![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
This book, which has been in the making for some eighteen years, would never have begun were it not for Dr. David Dewhirst in 1976 kindly having shown the author a packet of papers in the archives of the Cambridge Obser vatories. These letters and miscellaneous papers of Fearon Fallows sparked an interest in the history of the Royal Observatory at the Cape of Good Hope which, after the diversion of producing several books on later phases of the Observatory, has finally resulted in a detailed study of the origin and first years of the Observatory's life. Publication of this book coincides with the 175th anniversary of the founding of the Royal Observatory, e.G.H. Observatories are built for the use of astronomers. They are built through astronomers, architects, engineers and contractors acting in concert (if not always in harmony). They are constructed, with whatever techniques and skills are available, from bricks, stones and mortar; but their construction may take a toll of personal relationships, patience, and flesh and blood."
Praise for the First Edition "A very useful book for self study and reference." "Very well written. It is concise and really packs a lot of material in a valuable reference book." "An informative and well-written book . . . presented in an easy-to-understand style with many illustrative numerical examples taken from engineering and scientific studies." Practicing engineers and scientists often have a need to utilize statistical approaches to solving problems in an experimental setting. Yet many have little formal training in statistics. Statistical Design and Analysis of Experiments gives such readers a carefully selected, practical background in the statistical techniques that are most useful to experimenters and data analysts who collect, analyze, and interpret data. The First Edition of this now-classic book garnered praise in the field. Now its authors update and revise their text, incorporating readers’ suggestions as well as a number of new developments. Statistical Design and Analysis of Experiments, Second Edition emphasizes the strategy of experimentation, data analysis, and the interpretation of experimental results, presenting statistics as an integral component of experimentation from the planning stage to the presentation of conclusions. Giving an overview of the conceptual foundations of modern statistical practice, the revised text features discussions of:
Ideal for both students and professionals, this focused and cogent reference has proven to be an excellent classroom textbook with numerous examples. It deserves a place among the tools of every engineer and scientist working in an experimental setting.
What is the cost of employees today and what will this be in the future? This book explains how to take a data-driven approach to workforce planning and allow the business to reach its strategic goals. Organizational Planning and Analysis (OP&A) is a data-driven approach to workforce planning. It allows HR professionals, OD practitioners and business leaders to monitor an organization's activities and analyse business data to regularly adjust plans to ensure that the business succeeds. This book covers everything from how to build an OP&A function, the difference between strategic and operational workforce planning and how to manage demand and supply through to how to match people to new or changing roles and develop robust succession planning. Organizational Planning and Analysis also covers how OP&A works with HR operations including recruitment, L&D, reward and performance management and includes a chapter on new human capital analytics which allow a business to improve the return on investment for each of its employees. Full of practical advice and step by step guidance, this book is also supported by case studies from organizations including KPMG, Sainsbury's, WPP, Accenture, TSB, Johnson & Johnson, Aer Lingus and FedEx.
Review of Marketing Research pushes the boundaries of marketing-broadening the marketing concept to make the world a better place. Here, leading scholars explore how marketing is currently shaping, and being shaped by, the evolution of Artificial Intelligence (AI). Topics covered include the effects of AI on: economics; personalisation; pricing; content generation; the identification, structuring, and prioritization of customer needs; customer feedback; Natural Language Processing; image analytics; deep learning; and the anthropomorphism of AI, such as in virtual assistants and chatbots. Each chapter provides thought provoking discussions which will be relevant to researchers, professionals, and students.
Value-Driven Data explains how data and business leaders can co-create and deploy data-driven solutions for their organizations. Value-Driven Data explores how organizations can understand their problems and come up with better solutions, aligning data storytelling with business needs. The book reviews the main challenges that plague most data-to-business interactions and offers actionable strategies for effective data value implementation, including methods for tackling obstacles and incentivizing change. Value-Driven Data is supported by tried-and-tested frameworks that can be applied to different contexts and organizations. It features cutting-edge examples relating to digital transformation, data strategy, resolving conflicts of interests, building a data P&L and AI value prediction methodology. Recognizing different types of data value, this book presents tangible methodologies for identifying, capturing, communicating, measuring and deploying data-enabled opportunities. This is essential reading for data specialists, business stakeholders and leaders involved in capturing and executing data value opportunities for organizations and for informing data value strategies.
