![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
Data Analysis for Social Microblogging Platforms explores the nature of microblog datasets, also covering the larger field which focuses on information, data and knowledge in the context of natural language processing. The book investigates a range of significant computational techniques which enable data and computer scientists to recognize patterns in these vast datasets, including machine learning, data mining algorithms, rough set and fuzzy set theory, evolutionary computations, combinatorial pattern matching, clustering, summarization and classification. Chapters focus on basic online micro blogging data analysis research methodologies, community detection, summarization application development, performance evaluation and their applications in big data.
With the growing maturity and stability of digitization and edge technologies, vast numbers of digital entities, connected devices, and microservices interact purposefully to create huge sets of poly-structured digital data. Corporations are continuously seeking fresh ways to use their data to drive business innovations and disruptions to bring in real digital transformation. Data science (DS) is proving to be the one-stop solution for simplifying the process of knowledge discovery and dissemination out of massive amounts of multi-structured data. Supported by query languages, databases, algorithms, platforms, analytics methods and machine and deep learning (ML and DL) algorithms, graphs are now emerging as a new data structure for optimally representing a variety of data and their intimate relationships. Compared to traditional analytics methods, the connectedness of data points in graph analytics facilitates the identification of clusters of related data points based on levels of influence, association, interaction frequency and probability. Graph analytics is being empowered through a host of path-breaking analytics techniques to explore and pinpoint beneficial relationships between different entities such as organizations, people and transactions. This edited book aims to explain the various aspects and importance of graph data science. The authors from both academia and industry cover algorithms, analytics methods, platforms and databases that are intrinsically capable of creating business value by intelligently leveraging connected data. This book will be a valuable reference for ICTs industry and academic researchers, scientists and engineers, and lecturers and advanced students in the fields of data analytics, data science, cloud/fog/edge architecture, internet of things, artificial intelligence/machine and deep learning, and related fields of applications. It will also be of interest to analytics professionals in industry and IT operations teams.
Advanced computational intelligence techniques have been designed and developed in recent years to cope with various big data challenges and provide fast and efficient analytics that assist in making critical decisions. With the rapid evolution and development of internet-based services and applications, this technology is receiving attention from researchers, industries, and academic communities and requires additional study. Convergence of Big Data Technologies and Computational Intelligent Techniques considers recent advancements in big data and computational intelligence across fields and disciplines and discusses the various opportunities and challenges of adoption. Covering topics such as deep learning, data mining, smart environments, and high-performance computing, this reference work is crucial for computer scientists, engineers, industry professionals, researchers, scholars, practitioners, academicians, instructors, and students.
Data analytics is proving to be an ally for epidemiologists as they join forces with data scientists to address the scale of crises. Analytics examined from many sources can derive insights and be used to study and fight global outbreaks. Pandemic analytics is a modern way to combat a problem as old as humanity itself: the proliferation of disease. Machine Learning and Data Analytics for Predicting, Managing, and Monitoring Disease explores different types of data and discusses how to prepare data for analysis, perform simple statistical analyses, create meaningful data visualizations, predict future trends from data, and more by applying cutting edge technology such as machine learning and data analytics in the wake of the COVID-19 pandemic. Covering a range of topics such as mental health analytics during COVID-19, data analysis and machine learning using Python, and statistical model development and deployment, it is ideal for researchers, academicians, data scientists, technologists, data analysts, diagnosticians, healthcare professionals, computer scientists, and students.
Data has never mattered more. Our lives are increasingly shaped by it and how it is defined, collected and used. But who counts in the collection, analysis and application of data? This important book is the first to look at queer data - defined as data relating to gender, sex, sexual orientation and trans identity/history. The author shows us how current data practices reflect an incomplete account of LGBTQ lives and helps us understand how data biases are used to delegitimise the everyday experiences of queer people. Guyan demonstrates why it is important to understand, collect and analyse queer data, the benefits and challenges involved in doing so, and how we might better use queer data in our work. Arming us with the tools for action, this book shows how greater knowledge about queer identities is instrumental in informing decisions about resource allocation, changes to legislation, access to services, representation and visibility.
