0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (4)
  • R250 - R500 (38)
  • R500+ (878)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks

Mobile Cloud Robotics (Paperback): Patrick Stakem Mobile Cloud Robotics (Paperback)
Patrick Stakem
R268 Discovery Miles 2 680 Ships in 18 - 22 working days
Hands-On Generative Adversarial Networks with PyTorch 1.x - Implement next-generation neural networks to build powerful GAN... Hands-On Generative Adversarial Networks with PyTorch 1.x - Implement next-generation neural networks to build powerful GAN models using Python (Paperback)
John Hany, Greg Walters
R1,072 Discovery Miles 10 720 Ships in 18 - 22 working days

Apply deep learning techniques and neural network methodologies to build, train, and optimize generative network models Key Features Implement GAN architectures to generate images, text, audio, 3D models, and more Understand how GANs work and become an active contributor in the open source community Learn how to generate photo-realistic images based on text descriptions Book DescriptionWith continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs over generative models and guides in making the best out of GANs with the help of hands-on examples. This book starts by taking you through the core concepts necessary to understand how each component of a GAN model works. You'll build your first GAN model to understand how generator and discriminator networks function. As you advance, you'll delve into a range of examples and datasets to build a variety of GAN networks using PyTorch functionalities and services, and become well-versed with architectures, training strategies, and evaluation methods for image generation, translation, and restoration. You'll even learn how to apply GAN models to solve problems in areas such as computer vision, multimedia, 3D models, and natural language processing (NLP). The book covers how to overcome the challenges faced while building generative models from scratch. Finally, you'll also discover how to train your GAN models to generate adversarial examples to attack other CNN and GAN models. By the end of this book, you will have learned how to build, train, and optimize next-generation GAN models and use them to solve a variety of real-world problems. What you will learn Implement PyTorch's latest features to ensure efficient model designing Get to grips with the working mechanisms of GAN models Perform style transfer between unpaired image collections with CycleGAN Build and train 3D-GANs to generate a point cloud of 3D objects Create a range of GAN models to perform various image synthesis operations Use SEGAN to suppress noise and improve the quality of speech audio Who this book is forThis GAN book is for machine learning practitioners and deep learning researchers looking to get hands-on guidance in implementing GAN models using PyTorch. You'll become familiar with state-of-the-art GAN architectures with the help of real-world examples. Working knowledge of Python programming language is necessary to grasp the concepts covered in this book.

Deep Learning with Microsoft Cognitive Toolkit Quick Start Guide - A practical guide to building neural networks using... Deep Learning with Microsoft Cognitive Toolkit Quick Start Guide - A practical guide to building neural networks using Microsoft's open source deep learning framework (Paperback)
Willem Meints
R780 Discovery Miles 7 800 Ships in 18 - 22 working days

Learn how to train popular deep learning architectures such as autoencoders, convolutional and recurrent neural networks while discovering how you can use deep learning models in your software applications with Microsoft Cognitive Toolkit Key Features Understand the fundamentals of Microsoft Cognitive Toolkit and set up the development environment Train different types of neural networks using Cognitive Toolkit and deploy it to production Evaluate the performance of your models and improve your deep learning skills Book DescriptionCognitive Toolkit is a very popular and recently open sourced deep learning toolkit by Microsoft. Cognitive Toolkit is used to train fast and effective deep learning models. This book will be a quick introduction to using Cognitive Toolkit and will teach you how to train and validate different types of neural networks, such as convolutional and recurrent neural networks. This book will help you understand the basics of deep learning. You will learn how to use Microsoft Cognitive Toolkit to build deep learning models and discover what makes this framework unique so that you know when to use it. This book will be a quick, no-nonsense introduction to the library and will teach you how to train different types of neural networks, such as convolutional neural networks, recurrent neural networks, autoencoders, and more, using Cognitive Toolkit. Then we will look at two scenarios in which deep learning can be used to enhance human capabilities. The book will also demonstrate how to evaluate your models' performance to ensure it trains and runs smoothly and gives you the most accurate results. Finally, you will get a short overview of how Cognitive Toolkit fits in to a DevOps environment What you will learn Set up your deep learning environment for the Cognitive Toolkit on Windows and Linux Pre-process and feed your data into neural networks Use neural networks to make effcient predictions and recommendations Train and deploy effcient neural networks such as CNN and RNN Detect problems in your neural network using TensorBoard Integrate Cognitive Toolkit with Azure ML Services for effective deep learning Who this book is forData Scientists, Machine learning developers, AI developers who wish to train and deploy effective deep learning models using Microsoft CNTK will find this book to be useful. Readers need to have experience in Python or similar object-oriented language like C# or Java.

