0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (4)
  • R250 - R500 (35)
  • R500+ (889)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks

The Applied TensorFlow and Keras Workshop - Develop your practical skills by working through a real-world project and build... The Applied TensorFlow and Keras Workshop - Develop your practical skills by working through a real-world project and build your own Bitcoin price prediction tracker (Paperback, 2nd Revised edition)
Harveen Singh Chadha, Luis Capelo
R840 Discovery Miles 8 400 Ships in 10 - 15 working days

Cut through the noise and get real results with this workshop for beginners. Use a project-based approach to exploring machine learning with TensorFlow and Keras. Key Features Understand the nuances of setting up a deep learning programming environment Gain insights into the common components of a neural network and its essential operations Get to grips with deploying a machine learning model as an interactive web application with Flask Book DescriptionMachine learning gives computers the ability to learn like humans. It is becoming increasingly transformational to businesses in many forms, and a key skill to learn to prepare for the future digital economy. As a beginner, you'll unlock a world of opportunities by learning the techniques you need to contribute to the domains of machine learning, deep learning, and modern data analysis using the latest cutting-edge tools. The Applied TensorFlow and Keras Workshop begins by showing you how neural networks work. After you've understood the basics, you will train a few networks by altering their hyperparameters. To build on your skills, you'll learn how to select the most appropriate model to solve the problem in hand. While tackling advanced concepts, you'll discover how to assemble a deep learning system by bringing together all the essential elements necessary for building a basic deep learning system - data, model, and prediction. Finally, you'll explore ways to evaluate the performance of your model, and improve it using techniques such as model evaluation and hyperparameter optimization. By the end of this book, you'll have learned how to build a Bitcoin app that predicts future prices, and be able to build your own models for other projects. What you will learn Familiarize yourself with the components of a neural network Understand the different types of problems that can be solved using neural networks Explore different ways to select the right architecture for your model Make predictions with a trained model using TensorBoard Discover the components of Keras and ways to leverage its features in your model Explore how you can deal with new data by learning ways to retrain your model Who this book is forIf you are a data scientist or a machine learning and deep learning enthusiast, who is looking to design, train, and deploy TensorFlow and Keras models into real-world applications, then this workshop is for you. Knowledge of computer science and machine learning concepts and experience in analyzing data will help you to understand the topics explained in this book with ease.

Research Advancements in Smart Technology, Optimization, and Renewable Energy (Paperback): Pandian Vasant, Gerhard Weber,... Research Advancements in Smart Technology, Optimization, and Renewable Energy (Paperback)
Pandian Vasant, Gerhard Weber, Wonsiri Punurai
R5,179 Discovery Miles 51 790 Ships in 10 - 15 working days

As environmental issues remain at the forefront of energy research, renewable energy is now an all-important field of study. And as smart technology continues to grow and be refined, its applications broaden and increase in their potential to revolutionize sustainability studies. This potential can only be fully realized with a thorough understanding of the most recent breakthroughs in the field. Research Advancements in Smart Technology, Optimization, and Renewable Energy is a collection of innovative research that explores the recent steps forward for smart applications in sustainability. Featuring coverage on a wide range of topics including energy assessment, neural fuzzy control, and biogeography, this book is ideally designed for advocates, policymakers, engineers, software developers, academicians, researchers, and students.

Innovations, Algorithms, and Applications in Cognitive Informatics and Natural Intelligence (Paperback): Kwok Tai Chui,... Innovations, Algorithms, and Applications in Cognitive Informatics and Natural Intelligence (Paperback)
Kwok Tai Chui, Miltiadis D Lytras, Ryan Wen Liu, Mingbo Zhao
R5,475 Discovery Miles 54 750 Ships in 10 - 15 working days

While cognitive informatics and natural intelligence are receiving greater attention by researchers, multidisciplinary approaches still struggle with fundamental problems involving psychology and neurobiological processes of the brain. Examining the difficulties of certain approaches using the tools already available is vital for propelling knowledge forward and making further strides. Innovations, Algorithms, and Applications in Cognitive Informatics and Natural Intelligence is a collection of innovative research that examines the enhancement of human cognitive performance using emerging technologies. Featuring research on topics such as parallel computing, neuroscience, and signal processing, this book is ideally designed for engineers, computer scientists, programmers, academicians, researchers, and students.