Medical and information communication technology professionals are working to develop robust classification techniques, especially in healthcare data/image analysis, to ensure quick diagnoses and treatments to patients. Without fast and immediate access to healthcare databases and information, medical professionals' success rates and treatment options become limited and fall to disastrous levels. Advanced Classification Techniques for Healthcare Analysis provides emerging insight into classification techniques in delivering quality, accurate, and affordable healthcare, while also discussing the impact health data has on medical treatments. Featuring coverage on a broad range of topics such as early diagnosis, brain-computer interface, metaheuristic algorithms, clustering techniques, learning schemes, and mobile telemedicine, this book is ideal for medical professionals, healthcare administrators, engineers, researchers, academicians, and technology developers seeking current research on furthering information and communication technology that improves patient care.
BIG DATA, ARTIFICIAL INTELLIGENCE AND DATA ANALYSIS SET Coordinated by Jacques Janssen Data analysis is a scientific field that continues to grow enormously, most notably over the last few decades, following rapid growth within the tech industry, as well as the wide applicability of computational techniques alongside new advances in analytic tools. Modeling enables data analysts to identify relationships, make predictions, and to understand, interpret and visualize the extracted information more strategically. This book includes the most recent advances on this topic, meeting increasing demand from wide circles of the scientific community. Applied Modeling Techniques and Data Analysis 1 is a collective work by a number of leading scientists, analysts, engineers, mathematicians and statisticians, working on the front end of data analysis and modeling applications. The chapters cover a cross section of current concerns and research interests in the above scientific areas. The collected material is divided into appropriate sections to provide the reader with both theoretical and applied information on data analysis methods, models and techniques, along with appropriate applications.
Vehicular traffic congestion and accidents remain universal issues in today's world. Due to the continued growth in the use of vehicles, optimizing traffic management operations is an immense challenge. To reduce the number of traffic accidents, improve the performance of transportation systems, enhance road safety, and protect the environment, vehicular ad-hoc networks have been introduced. Current developments in wireless communication, computing paradigms, big data, and cloud computing enable the enhancement of these networks, equipped with wireless communication capabilities and high-performance processing tools. Cloud-Based Big Data Analytics in Vehicular Ad-Hoc Networks is a pivotal reference source that provides vital research on cloud and data analytic applications in intelligent transportation systems. While highlighting topics such as location routing, accident detection, and data warehousing, this publication addresses future challenges in vehicular ad-hoc networks and presents viable solutions. This book is ideally designed for researchers, computer scientists, engineers, automobile industry professionals, IT practitioners, academicians, and students seeking current research on cloud computing models in vehicular networks.
Translation and communication between cultures can sometimes be a difficult process. Image-based assessments can offer a way for large populations to be tested on different subjects without having to create multiple testing programs. Cross-Cultural Analysis of Image-Based Assessments: Emerging Research and Opportunities is an innovative resource that offers insight into the application of visual assessments across a global and intercultural context. Highlighting applicable topics which include visual literacy, psychological assessments, assessment development, and equivalency measurements, this publication is ideal for psychologists, therapists, and researchers who would like to stay current on the most efficient way to test multi-cultural populations in various fields of knowledge.
