![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
Data Analysis for Social Microblogging Platforms explores the nature of microblog datasets, also covering the larger field which focuses on information, data and knowledge in the context of natural language processing. The book investigates a range of significant computational techniques which enable data and computer scientists to recognize patterns in these vast datasets, including machine learning, data mining algorithms, rough set and fuzzy set theory, evolutionary computations, combinatorial pattern matching, clustering, summarization and classification. Chapters focus on basic online micro blogging data analysis research methodologies, community detection, summarization application development, performance evaluation and their applications in big data.
Advanced computational intelligence techniques have been designed and developed in recent years to cope with various big data challenges and provide fast and efficient analytics that assist in making critical decisions. With the rapid evolution and development of internet-based services and applications, this technology is receiving attention from researchers, industries, and academic communities and requires additional study. Convergence of Big Data Technologies and Computational Intelligent Techniques considers recent advancements in big data and computational intelligence across fields and disciplines and discusses the various opportunities and challenges of adoption. Covering topics such as deep learning, data mining, smart environments, and high-performance computing, this reference work is crucial for computer scientists, engineers, industry professionals, researchers, scholars, practitioners, academicians, instructors, and students.
Data analytics is proving to be an ally for epidemiologists as they join forces with data scientists to address the scale of crises. Analytics examined from many sources can derive insights and be used to study and fight global outbreaks. Pandemic analytics is a modern way to combat a problem as old as humanity itself: the proliferation of disease. Machine Learning and Data Analytics for Predicting, Managing, and Monitoring Disease explores different types of data and discusses how to prepare data for analysis, perform simple statistical analyses, create meaningful data visualizations, predict future trends from data, and more by applying cutting edge technology such as machine learning and data analytics in the wake of the COVID-19 pandemic. Covering a range of topics such as mental health analytics during COVID-19, data analysis and machine learning using Python, and statistical model development and deployment, it is ideal for researchers, academicians, data scientists, technologists, data analysts, diagnosticians, healthcare professionals, computer scientists, and students.
Data has never mattered more. Our lives are increasingly shaped by it and how it is defined, collected and used. But who counts in the collection, analysis and application of data? This important book is the first to look at queer data - defined as data relating to gender, sex, sexual orientation and trans identity/history. The author shows us how current data practices reflect an incomplete account of LGBTQ lives and helps us understand how data biases are used to delegitimise the everyday experiences of queer people. Guyan demonstrates why it is important to understand, collect and analyse queer data, the benefits and challenges involved in doing so, and how we might better use queer data in our work. Arming us with the tools for action, this book shows how greater knowledge about queer identities is instrumental in informing decisions about resource allocation, changes to legislation, access to services, representation and visibility.
Medical and information communication technology professionals are working to develop robust classification techniques, especially in healthcare data/image analysis, to ensure quick diagnoses and treatments to patients. Without fast and immediate access to healthcare databases and information, medical professionals' success rates and treatment options become limited and fall to disastrous levels. Advanced Classification Techniques for Healthcare Analysis provides emerging insight into classification techniques in delivering quality, accurate, and affordable healthcare, while also discussing the impact health data has on medical treatments. Featuring coverage on a broad range of topics such as early diagnosis, brain-computer interface, metaheuristic algorithms, clustering techniques, learning schemes, and mobile telemedicine, this book is ideal for medical professionals, healthcare administrators, engineers, researchers, academicians, and technology developers seeking current research on furthering information and communication technology that improves patient care.
Vehicular traffic congestion and accidents remain universal issues in today's world. Due to the continued growth in the use of vehicles, optimizing traffic management operations is an immense challenge. To reduce the number of traffic accidents, improve the performance of transportation systems, enhance road safety, and protect the environment, vehicular ad-hoc networks have been introduced. Current developments in wireless communication, computing paradigms, big data, and cloud computing enable the enhancement of these networks, equipped with wireless communication capabilities and high-performance processing tools. Cloud-Based Big Data Analytics in Vehicular Ad-Hoc Networks is a pivotal reference source that provides vital research on cloud and data analytic applications in intelligent transportation systems. While highlighting topics such as location routing, accident detection, and data warehousing, this publication addresses future challenges in vehicular ad-hoc networks and presents viable solutions. This book is ideally designed for researchers, computer scientists, engineers, automobile industry professionals, IT practitioners, academicians, and students seeking current research on cloud computing models in vehicular networks.