The Deep Learning with PyTorch Workshop - Build deep neural networks and artificial intelligence applications with PyTorch... The Deep Learning with PyTorch Workshop - Build deep neural networks and artificial intelligence applications with PyTorch (Paperback, 2 Ed)
Hyatt Saleh
R972 Discovery Miles 9 720 Ships in 10 - 15 working days

Get a head start in the world of AI and deep learning by developing your skills with PyTorch Key Features Learn how to define your own network architecture in deep learning Implement helpful methods to create and train a model using PyTorch syntax Discover how intelligent applications using features like image recognition and speech recognition really process your data Book DescriptionWant to get to grips with one of the most popular machine learning libraries for deep learning? The Deep Learning with PyTorch Workshop will help you do just that, jumpstarting your knowledge of using PyTorch for deep learning even if you're starting from scratch. It's no surprise that deep learning's popularity has risen steeply in the past few years, thanks to intelligent applications such as self-driving vehicles, chatbots, and voice-activated assistants that are making our lives easier. This book will take you inside the world of deep learning, where you'll use PyTorch to understand the complexity of neural network architectures. The Deep Learning with PyTorch Workshop starts with an introduction to deep learning and its applications. You'll explore the syntax of PyTorch and learn how to define a network architecture and train a model. Next, you'll learn about three main neural network architectures - convolutional, artificial, and recurrent - and even solve real-world data problems using these networks. Later chapters will show you how to create a style transfer model to develop a new image from two images, before finally taking you through how RNNs store memory to solve key data issues. By the end of this book, you'll have mastered the essential concepts, tools, and libraries of PyTorch to develop your own deep neural networks and intelligent apps. What you will learn Explore the different applications of deep learning Understand the PyTorch approach to building neural networks Create and train your very own perceptron using PyTorch Solve regression problems using artificial neural networks (ANNs) Handle computer vision problems with convolutional neural networks (CNNs) Perform language translation tasks using recurrent neural networks (RNNs) Who this book is forThis deep learning book is ideal for anyone who wants to create and train deep learning models using PyTorch. A solid understanding of the Python programming language and its packages will help you grasp the topics covered in the book more quickly.

Deep Learning - Step-By-Step a Sensible Guide Presenting the Concepts of Deep Learning with Real-World Examples (Paperback):... Deep Learning - Step-By-Step a Sensible Guide Presenting the Concepts of Deep Learning with Real-World Examples (Paperback)
Matthew Harper
R470 Discovery Miles 4 700 Ships in 10 - 15 working days
Neural Networks - Step-By-Step Understand How Neural Networks Work, Starting with Simple Ideas (Paperback): Matthew Harper Neural Networks - Step-By-Step Understand How Neural Networks Work, Starting with Simple Ideas (Paperback)
Matthew Harper
R429 Discovery Miles 4 290 Ships in 10 - 15 working days
Fun Q - A Functional Introduction to Machine Learning in Q (Paperback): Nick Psaris Fun Q - A Functional Introduction to Machine Learning in Q (Paperback)
Nick Psaris
R1,670 R1,368 Discovery Miles 13 680 Save R302 (18%) Ships in 10 - 15 working days
Java Deep Learning Cookbook - Train neural networks for classification, NLP, and reinforcement learning using Deeplearning4j... Java Deep Learning Cookbook - Train neural networks for classification, NLP, and reinforcement learning using Deeplearning4j (Paperback)
Rahul Raj
R1,152 Discovery Miles 11 520 Ships in 10 - 15 working days

Use Java and Deeplearning4j to build robust, scalable, and highly accurate AI models from scratch Key Features Install and configure Deeplearning4j to implement deep learning models from scratch Explore recipes for developing, training, and fine-tuning your neural network models in Java Model neural networks using datasets containing images, text, and time-series data Book DescriptionJava is one of the most widely used programming languages in the world. With this book, you will see how to perform deep learning using Deeplearning4j (DL4J) - the most popular Java library for training neural networks efficiently. This book starts by showing you how to install and configure Java and DL4J on your system. You will then gain insights into deep learning basics and use your knowledge to create a deep neural network for binary classification from scratch. As you progress, you will discover how to build a convolutional neural network (CNN) in DL4J, and understand how to construct numeric vectors from text. This deep learning book will also guide you through performing anomaly detection on unsupervised data and help you set up neural networks in distributed systems effectively. In addition to this, you will learn how to import models from Keras and change the configuration in a pre-trained DL4J model. Finally, you will explore benchmarking in DL4J and optimize neural networks for optimal results. By the end of this book, you will have a clear understanding of how you can use DL4J to build robust deep learning applications in Java. What you will learn Perform data normalization and wrangling using DL4J Build deep neural networks using DL4J Implement CNNs to solve image classification problems Train autoencoders to solve anomaly detection problems using DL4J Perform benchmarking and optimization to improve your model's performance Implement reinforcement learning for real-world use cases using RL4J Leverage the capabilities of DL4J in distributed systems Who this book is forIf you are a data scientist, machine learning developer, or a deep learning enthusiast who wants to implement deep learning models in Java, this book is for you. Basic understanding of Java programming as well as some experience with machine learning and neural networks is required to get the most out of this book.

