discovery Miles 14 030
Handbook of Research on Architectural…
Ramanathan Hardcover R8,388 Discovery Miles 83 880
Modeling Semantic Web Services - The Web…
Jos De Bruijn, Mick Kerrigan, … Hardcover R1,527 Discovery Miles 15 270
Learn to Design a Website for Your…
Michael Nelson, David Ezeanaka Hardcover R502 Discovery Miles 5 020
Designing Embedded Internet Devices
Brian DeMuth, Dan Eisenreich Paperback R1,622 Discovery Miles 16 220

 

Partners