Up and Running Google AutoML and AI Platform - Building Machine Learning and NLP Models Using AutoML and AI Platform for... Up and Running Google AutoML and AI Platform - Building Machine Learning and NLP Models Using AutoML and AI Platform for Production Environment (Paperback)
Amit Agrawal, Navin Sabharwal
R502 Discovery Miles 5 020 Ships in 18 - 22 working days
Artificial Intelligence - The Ultimate Guide to AI, The Internet of Things, Machine Learning, Deep Learning + a Comprehensive... Artificial Intelligence - The Ultimate Guide to AI, The Internet of Things, Machine Learning, Deep Learning + a Comprehensive Guide to Robotics (Paperback)
Neil Wilkins
R463 R435 Discovery Miles 4 350 Save R28 (6%) Ships in 18 - 22 working days
Neural Networks for Natural Language Processing (Paperback): Sumathi S., Janani M Neural Networks for Natural Language Processing (Paperback)
Sumathi S., Janani M
R4,971 Discovery Miles 49 710 Ships in 18 - 22 working days

Information in today's advancing world is rapidly expanding and becoming widely available. This eruption of data has made handling it a daunting and time-consuming task. Natural language processing (NLP) is a method that applies linguistics and algorithms to large amounts of this data to make it more valuable. NLP improves the interaction between humans and computers, yet there remains a lack of research that focuses on the practical implementations of this trending approach. Neural Networks for Natural Language Processing is a collection of innovative research on the methods and applications of linguistic information processing and its computational properties. This publication will support readers with performing sentence classification and language generation using neural networks, apply deep learning models to solve machine translation and conversation problems, and apply deep structured semantic models on information retrieval and natural language applications. While highlighting topics including deep learning, query entity recognition, and information retrieval, this book is ideally designed for research and development professionals, IT specialists, industrialists, technology developers, data analysts, data scientists, academics, researchers, and students seeking current research on the fundamental concepts and techniques of natural language processing.

Modern Computer Vision with PyTorch - Explore deep learning concepts and implement over 50 real-world image applications... Modern Computer Vision with PyTorch - Explore deep learning concepts and implement over 50 real-world image applications (Paperback)
V Kishore Ayyadevara, Yeshwanth Reddy
R1,682 Discovery Miles 16 820 Ships in 18 - 22 working days

Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key Features Implement solutions to 50 real-world computer vision applications using PyTorch Understand the theory and working mechanisms of neural network architectures and their implementation Discover best practices using a custom library created especially for this book Book DescriptionDeep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You'll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You'll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you'll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You'll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you'll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently. What you will learn Train a NN from scratch with NumPy and PyTorch Implement 2D and 3D multi-object detection and segmentation Generate digits and DeepFakes with autoencoders and advanced GANs Manipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGAN Combine CV with NLP to perform OCR, image captioning, and object detection Combine CV with reinforcement learning to build agents that play pong and self-drive a car Deploy a deep learning model on the AWS server using FastAPI and Docker Implement over 35 NN architectures and common OpenCV utilities Who this book is forThis book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you'll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.

Artificial Intelligence with Python Cookbook - Proven recipes for applying AI algorithms and deep learning techniques using... Artificial Intelligence with Python Cookbook - Proven recipes for applying AI algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6 (Paperback)
Ben Auffarth
R1,124 Discovery Miles 11 240 Ships in 18 - 22 working days