AI Self-Driving Cars Equanimity - Practical Advances In Artificial Intelligence And Machine Learning (Paperback): Lance Eliot AI Self-Driving Cars Equanimity - Practical Advances In Artificial Intelligence And Machine Learning (Paperback)
Lance Eliot
R717 Discovery Miles 7 170 Ships in 10 - 15 working days
Mastering Reinforcement Learning with Python - Build next-generation, self-learning models using reinforcement learning... Mastering Reinforcement Learning with Python - Build next-generation, self-learning models using reinforcement learning techniques and best practices (Paperback)
Enes Bilgin
R1,348 Discovery Miles 13 480 Ships in 10 - 15 working days

Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practices Key Features Understand how large-scale state-of-the-art RL algorithms and approaches work Apply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and more Explore tips and best practices from experts that will enable you to overcome real-world RL challenges Book DescriptionReinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL. Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning. As you advance, you'll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray's RLlib package. You'll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls. By the end of this book, you'll have mastered how to train and deploy your own RL agents for solving RL problems. What you will learn Model and solve complex sequential decision-making problems using RL Develop a solid understanding of how state-of-the-art RL methods work Use Python and TensorFlow to code RL algorithms from scratch Parallelize and scale up your RL implementations using Ray's RLlib package Get in-depth knowledge of a wide variety of RL topics Understand the trade-offs between different RL approaches Discover and address the challenges of implementing RL in the real world Who this book is forThis book is for expert machine learning practitioners and researchers looking to focus on hands-on reinforcement learning with Python by implementing advanced deep reinforcement learning concepts in real-world projects. Reinforcement learning experts who want to advance their knowledge to tackle large-scale and complex sequential decision-making problems will also find this book useful. Working knowledge of Python programming and deep learning along with prior experience in reinforcement learning is required.

Algorithms - The Complete Guide To The Computer Science & Artificial Intelligence Used to Solve Human Decisions, Advance... Algorithms - The Complete Guide To The Computer Science & Artificial Intelligence Used to Solve Human Decisions, Advance Technology, Optimize Habits, Learn Faster & Your Improve Life (Two Book Bundle) (Paperback)
Trust Genics
R537 R508 Discovery Miles 5 080 Save R29 (5%) Ships in 10 - 15 working days
Applied Artificial Neural Network Methods For Engineers And Scientists: Solving Algebraic Equations (Hardcover): Snehashish... Applied Artificial Neural Network Methods For Engineers And Scientists: Solving Algebraic Equations (Hardcover)
Snehashish Chakraverty, Sumit Kumar Jeswal
R2,060 Discovery Miles 20 600 Ships in 10 - 15 working days

The aim of this book is to handle different application problems of science and engineering using expert Artificial Neural Network (ANN). As such, the book starts with basics of ANN along with different mathematical preliminaries with respect to algebraic equations. Then it addresses ANN based methods for solving different algebraic equations viz. polynomial equations, diophantine equations, transcendental equations, system of linear and nonlinear equations, eigenvalue problems etc. which are the basic equations to handle the application problems mentioned in the content of the book. Although there exist various methods to handle these problems, but sometimes those may be problem dependent and may fail to give a converge solution with particular discretization. Accordingly, ANN based methods have been addressed here to solve these problems. Detail ANN architecture with step by step procedure and algorithm have been included. Different example problems are solved with respect to various application and mathematical problems. Convergence plots and/or convergence tables of the solutions are depicted to show the efficacy of these methods. It is worth mentioning that various application problems viz. Bakery problem, Power electronics applications, Pole placement, Electrical Network Analysis, Structural engineering problem etc. have been solved using the ANN based methods.