Translation and communication between cultures can sometimes be a difficult process. Image-based assessments can offer a way for large populations to be tested on different subjects without having to create multiple testing programs. Cross-Cultural Analysis of Image-Based Assessments: Emerging Research and Opportunities is an innovative resource that offers insight into the application of visual assessments across a global and intercultural context. Highlighting applicable topics which include visual literacy, psychological assessments, assessment development, and equivalency measurements, this publication is ideal for psychologists, therapists, and researchers who would like to stay current on the most efficient way to test multi-cultural populations in various fields of knowledge.
Intelligent Data Analysis for e-Learning: Enhancing Security and Trustworthiness in Online Learning Systems addresses information security within e-Learning based on trustworthiness assessment and prediction. Over the past decade, many learning management systems have appeared in the education market. Security in these systems is essential for protecting against unfair and dishonest conduct-most notably cheating-however, e-Learning services are often designed and implemented without considering security requirements. This book provides functional approaches of trustworthiness analysis, modeling, assessment, and prediction for stronger security and support in online learning, highlighting the security deficiencies found in most online collaborative learning systems. The book explores trustworthiness methodologies based on collective intelligence than can overcome these deficiencies. It examines trustworthiness analysis that utilizes the large amounts of data-learning activities generate. In addition, as processing this data is costly, the book offers a parallel processing paradigm that can support learning activities in real-time. The book discusses data visualization methods for managing e-Learning, providing the tools needed to analyze the data collected. Using a case-based approach, the book concludes with models and methodologies for evaluating and validating security in e-Learning systems. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS
MESH ist ein mathematisches Video ber vielfl chige Netzwerke und ihre Rolle in der Geometrie, der Numerik und der Computergraphik. Der unter Anwendung der neuesten Technologie vollst ndig computergenierte Film spannt einen Bogen von der antiken griechischen Mathematik zum Gebiet der heutigen geometrischen Modellierung. MESH hat zahlreiche wissenschaftliche Preise weltweit gewonnen. Die Autoren sind Konrad Polthier, ein Professor der Mathematik, und Beau Janzen, ein professioneller Filmdirektor. Der Film ist ein ausgezeichnetes Lehrmittel f r Kurse in Geometrie, Visualisierung, wissenschaftlichem Rechnen und geometrischer Modellierung an Universit ten, Zentren f r wissenschaftliches Rechnen, kann jedoch auch an Schulen genutzt werden.
Analyzing data sets has continued to be an invaluable application for numerous industries. By combining different algorithms, technologies, and systems used to extract information from data and solve complex problems, various sectors have reached new heights and have changed our world for the better. The Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics is a collection of innovative research on the methods and applications of data analytics. While highlighting topics including artificial intelligence, data security, and information systems, this book is ideally designed for researchers, data analysts, data scientists, healthcare administrators, executives, managers, engineers, IT consultants, academicians, and students interested in the potential of data application technologies.
"Implementing Analytics" demystifies the concept, technology and
application of analytics and breaks its implementation down to
repeatable and manageable steps, making it possible for widespread
adoption across all functions of an organization. "Implementing
Analytics "simplifies and helps democratize a very specialized
discipline to foster business efficiency and innovation without
investing in multi-million dollar technology and manpower. A
technology agnostic methodology that breaks down complex tasks like
model design and tuning and emphasizes business decisions rather
than the technology behind analytics. Simplifies the understanding of analytics from a technical and functional perspective and shows a wide array of problems that can be tackled using existing technology Provides a detailed step by step approach to identify opportunities, extract requirements, design variables and build and test models. It further explains the business decision strategies to use analytics models and provides an overview for governance and tuning Helps formalize analytics projects from staffing, technology and implementation perspectives Emphasizes machine learning and data mining over statistics and shows how the role of a Data Scientist can be broken down and still deliver the value by building a robust development process
New Methods of Market Research and Analysis prepares readers for the new reality posed by big data and marketing analytics. While connecting to traditional research approaches such as surveys and focus groups, this book shows how new technologies and new analytical capabilities are rapidly changing the way marketers obtain and process their information. In particular, the prevalence of big data systems always monitoring key performance indicators, trends toward more research using observation or observation and communication together, new technologies such as mobile, apps, geo-locators, and others, as well as the deep analytics allowed by cheap data processing and storage are all covered and placed in context. Scott Erickson goes beyond the buzzwords to provide relevant explanations of the meaning and impact of both big data and analytics, placing them in context with traditional marketing research. His engaging subject matter focuses on the practical aspects of big data concepts, precisely defining and illustrating key concepts and providing illuminating real world examples. This approachable style enables marketers to understand what data scientists are doing with big data systems and analytics, giving them a taste of the capabilities of contemporary statistical software and its practical applications. This book can be used as a supplement to a traditional marketing research text or on its own. It will serve as a key reference for graduate students and advanced undergraduates in marketing research, marketing analytics, or business intelligence courses as well as marketing professionals looking to stay up to date with current trends and have them explained in a context they understand.