Work through practical recipes to learn how to solve complex machine learning and deep learning problems using Python Key Features Get up and running with artificial intelligence in no time using hands-on problem-solving recipes Explore popular Python libraries and tools to build AI solutions for images, text, sounds, and images Implement NLP, reinforcement learning, deep learning, GANs, Monte-Carlo tree search, and much more Book DescriptionArtificial intelligence (AI) plays an integral role in automating problem-solving. This involves predicting and classifying data and training agents to execute tasks successfully. This book will teach you how to solve complex problems with the help of independent and insightful recipes ranging from the essentials to advanced methods that have just come out of research. Artificial Intelligence with Python Cookbook starts by showing you how to set up your Python environment and taking you through the fundamentals of data exploration. Moving ahead, you'll be able to implement heuristic search techniques and genetic algorithms. In addition to this, you'll apply probabilistic models, constraint optimization, and reinforcement learning. As you advance through the book, you'll build deep learning models for text, images, video, and audio, and then delve into algorithmic bias, style transfer, music generation, and AI use cases in the healthcare and insurance industries. Throughout the book, you'll learn about a variety of tools for problem-solving and gain the knowledge needed to effectively approach complex problems. By the end of this book on AI, you will have the skills you need to write AI and machine learning algorithms, test them, and deploy them for production. What you will learn Implement data preprocessing steps and optimize model hyperparameters Delve into representational learning with adversarial autoencoders Use active learning, recommenders, knowledge embedding, and SAT solvers Get to grips with probabilistic modeling with TensorFlow probability Run object detection, text-to-speech conversion, and text and music generation Apply swarm algorithms, multi-agent systems, and graph networks Go from proof of concept to production by deploying models as microservices Understand how to use modern AI in practice Who this book is forThis AI machine learning book is for Python developers, data scientists, machine learning engineers, and deep learning practitioners who want to learn how to build artificial intelligence solutions with easy-to-follow recipes. You'll also find this book useful if you're looking for state-of-the-art solutions to perform different machine learning tasks in various use cases. Basic working knowledge of the Python programming language and machine learning concepts will help you to work with code effectively in this book.

Python Machine Learning Blueprints - Put your machine learning concepts to the test by developing real-world smart projects,... Python Machine Learning Blueprints - Put your machine learning concepts to the test by developing real-world smart projects, 2nd Edition (Paperback, 2nd Revised edition)
Alexander Combs, Michael Roman
R1,102 Discovery Miles 11 020 Ships in 18 - 22 working days

Discover a project-based approach to mastering machine learning concepts by applying them to everyday problems using libraries such as scikit-learn, TensorFlow, and Keras Key Features Get to grips with Python's machine learning libraries including scikit-learn, TensorFlow, and Keras Implement advanced concepts and popular machine learning algorithms in real-world projects Build analytics, computer vision, and neural network projects Book DescriptionMachine learning is transforming the way we understand and interact with the world around us. This book is the perfect guide for you to put your knowledge and skills into practice and use the Python ecosystem to cover key domains in machine learning. This second edition covers a range of libraries from the Python ecosystem, including TensorFlow and Keras, to help you implement real-world machine learning projects. The book begins by giving you an overview of machine learning with Python. With the help of complex datasets and optimized techniques, you'll go on to understand how to apply advanced concepts and popular machine learning algorithms to real-world projects. Next, you'll cover projects from domains such as predictive analytics to analyze the stock market and recommendation systems for GitHub repositories. In addition to this, you'll also work on projects from the NLP domain to create a custom news feed using frameworks such as scikit-learn, TensorFlow, and Keras. Following this, you'll learn how to build an advanced chatbot, and scale things up using PySpark. In the concluding chapters, you can look forward to exciting insights into deep learning and you'll even create an application using computer vision and neural networks. By the end of this book, you'll be able to analyze data seamlessly and make a powerful impact through your projects. What you will learn Understand the Python data science stack and commonly used algorithms Build a model to forecast the performance of an Initial Public Offering (IPO) over an initial discrete trading window Understand NLP concepts by creating a custom news feed Create applications that will recommend GitHub repositories based on ones you've starred, watched, or forked Gain the skills to build a chatbot from scratch using PySpark Develop a market-prediction app using stock data Delve into advanced concepts such as computer vision, neural networks, and deep learning Who this book is forThis book is for machine learning practitioners, data scientists, and deep learning enthusiasts who want to take their machine learning skills to the next level by building real-world projects. The intermediate-level guide will help you to implement libraries from the Python ecosystem to build a variety of projects addressing various machine learning domains. Knowledge of Python programming and machine learning concepts will be helpful.

Introduction to Deep Learning - with complete Python and TensorFlow examples (Paperback): Juergen Brauer Introduction to Deep Learning - with complete Python and TensorFlow examples (Paperback)
Juergen Brauer
R1,258 Discovery Miles 12 580 Ships in 18 - 22 working days
Algorithms - Discover the Computer Science and Artificial Intelligence Used to Solve Everyday Human Problems, Optimize Habits,... Algorithms - Discover the Computer Science and Artificial Intelligence Used to Solve Everyday Human Problems, Optimize Habits, Learn Anything, and Organize Your Life (Paperback)
Trust Genics
R549 R503 Discovery Miles 5 030 Save R46 (8%) Ships in 18 - 22 working days
Mastering Reinforcement Learning with Python - Build next-generation, self-learning models using reinforcement learning... Mastering Reinforcement Learning with Python - Build next-generation, self-learning models using reinforcement learning techniques and best practices (Paperback)
Enes Bilgin
R1,248 Discovery Miles 12 480 Ships in 18 - 22 working days

Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practices Key Features Understand how large-scale state-of-the-art RL algorithms and approaches work Apply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and more Explore tips and best practices from experts that will enable you to overcome real-world RL challenges Book DescriptionReinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL. Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning. As you advance, you'll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray's RLlib package. You'll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls. By the end of this book, you'll have mastered how to train and deploy your own RL agents for solving RL problems. What you will learn Model and solve complex sequential decision-making problems using RL Develop a solid understanding of how state-of-the-art RL methods work Use Python and TensorFlow to code RL algorithms from scratch Parallelize and scale up your RL implementations using Ray's RLlib package Get in-depth knowledge of a wide variety of RL topics Understand the trade-offs between different RL approaches Discover and address the challenges of implementing RL in the real world Who this book is forThis book is for expert machine learning practitioners and researchers looking to focus on hands-on reinforcement learning with Python by implementing advanced deep reinforcement learning concepts in real-world projects. Reinforcement learning experts who want to advance their knowledge to tackle large-scale and complex sequential decision-making problems will also find this book useful. Working knowledge of Python programming and deep learning along with prior experience in reinforcement learning is required.

Hands-On Meta Learning with Python - Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow... Hands-On Meta Learning with Python - Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow (Paperback)
Sudharsan Ravichandiran
R1,045 Discovery Miles 10 450 Ships in 18 - 22 working days

Explore a diverse set of meta-learning algorithms and techniques to enable human-like cognition for your machine learning models using various Python frameworks Key Features Understand the foundations of meta learning algorithms Explore practical examples to explore various one-shot learning algorithms with its applications in TensorFlow Master state of the art meta learning algorithms like MAML, reptile, meta SGD Book DescriptionMeta learning is an exciting research trend in machine learning, which enables a model to understand the learning process. Unlike other ML paradigms, with meta learning you can learn from small datasets faster. Hands-On Meta Learning with Python starts by explaining the fundamentals of meta learning and helps you understand the concept of learning to learn. You will delve into various one-shot learning algorithms, like siamese, prototypical, relation and memory-augmented networks by implementing them in TensorFlow and Keras. As you make your way through the book, you will dive into state-of-the-art meta learning algorithms such as MAML, Reptile, and CAML. You will then explore how to learn quickly with Meta-SGD and discover how you can perform unsupervised learning using meta learning with CACTUs. In the concluding chapters, you will work through recent trends in meta learning such as adversarial meta learning, task agnostic meta learning, and meta imitation learning. By the end of this book, you will be familiar with state-of-the-art meta learning algorithms and able to enable human-like cognition for your machine learning models. What you will learn Understand the basics of meta learning methods, algorithms, and types Build voice and face recognition models using a siamese network Learn the prototypical network along with its variants Build relation networks and matching networks from scratch Implement MAML and Reptile algorithms from scratch in Python Work through imitation learning and adversarial meta learning Explore task agnostic meta learning and deep meta learning Who this book is forHands-On Meta Learning with Python is for machine learning enthusiasts, AI researchers, and data scientists who want to explore meta learning as an advanced approach for training machine learning models. Working knowledge of machine learning concepts and Python programming is necessary.

Hands-On Neuroevolution with Python - Build high-performing artificial neural network architectures using neuroevolution-based... Hands-On Neuroevolution with Python - Build high-performing artificial neural network architectures using neuroevolution-based algorithms (Paperback)
Iaroslav Omelianenko
R1,188 Discovery Miles 11 880 Ships in 18 - 22 working days