Mastering PyTorch - Build powerful neural network architectures using advanced PyTorch 1.x features (Paperback): Ashish Ranjan... Mastering PyTorch - Build powerful neural network architectures using advanced PyTorch 1.x features (Paperback)
Ashish Ranjan Jha; Foreword by Dr. Gopinath Pillai
R1,430 Discovery Miles 14 300 Ships in 10 - 15 working days

Master advanced techniques and algorithms for deep learning with PyTorch using real-world examples Key Features Understand how to use PyTorch 1.x to build advanced neural network models Learn to perform a wide range of tasks by implementing deep learning algorithms and techniques Gain expertise in domains such as computer vision, NLP, Deep RL, Explainable AI, and much more Book DescriptionDeep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models. The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai. By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models. What you will learn Implement text and music generating models using PyTorch Build a deep Q-network (DQN) model in PyTorch Export universal PyTorch models using Open Neural Network Exchange (ONNX) Become well-versed with rapid prototyping using PyTorch with fast.ai Perform neural architecture search effectively using AutoML Easily interpret machine learning (ML) models written in PyTorch using Captum Design ResNets, LSTMs, Transformers, and more using PyTorch Find out how to use PyTorch for distributed training using the torch.distributed API Who this book is forThis book is for data scientists, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning paradigms using PyTorch 1.x. Working knowledge of deep learning with Python programming is required.

Advanced Natural Language Processing with TensorFlow 2 - Build effective real-world NLP applications using NER, RNNs, seq2seq... Advanced Natural Language Processing with TensorFlow 2 - Build effective real-world NLP applications using NER, RNNs, seq2seq models, Transformers, and more (Paperback)
Ashish Bansal
R1,180 Discovery Miles 11 800 Ships in 10 - 15 working days

One-stop solution for NLP practitioners, ML developers, and data scientists to build effective NLP systems that can perform real-world complicated tasks Key Features Apply deep learning algorithms and techniques such as BiLSTMS, CRFs, BPE and more using TensorFlow 2 Explore applications like text generation, summarization, weakly supervised labelling and more Read cutting edge material with seminal papers provided in the GitHub repository with full working code Book DescriptionRecently, there have been tremendous advances in NLP, and we are now moving from research labs into practical applications. This book comes with a perfect blend of both the theoretical and practical aspects of trending and complex NLP techniques. The book is focused on innovative applications in the field of NLP, language generation, and dialogue systems. It helps you apply the concepts of pre-processing text using techniques such as tokenization, parts of speech tagging, and lemmatization using popular libraries such as Stanford NLP and SpaCy. You will build Named Entity Recognition (NER) from scratch using Conditional Random Fields and Viterbi Decoding on top of RNNs. The book covers key emerging areas such as generating text for use in sentence completion and text summarization, bridging images and text by generating captions for images, and managing dialogue aspects of chatbots. You will learn how to apply transfer learning and fine-tuning using TensorFlow 2. Further, it covers practical techniques that can simplify the labelling of textual data. The book also has a working code that is adaptable to your use cases for each tech piece. By the end of the book, you will have an advanced knowledge of the tools, techniques and deep learning architecture used to solve complex NLP problems. What you will learn Grasp important pre-steps in building NLP applications like POS tagging Use transfer and weakly supervised learning using libraries like Snorkel Do sentiment analysis using BERT Apply encoder-decoder NN architectures and beam search for summarizing texts Use Transformer models with attention to bring images and text together Build apps that generate captions and answer questions about images using custom Transformers Use advanced TensorFlow techniques like learning rate annealing, custom layers, and custom loss functions to build the latest DeepNLP models Who this book is forThis is not an introductory book and assumes the reader is familiar with basics of NLP and has fundamental Python skills, as well as basic knowledge of machine learning and undergraduate-level calculus and linear algebra. The readers who can benefit the most from this book include intermediate ML developers who are familiar with the basics of supervised learning and deep learning techniques and professionals who already use TensorFlow/Python for purposes such as data science, ML, research, analysis, etc.