This book presents intelligent data analysis as a tool to fight against COVID-19 pandemic. The intelligent data analysis includes machine learning, natural language processing, and computer vision applications to teach computers to use big data-based models for pattern recognition, explanation, and prediction. These functions are discussed in detail in the book to recognize (diagnose), predict, and explain (treat) COVID-19 infections, and help manage socio-economic impacts. It also discusses primary warnings and alerts; tracking and prediction; data dashboards; diagnosis and prognosis; treatments and cures; and social control by the use of intelligent data analysis. It provides analysis reports, solutions using real-time data, and solution through web applications details.
Big data consists of data sets that are too large and complex for traditional data processing and data management applications. Therefore, to obtain the valuable information within the data, one must use a variety of innovative analytical methods, such as web analytics, machine learning, and network analytics. As the study of big data becomes more popular, there is an urgent demand for studies on high-level computational intelligence and computing services for analyzing this significant area of information science. Big Data Analytics for Sustainable Computing is a collection of innovative research that focuses on new computing and system development issues in emerging sustainable applications. Featuring coverage on a wide range of topics such as data filtering, knowledge engineering, and cognitive analytics, this publication is ideally designed for data scientists, IT specialists, computer science practitioners, computer engineers, academicians, professionals, and students seeking current research on emerging analytical techniques and data processing software.
Big data has presented a number of opportunities across industries. With these opportunities come a number of challenges associated with handling, analyzing, and storing large data sets. One solution to this challenge is cloud computing, which supports a massive storage and computation facility in order to accommodate big data processing. Managing and Processing Big Data in Cloud Computing explores the challenges of supporting big data processing and cloud-based platforms as a proposed solution. Emphasizing a number of crucial topics such as data analytics, wireless networks, mobile clouds, and machine learning, this publication meets the research needs of data analysts, IT professionals, researchers, graduate students, and educators in the areas of data science, computer programming, and IT development.
This book provides readers the "big picture" and a comprehensive survey of the domain of big data processing systems. For the past decade, the Hadoop framework has dominated the world of big data processing, yet recently academia and industry have started to recognize its limitations in several application domains and thus, it is now gradually being replaced by a collection of engines that are dedicated to specific verticals (e.g. structured data, graph data, and streaming data). The book explores this new wave of systems, which it refers to as Big Data 2.0 processing systems. After Chapter 1 presents the general background of the big data phenomena, Chapter 2 provides an overview of various general-purpose big data processing systems that allow their users to develop various big data processing jobs for different application domains. In turn, Chapter 3 examines various systems that have been introduced to support the SQL flavor on top of the Hadoop infrastructure and provide competing and scalable performance in the processing of large-scale structured data. Chapter 4 discusses several systems that have been designed to tackle the problem of large-scale graph processing, while the main focus of Chapter 5 is on several systems that have been designed to provide scalable solutions for processing big data streams, and on other sets of systems that have been introduced to support the development of data pipelines between various types of big data processing jobs and systems. Next, Chapter 6 focuses on covering the emerging frameworks and systems in the domain of scalable machine learning and deep learning processing. Lastly, Chapter 7 shares conclusions and an outlook on future research challenges. This new and considerably enlarged second edition not only contains the completely new chapter 6, but also offers a refreshed content for the state-of-the-art in all domains of big data processing over the last years. Overall, the book offers a valuable reference guide for professional, students, and researchers in the domain of big data processing systems. Further, its comprehensive content will hopefully encourage readers to pursue further research on the subject. |
![]() ![]() You may like...
Insightful Data Visualization with SAS…
Falko Schulz, Travis Murphy
Hardcover
R1,248
Discovery Miles 12 480
New Approaches to Data Analytics and…
P. Karthikeyan, Polinpapilinho F. Katina, …
Hardcover
R7,387
Discovery Miles 73 870
Temporal and Spatio-temporal Data Mining
Wynne Hsu, Mong Li Lee, …
Hardcover
R2,805
Discovery Miles 28 050
Information Systems Engineering - From…
Paul Johannesson, Eva Soderstrom
Hardcover
R2,817
Discovery Miles 28 170
Big Data Analytics in Traffic and…
Sara Moridpour, Alireza Toran Pour, …
Hardcover
R4,530
Discovery Miles 45 300
Mobile Health - Sensors, Analytic…
James M. Rehg, Susan.A Murphy, …
Hardcover
R5,819
Discovery Miles 58 190
Emerging Technologies of Text Mining…
Hercules Antonio do Prado, Edilson Ferneda
Hardcover
R4,991
Discovery Miles 49 910
|