Increase the performance of various neural network architectures using NEAT, HyperNEAT, ES-HyperNEAT, Novelty Search, SAFE, and deep neuroevolution Key Features Implement neuroevolution algorithms to improve the performance of neural network architectures Understand evolutionary algorithms and neuroevolution methods with real-world examples Learn essential neuroevolution concepts and how they are used in domains including games, robotics, and simulations Book DescriptionNeuroevolution is a form of artificial intelligence learning that uses evolutionary algorithms to simplify the process of solving complex tasks in domains such as games, robotics, and the simulation of natural processes. This book will give you comprehensive insights into essential neuroevolution concepts and equip you with the skills you need to apply neuroevolution-based algorithms to solve practical, real-world problems. You'll start with learning the key neuroevolution concepts and methods by writing code with Python. You'll also get hands-on experience with popular Python libraries and cover examples of classical reinforcement learning, path planning for autonomous agents, and developing agents to autonomously play Atari games. Next, you'll learn to solve common and not-so-common challenges in natural computing using neuroevolution-based algorithms. Later, you'll understand how to apply neuroevolution strategies to existing neural network designs to improve training and inference performance. Finally, you'll gain clear insights into the topology of neural networks and how neuroevolution allows you to develop complex networks, starting with simple ones. By the end of this book, you will not only have explored existing neuroevolution-based algorithms, but also have the skills you need to apply them in your research and work assignments. What you will learn Discover the most popular neuroevolution algorithms - NEAT, HyperNEAT, and ES-HyperNEAT Explore how to implement neuroevolution-based algorithms in Python Get up to speed with advanced visualization tools to examine evolved neural network graphs Understand how to examine the results of experiments and analyze algorithm performance Delve into neuroevolution techniques to improve the performance of existing methods Apply deep neuroevolution to develop agents for playing Atari games Who this book is forThis book is for machine learning practitioners, deep learning researchers, and AI enthusiasts who are looking to implement neuroevolution algorithms from scratch. Working knowledge of the Python programming language and basic knowledge of deep learning and neural networks are mandatory.

Artificial Intelligence By Example - Acquire advanced AI, machine learning, and deep learning design skills, 2nd Edition... Artificial Intelligence By Example - Acquire advanced AI, machine learning, and deep learning design skills, 2nd Edition (Paperback, 2nd Revised edition)
Denis Rothman
R1,161 Discovery Miles 11 610 Ships in 18 - 22 working days

Understand the fundamentals and develop your own AI solutions in this updated edition packed with many new examples Key Features AI-based examples to guide you in designing and implementing machine intelligence Build machine intelligence from scratch using artificial intelligence examples Develop machine intelligence from scratch using real artificial intelligence Book DescriptionAI has the potential to replicate humans in every field. Artificial Intelligence By Example, Second Edition serves as a starting point for you to understand how AI is built, with the help of intriguing and exciting examples. This book will make you an adaptive thinker and help you apply concepts to real-world scenarios. Using some of the most interesting AI examples, right from computer programs such as a simple chess engine to cognitive chatbots, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and Internet of Things (IoT), and develop emotional quotient in chatbots using neural networks such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs). This edition also has new examples for hybrid neural networks, combining reinforcement learning (RL) and deep learning (DL), chained algorithms, combining unsupervised learning with decision trees, random forests, combining DL and genetic algorithms, conversational user interfaces (CUI) for chatbots, neuromorphic computing, and quantum computing. By the end of this book, you will understand the fundamentals of AI and have worked through a number of examples that will help you develop your AI solutions. What you will learn Apply k-nearest neighbors (KNN) to language translations and explore the opportunities in Google Translate Understand chained algorithms combining unsupervised learning with decision trees Solve the XOR problem with feedforward neural networks (FNN) and build its architecture to represent a data flow graph Learn about meta learning models with hybrid neural networks Create a chatbot and optimize its emotional intelligence deficiencies with tools such as Small Talk and data logging Building conversational user interfaces (CUI) for chatbots Writing genetic algorithms that optimize deep learning neural networks Build quantum computing circuits Who this book is forDevelopers and those interested in AI, who want to understand the fundamentals of Artificial Intelligence and implement them practically. Prior experience with Python programming and statistical knowledge is essential to make the most out of this book.

Codeless Deep Learning with KNIME - Build, train, and deploy various deep neural network architectures using KNIME Analytics... Codeless Deep Learning with KNIME - Build, train, and deploy various deep neural network architectures using KNIME Analytics Platform (Paperback)
Kathrin Melcher, Rosaria Silipo
R1,314 Discovery Miles 13 140 Ships in 18 - 22 working days