Hands-On One-shot Learning with Python - Learn to implement fast and accurate deep learning models with fewer training samples... Hands-On One-shot Learning with Python - Learn to implement fast and accurate deep learning models with fewer training samples using PyTorch (Paperback)
Shruti Jadon, Ankush Garg
R1,102 Discovery Miles 11 020 Ships in 10 - 15 working days

Get to grips with building powerful deep learning models using PyTorch and scikit-learn Key Features Learn how you can speed up the deep learning process with one-shot learning Use Python and PyTorch to build state-of-the-art one-shot learning models Explore architectures such as Siamese networks, memory-augmented neural networks, model-agnostic meta-learning, and discriminative k-shot learning Book DescriptionOne-shot learning has been an active field of research for scientists trying to develop a cognitive machine that mimics human learning. With this book, you'll explore key approaches to one-shot learning, such as metrics-based, model-based, and optimization-based techniques, all with the help of practical examples. Hands-On One-shot Learning with Python will guide you through the exploration and design of deep learning models that can obtain information about an object from one or just a few training samples. The book begins with an overview of deep learning and one-shot learning and then introduces you to the different methods you can use to achieve it, such as deep learning architectures and probabilistic models. Once you've got to grips with the core principles, you'll explore real-world examples and implementations of one-shot learning using PyTorch 1.x on datasets such as Omniglot and MiniImageNet. Finally, you'll explore generative modeling-based methods and discover the key considerations for building systems that exhibit human-level intelligence. By the end of this book, you'll be well-versed with the different one- and few-shot learning methods and be able to use them to build your own deep learning models. What you will learn Get to grips with the fundamental concepts of one- and few-shot learning Work with different deep learning architectures for one-shot learning Understand when to use one-shot and transfer learning, respectively Study the Bayesian network approach for one-shot learning Implement one-shot learning approaches based on metrics, models, and optimization in PyTorch Discover different optimization algorithms that help to improve accuracy even with smaller volumes of data Explore various one-shot learning architectures based on classification and regression Who this book is forIf you're an AI researcher or a machine learning or deep learning expert looking to explore one-shot learning, this book is for you. It will help you get started with implementing various one-shot techniques to train models faster. Some Python programming experience is necessary to understand the concepts covered in this book.

What's New in TensorFlow 2.0 - Use the new and improved features of TensorFlow to enhance machine learning and deep... What's New in TensorFlow 2.0 - Use the new and improved features of TensorFlow to enhance machine learning and deep learning (Paperback)
Ajay Baranwal, Alizishaan Khatri, Tanish Baranwal
R709 Discovery Miles 7 090 Ships in 10 - 15 working days

Get to grips with key structural changes in TensorFlow 2.0 Key Features Explore TF Keras APIs and strategies to run GPUs, TPUs, and compatible APIs across the TensorFlow ecosystem Learn and implement best practices for building data ingestion pipelines using TF 2.0 APIs Migrate your existing code from TensorFlow 1.x to TensorFlow 2.0 seamlessly Book DescriptionTensorFlow is an end-to-end machine learning platform for experts as well as beginners, and its new version, TensorFlow 2.0 (TF 2.0), improves its simplicity and ease of use. This book will help you understand and utilize the latest TensorFlow features. What's New in TensorFlow 2.0 starts by focusing on advanced concepts such as the new TensorFlow Keras APIs, eager execution, and efficient distribution strategies that help you to run your machine learning models on multiple GPUs and TPUs. The book then takes you through the process of building data ingestion and training pipelines, and it provides recommendations and best practices for feeding data to models created using the new tf.keras API. You'll explore the process of building an inference pipeline using TF Serving and other multi-platform deployments before moving on to explore the newly released AIY, which is essentially do-it-yourself AI. This book delves into the core APIs to help you build unified convolutional and recurrent layers and use TensorBoard to visualize deep learning models using what-if analysis. By the end of the book, you'll have learned about compatibility between TF 2.0 and TF 1.x and be able to migrate to TF 2.0 smoothly. What you will learn Implement tf.keras APIs in TF 2.0 to build, train, and deploy production-grade models Build models with Keras integration and eager execution Explore distribution strategies to run models on GPUs and TPUs Perform what-if analysis with TensorBoard across a variety of models Discover Vision Kit, Voice Kit, and the Edge TPU for model deployments Build complex input data pipelines for ingesting large training datasets Who this book is forIf you're a data scientist, machine learning practitioner, deep learning researcher, or AI enthusiast who wants to migrate code to TensorFlow 2.0 and explore the latest features of TensorFlow 2.0, this book is for you. Prior experience with TensorFlow and Python programming is necessary to understand the concepts covered in the book.

