Books > Computing & IT > Applications of computing > Artificial intelligence > Natural language & machine translation
|
Buy Now
Advanced Natural Language Processing with TensorFlow 2 - Build effective real-world NLP applications using NER, RNNs, seq2seq models, Transformers, and more (Paperback)
Loot Price: R1,189
Discovery Miles 11 890
|
|
Advanced Natural Language Processing with TensorFlow 2 - Build effective real-world NLP applications using NER, RNNs, seq2seq models, Transformers, and more (Paperback)
Expected to ship within 10 - 15 working days
|
One-stop solution for NLP practitioners, ML developers, and data
scientists to build effective NLP systems that can perform
real-world complicated tasks Key Features Apply deep learning
algorithms and techniques such as BiLSTMS, CRFs, BPE and more using
TensorFlow 2 Explore applications like text generation,
summarization, weakly supervised labelling and more Read cutting
edge material with seminal papers provided in the GitHub repository
with full working code Book DescriptionRecently, there have been
tremendous advances in NLP, and we are now moving from research
labs into practical applications. This book comes with a perfect
blend of both the theoretical and practical aspects of trending and
complex NLP techniques. The book is focused on innovative
applications in the field of NLP, language generation, and dialogue
systems. It helps you apply the concepts of pre-processing text
using techniques such as tokenization, parts of speech tagging, and
lemmatization using popular libraries such as Stanford NLP and
SpaCy. You will build Named Entity Recognition (NER) from scratch
using Conditional Random Fields and Viterbi Decoding on top of
RNNs. The book covers key emerging areas such as generating text
for use in sentence completion and text summarization, bridging
images and text by generating captions for images, and managing
dialogue aspects of chatbots. You will learn how to apply transfer
learning and fine-tuning using TensorFlow 2. Further, it covers
practical techniques that can simplify the labelling of textual
data. The book also has a working code that is adaptable to your
use cases for each tech piece. By the end of the book, you will
have an advanced knowledge of the tools, techniques and deep
learning architecture used to solve complex NLP problems. What you
will learn Grasp important pre-steps in building NLP applications
like POS tagging Use transfer and weakly supervised learning using
libraries like Snorkel Do sentiment analysis using BERT Apply
encoder-decoder NN architectures and beam search for summarizing
texts Use Transformer models with attention to bring images and
text together Build apps that generate captions and answer
questions about images using custom Transformers Use advanced
TensorFlow techniques like learning rate annealing, custom layers,
and custom loss functions to build the latest DeepNLP models Who
this book is forThis is not an introductory book and assumes the
reader is familiar with basics of NLP and has fundamental Python
skills, as well as basic knowledge of machine learning and
undergraduate-level calculus and linear algebra. The readers who
can benefit the most from this book include intermediate ML
developers who are familiar with the basics of supervised learning
and deep learning techniques and professionals who already use
TensorFlow/Python for purposes such as data science, ML, research,
analysis, etc.
General
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!
|
You might also like..
|