Discover how to integrate KNIME Analytics Platform with deep learning libraries to implement artificial intelligence solutions Key Features Become well-versed with KNIME Analytics Platform to perform codeless deep learning Design and build deep learning workflows quickly and more easily using the KNIME GUI Discover different deployment options without using a single line of code with KNIME Analytics Platform Book DescriptionKNIME Analytics Platform is an open source software used to create and design data science workflows. This book is a comprehensive guide to the KNIME GUI and KNIME deep learning integration, helping you build neural network models without writing any code. It'll guide you in building simple and complex neural networks through practical and creative solutions for solving real-world data problems. Starting with an introduction to KNIME Analytics Platform, you'll get an overview of simple feed-forward networks for solving simple classification problems on relatively small datasets. You'll then move on to build, train, test, and deploy more complex networks, such as autoencoders, recurrent neural networks (RNNs), long short-term memory (LSTM), and convolutional neural networks (CNNs). In each chapter, depending on the network and use case, you'll learn how to prepare data, encode incoming data, and apply best practices. By the end of this book, you'll have learned how to design a variety of different neural architectures and will be able to train, test, and deploy the final network. What you will learn Use various common nodes to transform your data into the right structure suitable for training a neural network Understand neural network techniques such as loss functions, backpropagation, and hyperparameters Prepare and encode data appropriately to feed it into the network Build and train a classic feedforward network Develop and optimize an autoencoder network for outlier detection Implement deep learning networks such as CNNs, RNNs, and LSTM with the help of practical examples Deploy a trained deep learning network on real-world data Who this book is forThis book is for data analysts, data scientists, and deep learning developers who are not well-versed in Python but want to learn how to use KNIME GUI to build, train, test, and deploy neural networks with different architectures. The practical implementations shown in the book do not require coding or any knowledge of dedicated scripts, so you can easily implement your knowledge into practical applications. No prior experience of using KNIME is required to get started with this book.

A Brief Guide to Artificial Intelligence (Paperback): James V Stone A Brief Guide to Artificial Intelligence (Paperback)
James V Stone
R218 R201 Discovery Miles 2 010 Save R17 (8%) Ships in 18 - 22 working days
AI Self-Driving Cars Autonomy - Practical Advances In Artificial Intelligence And Machine Learning (Paperback): Lance Eliot AI Self-Driving Cars Autonomy - Practical Advances In Artificial Intelligence And Machine Learning (Paperback)
Lance Eliot
R680 Discovery Miles 6 800 Ships in 18 - 22 working days
AI Self-Driving Cars Consonance - Practical Advances in Artificial Intelligence and Machine Learning (Paperback): Lance Eliot AI Self-Driving Cars Consonance - Practical Advances in Artificial Intelligence and Machine Learning (Paperback)
Lance Eliot
R685 Discovery Miles 6 850 Ships in 18 - 22 working days
The The Reinforcement Learning Workshop - Learn how to apply cutting-edge reinforcement learning algorithms to a wide range of... The The Reinforcement Learning Workshop - Learn how to apply cutting-edge reinforcement learning algorithms to a wide range of control problems (Paperback)
Alessandro Palmas, Emanuele Ghelfi, Dr. Alexandra Galina Petre, Mayur Kulkarni, Anand N.S., …
R1,091 Discovery Miles 10 910 Ships in 9 - 17 working days

Start with the basics of reinforcement learning and explore deep learning concepts such as deep Q-learning, deep recurrent Q-networks, and policy-based methods with this practical guide Key Features Use TensorFlow to write reinforcement learning agents for performing challenging tasks Learn how to solve finite Markov decision problems Train models to understand popular video games like Breakout Book DescriptionVarious intelligent applications such as video games, inventory management software, warehouse robots, and translation tools use reinforcement learning (RL) to make decisions and perform actions that maximize the probability of the desired outcome. This book will help you to get to grips with the techniques and the algorithms for implementing RL in your machine learning models. Starting with an introduction to RL, you'll be guided through different RL environments and frameworks. You'll learn how to implement your own custom environments and use OpenAI baselines to run RL algorithms. Once you've explored classic RL techniques such as Dynamic Programming, Monte Carlo, and TD Learning, you'll understand when to apply the different deep learning methods in RL and advance to deep Q-learning. The book will even help you understand the different stages of machine-based problem-solving by using DARQN on a popular video game Breakout. Finally, you'll find out when to use a policy-based method to tackle an RL problem. By the end of The Reinforcement Learning Workshop, you'll be equipped with the knowledge and skills needed to solve challenging problems using reinforcement learning. What you will learn Use OpenAI Gym as a framework to implement RL environments Find out how to define and implement reward function Explore Markov chain, Markov decision process, and the Bellman equation Distinguish between Dynamic Programming, Monte Carlo, and Temporal Difference Learning Understand the multi-armed bandit problem and explore various strategies to solve it Build a deep Q model network for playing the video game Breakout Who this book is forIf you are a data scientist, machine learning enthusiast, or a Python developer who wants to learn basic to advanced deep reinforcement learning algorithms, this workshop is for you. A basic understanding of the Python language is necessary.

Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter - Build scalable real-world projects to implement end-to-end... Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter - Build scalable real-world projects to implement end-to-end neural networks on Android and iOS (Paperback)
Anubhav Singh, Rimjhim Bhadani
R1,094 Discovery Miles 10 940 Ships in 18 - 22 working days

Learn how to deploy effective deep learning solutions on cross-platform applications built using TensorFlow Lite, ML Kit, and Flutter Key Features Work through projects covering mobile vision, style transfer, speech processing, and multimedia processing Cover interesting deep learning solutions for mobile Build your confidence in training models, performance tuning, memory optimization, and neural network deployment through every project Book DescriptionDeep learning is rapidly becoming the most popular topic in the mobile app industry. This book introduces trending deep learning concepts and their use cases with an industrial and application-focused approach. You will cover a range of projects covering tasks such as mobile vision, facial recognition, smart artificial intelligence assistant, augmented reality, and more. With the help of eight projects, you will learn how to integrate deep learning processes into mobile platforms, iOS, and Android. This will help you to transform deep learning features into robust mobile apps efficiently. You'll get hands-on experience of selecting the right deep learning architectures and optimizing mobile deep learning models while following an application oriented-approach to deep learning on native mobile apps. We will later cover various pre-trained and custom-built deep learning model-based APIs such as machine learning (ML) Kit through Firebase. Further on, the book will take you through examples of creating custom deep learning models with TensorFlow Lite. Each project will demonstrate how to integrate deep learning libraries into your mobile apps, right from preparing the model through to deployment. By the end of this book, you'll have mastered the skills to build and deploy deep learning mobile applications on both iOS and Android. What you will learn Create your own customized chatbot by extending the functionality of Google Assistant Improve learning accuracy with the help of features available on mobile devices Perform visual recognition tasks using image processing Use augmented reality to generate captions for a camera feed Authenticate users and create a mechanism to identify rare and suspicious user interactions Develop a chess engine based on deep reinforcement learning Explore the concepts and methods involved in rolling out production-ready deep learning iOS and Android applications Who this book is forThis book is for data scientists, deep learning and computer vision engineers, and natural language processing (NLP) engineers who want to build smart mobile apps using deep learning methods. You will also find this book useful if you want to improve your mobile app's user interface (UI) by harnessing the potential of deep learning. Basic knowledge of neural networks and coding experience in Python will be beneficial to get started with this book.

Research Advancements in Smart Technology, Optimization, and Renewable Energy (Paperback): Pandian Vasant, Gerhard Weber,... Research Advancements in Smart Technology, Optimization, and Renewable Energy (Paperback)
Pandian Vasant, Gerhard Weber, Wonsiri Punurai
R4,776 Discovery Miles 47 760 Ships in 18 - 22 working days

As environmental issues remain at the forefront of energy research, renewable energy is now an all-important field of study. And as smart technology continues to grow and be refined, its applications broaden and increase in their potential to revolutionize sustainability studies. This potential can only be fully realized with a thorough understanding of the most recent breakthroughs in the field. Research Advancements in Smart Technology, Optimization, and Renewable Energy is a collection of innovative research that explores the recent steps forward for smart applications in sustainability. Featuring coverage on a wide range of topics including energy assessment, neural fuzzy control, and biogeography, this book is ideally designed for advocates, policymakers, engineers, software developers, academicians, researchers, and students.

Computational Neuroscience: Modeling and Applications (Hardcover): Scott Carter Computational Neuroscience: Modeling and Applications (Hardcover)
Scott Carter
R3,231 R2,926 Discovery Miles 29 260 Save R305 (9%) Ships in 18 - 22 working days
Caffe2 Quick Start Guide - Modular and scalable deep learning made easy (Paperback): Ashwin Nanjappa Caffe2 Quick Start Guide - Modular and scalable deep learning made easy (Paperback)
Ashwin Nanjappa
R660 Discovery Miles 6 600 Ships in 18 - 22 working days