Deep Learning With Python - Advanced and Effective Strategies of Using Deep Learning with Python Theories (Paperback): Ethan... Deep Learning With Python - Advanced and Effective Strategies of Using Deep Learning with Python Theories (Paperback)
Ethan Williams
R543 Discovery Miles 5 430 Ships in 10 - 15 working days
Deep Reinforcement Learning with Python - Master classic RL, deep RL, distributional RL, inverse RL, and more with OpenAI Gym... Deep Reinforcement Learning with Python - Master classic RL, deep RL, distributional RL, inverse RL, and more with OpenAI Gym and TensorFlow, 2nd Edition (Paperback, 2nd Revised edition)
Sudharsan Ravichandiran
R1,423 Discovery Miles 14 230 Ships in 10 - 15 working days

An example-rich guide for beginners to start their reinforcement and deep reinforcement learning journey with state-of-the-art distinct algorithms Key Features Covers a vast spectrum of basic-to-advanced RL algorithms with mathematical explanations of each algorithm Learn how to implement algorithms with code by following examples with line-by-line explanations Explore the latest RL methodologies such as DDPG, PPO, and the use of expert demonstrations Book DescriptionWith significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit. In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples. The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAI's baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research. By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects. What you will learn Understand core RL concepts including the methodologies, math, and code Train an agent to solve Blackjack, FrozenLake, and many other problems using OpenAI Gym Train an agent to play Ms Pac-Man using a Deep Q Network Learn policy-based, value-based, and actor-critic methods Master the math behind DDPG, TD3, TRPO, PPO, and many others Explore new avenues such as the distributional RL, meta RL, and inverse RL Use Stable Baselines to train an agent to walk and play Atari games Who this book is forIf you're a machine learning developer with little or no experience with neural networks interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you. Basic familiarity with linear algebra, calculus, and the Python programming language is required. Some experience with TensorFlow would be a plus.

Modern Computer Vision with PyTorch - Explore deep learning concepts and implement over 50 real-world image applications... Modern Computer Vision with PyTorch - Explore deep learning concepts and implement over 50 real-world image applications (Paperback)
V Kishore Ayyadevara, Yeshwanth Reddy
R1,820 Discovery Miles 18 200 Ships in 10 - 15 working days

Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key Features Implement solutions to 50 real-world computer vision applications using PyTorch Understand the theory and working mechanisms of neural network architectures and their implementation Discover best practices using a custom library created especially for this book Book DescriptionDeep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You'll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You'll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you'll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You'll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you'll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently. What you will learn Train a NN from scratch with NumPy and PyTorch Implement 2D and 3D multi-object detection and segmentation Generate digits and DeepFakes with autoencoders and advanced GANs Manipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGAN Combine CV with NLP to perform OCR, image captioning, and object detection Combine CV with reinforcement learning to build agents that play pong and self-drive a car Deploy a deep learning model on the AWS server using FastAPI and Docker Implement over 35 NN architectures and common OpenCV utilities Who this book is forThis book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you'll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.

Codeless Deep Learning with KNIME - Build, train, and deploy various deep neural network architectures using KNIME Analytics... Codeless Deep Learning with KNIME - Build, train, and deploy various deep neural network architectures using KNIME Analytics Platform (Paperback)
Kathrin Melcher, Rosaria Silipo
R1,420 Discovery Miles 14 200 Ships in 10 - 15 working days

Discover how to integrate KNIME Analytics Platform with deep learning libraries to implement artificial intelligence solutions Key Features Become well-versed with KNIME Analytics Platform to perform codeless deep learning Design and build deep learning workflows quickly and more easily using the KNIME GUI Discover different deployment options without using a single line of code with KNIME Analytics Platform Book DescriptionKNIME Analytics Platform is an open source software used to create and design data science workflows. This book is a comprehensive guide to the KNIME GUI and KNIME deep learning integration, helping you build neural network models without writing any code. It'll guide you in building simple and complex neural networks through practical and creative solutions for solving real-world data problems. Starting with an introduction to KNIME Analytics Platform, you'll get an overview of simple feed-forward networks for solving simple classification problems on relatively small datasets. You'll then move on to build, train, test, and deploy more complex networks, such as autoencoders, recurrent neural networks (RNNs), long short-term memory (LSTM), and convolutional neural networks (CNNs). In each chapter, depending on the network and use case, you'll learn how to prepare data, encode incoming data, and apply best practices. By the end of this book, you'll have learned how to design a variety of different neural architectures and will be able to train, test, and deploy the final network. What you will learn Use various common nodes to transform your data into the right structure suitable for training a neural network Understand neural network techniques such as loss functions, backpropagation, and hyperparameters Prepare and encode data appropriately to feed it into the network Build and train a classic feedforward network Develop and optimize an autoencoder network for outlier detection Implement deep learning networks such as CNNs, RNNs, and LSTM with the help of practical examples Deploy a trained deep learning network on real-world data Who this book is forThis book is for data analysts, data scientists, and deep learning developers who are not well-versed in Python but want to learn how to use KNIME GUI to build, train, test, and deploy neural networks with different architectures. The practical implementations shown in the book do not require coding or any knowledge of dedicated scripts, so you can easily implement your knowledge into practical applications. No prior experience of using KNIME is required to get started with this book.