Intelligent Data Analysis for e-Learning: Enhancing Security and Trustworthiness in Online Learning Systems addresses information security within e-Learning based on trustworthiness assessment and prediction. Over the past decade, many learning management systems have appeared in the education market. Security in these systems is essential for protecting against unfair and dishonest conduct-most notably cheating-however, e-Learning services are often designed and implemented without considering security requirements. This book provides functional approaches of trustworthiness analysis, modeling, assessment, and prediction for stronger security and support in online learning, highlighting the security deficiencies found in most online collaborative learning systems. The book explores trustworthiness methodologies based on collective intelligence than can overcome these deficiencies. It examines trustworthiness analysis that utilizes the large amounts of data-learning activities generate. In addition, as processing this data is costly, the book offers a parallel processing paradigm that can support learning activities in real-time. The book discusses data visualization methods for managing e-Learning, providing the tools needed to analyze the data collected. Using a case-based approach, the book concludes with models and methodologies for evaluating and validating security in e-Learning systems. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS
Jump-start your career as a data scientist--learn to develop datasets for exploration, analysis, and machine learning SQL for Data Scientists: A Beginner's Guide for Building Datasets for Analysis is a resource that's dedicated to the Structured Query Language (SQL) and dataset design skills that data scientists use most. Aspiring data scientists will learn how to how to construct datasets for exploration, analysis, and machine learning. You can also discover how to approach query design and develop SQL code to extract data insights while avoiding common pitfalls. You may be one of many people who are entering the field of Data Science from a range of professions and educational backgrounds, such as business analytics, social science, physics, economics, and computer science. Like many of them, you may have conducted analyses using spreadsheets as data sources, but never retrieved and engineered datasets from a relational database using SQL, which is a programming language designed for managing databases and extracting data. This guide for data scientists differs from other instructional guides on the subject. It doesn't cover SQL broadly. Instead, you'll learn the subset of SQL skills that data analysts and data scientists use frequently. You'll also gain practical advice and direction on "how to think about constructing your dataset." Gain an understanding of relational database structure, query design, and SQL syntax Develop queries to construct datasets for use in applications like interactive reports and machine learning algorithms Review strategies and approaches so you can design analytical datasets Practice your techniques with the provided database and SQL code In this book, author Renee Teate shares knowledge gained during a 15-year career working with data, in roles ranging from database developer to data analyst to data scientist. She guides you through SQL code and dataset design concepts from an industry practitioner's perspective, moving your data scientist career forward!
Although some IoT systems are built for simple event control where a sensor signal triggers a corresponding reaction, many events are far more complex, requiring applications to interpret the event using analytical techniques to initiate proper actions. Artificial intelligence of things (AIoT) applies intelligence to the edge and gives devices the ability to understand the data, observe the environment around them, and decide what to do best with minimum human intervention. With the power of AI, AIoT devices are not just messengers feeding information to control centers. They have evolved into intelligent machines capable of performing self-driven analytics and acting independently. A smart environment uses technologies such as wearable devices, IoT, and mobile internet to dynamically access information, connect people, materials and institutions, and then actively manages and responds to the ecosystem's needs in an intelligent manner. In this edited book, the authors present challenges, technologies, applications and future trends of AI-enabled IoT (AIoT) in realizing smart and intelligent environments, including frameworks and methodologies to apply AIoT in monitoring devices and environments, tools and practices most applicable to product or service development to solve innovation problems, advanced and innovative techniques and practical implementations to enhance future smart environment systems as. They plan to cover a broad range of applications including smart cities, smart transportation and smart agriculture. This book is a valuable resource for industry and academic researchers, scientists, engineers and advanced students in the fields of ICTs and networking, IoT, AI and machine and deep learning, data science, sensing, robotics, automation and smart technologies and smart environments.
Analyzing data sets has continued to be an invaluable application for numerous industries. By combining different algorithms, technologies, and systems used to extract information from data and solve complex problems, various sectors have reached new heights and have changed our world for the better. The Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics is a collection of innovative research on the methods and applications of data analytics. While highlighting topics including artificial intelligence, data security, and information systems, this book is ideally designed for researchers, data analysts, data scientists, healthcare administrators, executives, managers, engineers, IT consultants, academicians, and students interested in the potential of data application technologies.
"Implementing Analytics" demystifies the concept, technology and
application of analytics and breaks its implementation down to
repeatable and manageable steps, making it possible for widespread
adoption across all functions of an organization. "Implementing
Analytics "simplifies and helps democratize a very specialized
discipline to foster business efficiency and innovation without
investing in multi-million dollar technology and manpower. A
technology agnostic methodology that breaks down complex tasks like
model design and tuning and emphasizes business decisions rather
than the technology behind analytics. Simplifies the understanding of analytics from a technical and functional perspective and shows a wide array of problems that can be tackled using existing technology Provides a detailed step by step approach to identify opportunities, extract requirements, design variables and build and test models. It further explains the business decision strategies to use analytics models and provides an overview for governance and tuning Helps formalize analytics projects from staffing, technology and implementation perspectives Emphasizes machine learning and data mining over statistics and shows how the role of a Data Scientist can be broken down and still deliver the value by building a robust development process
As enterprise access networks evolve with a larger number of mobile users, a wide range of devices and new cloud-based applications, managing user performance on an end-to-end basis has become rather challenging. Recent advances in big data network analytics combined with AI and cloud computing are being leveraged to tackle this growing problem. AI is becoming further integrated with software that manage networks, storage, and can compute. This edited book focuses on how new network analytics, IoTs and Cloud Computing platforms are being used to ingest, analyse and correlate a myriad of big data across the entire network stack in order to increase quality of service and quality of experience (QoS/QoE) and to improve network performance. From big data and AI analytical techniques for handling the huge amount of data generated by IoT devices, the authors cover cloud storage optimization, the design of next generation access protocols and internet architecture, fault tolerance and reliability in intelligent networks, and discuss a range of emerging applications. This book will be useful to researchers, scientists, engineers, professionals, advanced students and faculty members in ICTs, data science, networking, AI, machine learning and sensing. It will also be of interest to professionals in data science, AI, cloud and IoT start-up companies, as well as developers and designers.