Build and train scalable neural network models on various platforms by leveraging the power of Caffe2 Key Features Migrate models trained with other deep learning frameworks on Caffe2 Integrate Caffe2 with Android or iOS and implement deep learning models for mobile devices Leverage the distributed capabilities of Caffe2 to build models that scale easily Book DescriptionCaffe2 is a popular deep learning library used for fast and scalable training and inference of deep learning models on various platforms. This book introduces you to the Caffe2 framework and shows how you can leverage its power to build, train, and deploy efficient neural network models at scale. It will cover the topics of installing Caffe2, composing networks using its operators, training models, and deploying models to different architectures. It will also show how to import models from Caffe and from other frameworks using the ONNX interchange format. It covers the topic of deep learning accelerators such as CPU and GPU and shows how to deploy Caffe2 models for inference on accelerators using inference engines. Caffe2 is built for deployment to a diverse set of hardware, using containers on the cloud and resource constrained hardware such as Raspberry Pi, which will be demonstrated. By the end of this book, you will be able to not only compose and train popular neural network models with Caffe2, but also be able to deploy them on accelerators, to the cloud and on resource constrained platforms such as mobile and embedded hardware. What you will learn Build and install Caffe2 Compose neural networks Train neural network on CPU or GPU Import a neural network from Caffe Import deep learning models from other frameworks Deploy models on CPU or GPU accelerators using inference engines Deploy models at the edge and in the cloud Who this book is forData scientists and machine learning engineers who wish to create fast and scalable deep learning models in Caffe2 will find this book to be very useful. Some understanding of the basic machine learning concepts and prior exposure to programming languages like C++ and Python will be useful.

Learning Microsoft Cognitive Services - Use Cognitive Services APIs to add AI capabilities to your applications, 3rd Edition... Learning Microsoft Cognitive Services - Use Cognitive Services APIs to add AI capabilities to your applications, 3rd Edition (Paperback, 3rd Revised edition)
Leif Larsen
R1,102 Discovery Miles 11 020 Ships in 18 - 22 working days

Build smarter applications with AI capabilities using Microsoft Cognitive Services APIs without much hassle Key Features Explore the Cognitive Services APIs for building machine learning applications Build applications with computer vision, speech recognition, and language processing capabilities Learn to implement human-like cognitive intelligence for your applications Book DescriptionMicrosoft Cognitive Services is a set of APIs for adding intelligence to your application and leverage the power of AI to solve any business problem using the cognitive capabilities. This book will be your practical guide to working with cognitive APIs developed by Microsoft and provided with the Azure platform to developers and businesses. You will learn to integrate the APIs with your applications in Visual Studio. The book introduces you to about 24 APIs including Emotion, Language, Vision, Speech, Knowledge, and Search among others. With the easy-to-follow examples you will be able to develop applications for image processing, speech recognition, text procession, and so on to enhance the capability of your applications to perform more human-like tasks. Going ahead, the book will help you work with the datasets that enable your applications to process various data in form of image, videos, and texts. By the end of the book, you will get confident to explore the Cognitive Services APIs for your applications and make them intelligent for deploying in businesses. What you will learn Identify a person through visual and audio inspection Reduce user effort by utilizing AI-like capabilities Understand how to analyze images and texts in different ways Analyze images using Vision APIs Add video analysis to applications using Vision APIs Utilize Search to find anything you want Analyze text to extract information and explore text structure Who this book is forLearning Microsoft Cognitive Services is for developers and machine learning enthusiasts who want to get started with building intelligent applications without much programming knowledge. Some prior knowledge of .NET and Visual Studio will help you undertake the tasks explained in this book.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Digital Transformation - An Executive…
Lynda J Roth Hardcover R924 Discovery Miles 9 240
Comprehensive Biotechnology
Murray Moo- Young Hardcover R69,084 Discovery Miles 690 840
PCs For Dummies, 13e
D. Gookin Paperback  (1)
R638 R565 Discovery Miles 5 650
Stem Cells - Therapeutic Innovations…
Nicole Arrighi Hardcover R3,357 R3,039 Discovery Miles 30 390
Advances in Applied Microbiology, Volume…
Geoffrey M. Gadd, Sima Sariaslani Hardcover R3,086 Discovery Miles 30 860
Advanced Materials for Sustainable…
Dimitrios A. Giannakoudakis, Lucas Meili, … Paperback R3,402 Discovery Miles 34 020
Actinobacteria: Diversity and…
Bhim Pratap Singh, Vijai Kumar Gupta, … Paperback R4,939 R4,581 Discovery Miles 45 810
Encountering Technology - The Tech…
George Gerstman Hardcover R925 Discovery Miles 9 250
Chromebook For Dummies
Peter H. Gregory Paperback R564 Discovery Miles 5 640
Home Computers - 100 Icons that Defined…
Alex Wiltshire Hardcover R836 R765 Discovery Miles 7 650

 

Partners