Artificial Intelligence with Python Cookbook - Proven recipes for applying AI algorithms and deep learning techniques using... Artificial Intelligence with Python Cookbook - Proven recipes for applying AI algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6 (Paperback)
Ben Auffarth
R1,213 Discovery Miles 12 130 Ships in 10 - 15 working days

Work through practical recipes to learn how to solve complex machine learning and deep learning problems using Python Key Features Get up and running with artificial intelligence in no time using hands-on problem-solving recipes Explore popular Python libraries and tools to build AI solutions for images, text, sounds, and images Implement NLP, reinforcement learning, deep learning, GANs, Monte-Carlo tree search, and much more Book DescriptionArtificial intelligence (AI) plays an integral role in automating problem-solving. This involves predicting and classifying data and training agents to execute tasks successfully. This book will teach you how to solve complex problems with the help of independent and insightful recipes ranging from the essentials to advanced methods that have just come out of research. Artificial Intelligence with Python Cookbook starts by showing you how to set up your Python environment and taking you through the fundamentals of data exploration. Moving ahead, you'll be able to implement heuristic search techniques and genetic algorithms. In addition to this, you'll apply probabilistic models, constraint optimization, and reinforcement learning. As you advance through the book, you'll build deep learning models for text, images, video, and audio, and then delve into algorithmic bias, style transfer, music generation, and AI use cases in the healthcare and insurance industries. Throughout the book, you'll learn about a variety of tools for problem-solving and gain the knowledge needed to effectively approach complex problems. By the end of this book on AI, you will have the skills you need to write AI and machine learning algorithms, test them, and deploy them for production. What you will learn Implement data preprocessing steps and optimize model hyperparameters Delve into representational learning with adversarial autoencoders Use active learning, recommenders, knowledge embedding, and SAT solvers Get to grips with probabilistic modeling with TensorFlow probability Run object detection, text-to-speech conversion, and text and music generation Apply swarm algorithms, multi-agent systems, and graph networks Go from proof of concept to production by deploying models as microservices Understand how to use modern AI in practice Who this book is forThis AI machine learning book is for Python developers, data scientists, machine learning engineers, and deep learning practitioners who want to learn how to build artificial intelligence solutions with easy-to-follow recipes. You'll also find this book useful if you're looking for state-of-the-art solutions to perform different machine learning tasks in various use cases. Basic working knowledge of the Python programming language and machine learning concepts will help you to work with code effectively in this book.

Applications of Artificial Neural Networks for Nonlinear Data (Paperback): Hiral Ashil Patel, A.V. Senthil Kumar Applications of Artificial Neural Networks for Nonlinear Data (Paperback)
Hiral Ashil Patel, A.V. Senthil Kumar
R5,517 Discovery Miles 55 170 Ships in 10 - 15 working days

Processing information and analyzing data efficiently and effectively is crucial for any company that wishes to stay competitive in its respective market. Nonlinear data presents new challenges to organizations, however, due to its complexity and unpredictability. The only technology that can properly handle this form of data is artificial neural networks. These modeling systems present a high level of benefits in analyzing complex data in a proficient manner, yet considerable research on the specific applications of these intelligent components is significantly deficient. Applications of Artificial Neural Networks for Nonlinear Data is a collection of innovative research on the contemporary nature of artificial neural networks and their specific implementations within data analysis. While highlighting topics including propagation functions, optimization techniques, and learning methodologies, this book is ideally designed for researchers, statisticians, academicians, developers, scientists, practitioners, students, and educators seeking current research on the use of artificial neural networks in diagnosing and solving nonparametric problems.