Big data consists of data sets that are too large and complex for traditional data processing and data management applications. Therefore, to obtain the valuable information within the data, one must use a variety of innovative analytical methods, such as web analytics, machine learning, and network analytics. As the study of big data becomes more popular, there is an urgent demand for studies on high-level computational intelligence and computing services for analyzing this significant area of information science. Big Data Analytics for Sustainable Computing is a collection of innovative research that focuses on new computing and system development issues in emerging sustainable applications. Featuring coverage on a wide range of topics such as data filtering, knowledge engineering, and cognitive analytics, this publication is ideally designed for data scientists, IT specialists, computer science practitioners, computer engineers, academicians, professionals, and students seeking current research on emerging analytical techniques and data processing software.
New Methods of Market Research and Analysis prepares readers for the new reality posed by big data and marketing analytics. While connecting to traditional research approaches such as surveys and focus groups, this book shows how new technologies and new analytical capabilities are rapidly changing the way marketers obtain and process their information. In particular, the prevalence of big data systems always monitoring key performance indicators, trends toward more research using observation or observation and communication together, new technologies such as mobile, apps, geo-locators, and others, as well as the deep analytics allowed by cheap data processing and storage are all covered and placed in context. Scott Erickson goes beyond the buzzwords to provide relevant explanations of the meaning and impact of both big data and analytics, placing them in context with traditional marketing research. His engaging subject matter focuses on the practical aspects of big data concepts, precisely defining and illustrating key concepts and providing illuminating real world examples. This approachable style enables marketers to understand what data scientists are doing with big data systems and analytics, giving them a taste of the capabilities of contemporary statistical software and its practical applications. This book can be used as a supplement to a traditional marketing research text or on its own. It will serve as a key reference for graduate students and advanced undergraduates in marketing research, marketing analytics, or business intelligence courses as well as marketing professionals looking to stay up to date with current trends and have them explained in a context they understand.
This book presents intelligent data analysis as a tool to fight against COVID-19 pandemic. The intelligent data analysis includes machine learning, natural language processing, and computer vision applications to teach computers to use big data-based models for pattern recognition, explanation, and prediction. These functions are discussed in detail in the book to recognize (diagnose), predict, and explain (treat) COVID-19 infections, and help manage socio-economic impacts. It also discusses primary warnings and alerts; tracking and prediction; data dashboards; diagnosis and prognosis; treatments and cures; and social control by the use of intelligent data analysis. It provides analysis reports, solutions using real-time data, and solution through web applications details. |
![]() ![]() You may like...
Evolutionary Multi-Agent Systems - From…
Aleksander Byrski, Marek Kisiel-Dorohinicki
Hardcover
R4,556
Discovery Miles 45 560
Modelling and Verification of Secure…
Rosario Giustolisi
Hardcover
Geometric Structure of…
Michel-Marie Deza, Mathieu Dutour Sikiric, …
Hardcover
Monte Carlo and Quasi-Monte Carlo…
Art B. Owen, Peter W. Glynn
Hardcover
R2,961
Discovery Miles 29 610
Mathematics of Multidimensional Fourier…
Richard Tolimieri, Myong An, …
Hardcover
R2,586
Discovery Miles 25 860
|