Deep Learning for Natural Language Processing - Solve your natural language processing problems with smart deep neural networks... Deep Learning for Natural Language Processing - Solve your natural language processing problems with smart deep neural networks (Paperback)
Karthiek Reddy Bokka, Shubhangi Hora, Tanuj Jain, Monicah Wambugu
R972 Discovery Miles 9 720 Ships in 10 - 15 working days

Gain the knowledge of various deep neural network architectures and their application areas to conquer your NLP issues. Key Features Gain insights into the basic building blocks of natural language processing Learn how to select the best deep neural network to solve your NLP problems Explore convolutional and recurrent neural networks and long short-term memory networks Book DescriptionApplying deep learning approaches to various NLP tasks can take your computational algorithms to a completely new level in terms of speed and accuracy. Deep Learning for Natural Language Processing starts off by highlighting the basic building blocks of the natural language processing domain. The book goes on to introduce the problems that you can solve using state-of-the-art neural network models. After this, delving into the various neural network architectures and their specific areas of application will help you to understand how to select the best model to suit your needs. As you advance through this deep learning book, you'll study convolutional, recurrent, and recursive neural networks, in addition to covering long short-term memory networks (LSTM). Understanding these networks will help you to implement their models using Keras. In the later chapters, you will be able to develop a trigger word detection application using NLP techniques such as attention model and beam search. By the end of this book, you will not only have sound knowledge of natural language processing but also be able to select the best text pre-processing and neural network models to solve a number of NLP issues. What you will learn Understand various pre-processing techniques for deep learning problems Build a vector representation of text using word2vec and GloVe Create a named entity recognizer and parts-of-speech tagger with Apache OpenNLP Build a machine translation model in Keras Develop a text generation application using LSTM Build a trigger word detection application using an attention model Who this book is forIf you're an aspiring data scientist looking for an introduction to deep learning in the NLP domain, this is just the book for you. Strong working knowledge of Python, linear algebra, and machine learning is a must.

Better Life and Business - Cell, Brain, Mind and Sex Universal Laws (Paperback): Branko Sou?ek Better Life and Business - Cell, Brain, Mind and Sex Universal Laws (Paperback)
Branko Souček
R2,624 Discovery Miles 26 240 Ships in 10 - 15 working days
Applications of Artificial Intelligence for Smart Technology (Paperback): P. Swarnalatha, S Prabu Applications of Artificial Intelligence for Smart Technology (Paperback)
P. Swarnalatha, S Prabu
R5,005 Discovery Miles 50 050 Ships in 10 - 15 working days

As global communities are attempting to transform into more efficient and technologically-advanced metropolises, artificial intelligence (AI) has taken a firm grasp on various professional fields. Technology used in these industries is transforming by introducing intelligent techniques including machine learning, cognitive computing, and computer vision. This has raised significant attention among researchers and practitioners on the specific impact that these smart technologies have and what challenges remain. Applications of Artificial Intelligence for Smart Technology is a pivotal reference source that provides vital research on the implementation of advanced technological techniques in professional industries through the use of AI. While highlighting topics such as pattern recognition, computational imaging, and machine learning, this publication explores challenges that various fields currently face when applying these technologies and examines the future uses of AI. This book is ideally designed for researchers, developers, managers, academicians, analysts, students, and practitioners seeking current research on the involvement of AI in professional practices.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Insect Pheromone Biochemistry and…
Gary Blomquist Hardcover R4,238 R2,933 Discovery Miles 29 330
5G Networks - Planning, Design and…
Christofer Larsson Paperback R2,827 R2,658 Discovery Miles 26 580
Insect Science - Diversity, Conservation…
Mohammad Manjur Shah, Umar Sharif Hardcover R2,769 Discovery Miles 27 690
Contemporary Challenges and Solutions…
Ismail Khalil, Edgar Weippl Hardcover R5,248 Discovery Miles 52 480
Embedded Software Timing - Methodology…
Peter Gliwa Hardcover R2,875 Discovery Miles 28 750
Multiple Access Technologies for 5G…
Jie Zeng, Xin Su, … Paperback R1,608 R1,300 Discovery Miles 13 000
Mobile Devices and Smart Gadgets in…
Sajid Umair, Muhammad Yousaf Shah Hardcover R5,259 Discovery Miles 52 590
Ecdysone: Structures and Functions
Guy Smagghe Hardcover R5,704 Discovery Miles 57 040
The Neurobiology of an Insect Brain
Malcolm Burrows Hardcover R4,522 Discovery Miles 45 220
Electronic Monitoring of Feeding…
Antonio Ricardo Panizzi, Tiago Lucini, … Hardcover R4,233 Discovery Miles 42 330

 

Partners