In Symbolic Analysis for Parallelizing Compilers the author presents an excellent demonstration of the effectiveness of symbolic analysis in tackling important optimization problems, some of which inhibit loop parallelization. The framework that Haghighat presents has proved extremely successful in induction and wraparound variable analysis, strength reduction, dead code elimination and symbolic constant propagation. The approach can be applied to any program transformation or optimization problem that uses properties and value ranges of program names. Symbolic analysis can be used on any transformational system or optimization problem that relies on compile-time information about program variables. This covers the majority of, if not all optimization and parallelization techniques. The book makes a compelling case for the potential of symbolic analysis, applying it for the first time - and with remarkable results - to a number of classical optimization problems: loop scheduling, static timing or size analysis, and dependence analysis. It demonstrates how symbolic analysis can solve these problems faster and more accurately than existing hybrid techniques.
Aspects of Robust Statistics are important in many areas. Based on the International Conference on Robust Statistics 2001 (ICORS 2001) in Vorau, Austria, this volume discusses future directions of the discipline, bringing together leading scientists, experienced researchers and practitioners, as well as younger researchers. The papers cover a multitude of different aspects of Robust Statistics. For instance, the fundamental problem of data summary (weights of evidence) is considered and its robustness properties are studied. Further theoretical subjects include e.g.: robust methods for skewness, time series, longitudinal data, multivariate methods, and tests. Some papers deal with computational aspects and algorithms. Finally, the aspects of application and programming tools complete the volume.
* Essay-based format weaves together technical details and case studies to cut through complexity * Provides a strong background in business situations that companies face, to ensure that data analytics efforts are productively directed and organized * Appropriate for both business and engineering students who need to understand the data analytics lifecycle
Based on the Lectures given during the Eurocourse on 'Computing with Parallel Architectures' held at the Joint Research Centre Ispra, Italy, September 10-14, 1990
Artificial intelligence is changing the world of work. How can HR professionals understand the variety of opportunities AI has created for the HR function and how best to implement these in their organization? This book provides the answers. From using natural language processing to ensure job adverts are free from bias and gendered language to implementing chatbots to enhance the employee experience, artificial intelligence can add value throughout the work of HR professionals. Artificial Intelligence for HR demonstrates how to leverage this potential and use AI to improve efficiency and develop a talented and productive workforce. Outlining the current technology landscape as well as the latest AI developments, this book ensures that HR professionals fully understand what AI is and what it means for HR in practice. Alongside coverage of employee engagement and recruitment, this second edition features new material on applications of AI for virtual work, reskilling and data integrity. Packed with practical advice, research and new and updated case studies from global organizations including Uber, IBM and Unilever, the second edition of Artificial Intelligence for HR will equip HR professionals with the knowledge they need to improve people operational efficiencies, and allow AI solutions to become enhancements for driving business success.
Many aspects of modern life have become personalized, yet healthcare practices have been lagging behind in this trend. It is now becoming more common to use big data analysis to improve current healthcare and medicinal systems, and offer better health services to all citizens. Applying Big Data Analytics in Bioinformatics and Medicine is a comprehensive reference source that overviews the current state of medical treatments and systems and offers emerging solutions for a more personalized approach to the healthcare field. Featuring coverage on relevant topics that include smart data, proteomics, medical data storage, and drug design, this publication is an ideal resource for medical professionals, healthcare practitioners, academicians, and researchers interested in the latest trends and techniques in personalized medicine.
The one instruction set computer (OISC) is the ultimate reduced instruction set computer (RISC). In OISC, the instruction set consists of only one instruction, and then by composition, all other necessary instructions are synthesized. This is an approach completely opposite to that of a complex instruction set computer (CISC), which incorporates complex instructions as microprograms within the processor. Computer Architecture: A Minimalist Perspective examines
computer architecture, computability theory, and the history of
computers from the perspective of one instruction set computing - a
novel approach in which the computer supports only one, simple
instruction. This bold, new paradigm offers significant promise in
biological, chemical, optical, and molecular scale computers. - Provides a comprehensive study of computer architecture using
computability theory as a base.
This BriefBook is a much extended glossary or a much condensed handbook, depending on the way one looks at it. In encyclopedic format, it covers subjects in statistics, computing, analysis, and related fields, resulting in a book that is both an introduction and a reference for scientists and engineers, especially experimental physicists dealing with data analysis.
This book develops survey data analysis tools in Python, to create and analyze cross-tab tables and data visuals, weight data, perform hypothesis tests, and handle special survey questions such as Check-all-that-Apply. In addition, the basics of Bayesian data analysis and its Python implementation are presented. Since surveys are widely used as the primary method to collect data, and ultimately information, on attitudes, interests, and opinions of customers and constituents, these tools are vital for private or public sector policy decisions. As a compact volume, this book uses case studies to illustrate methods of analysis essential for those who work with survey data in either sector. It focuses on two overarching objectives: Demonstrate how to extract actionable, insightful, and useful information from survey data; and Introduce Python and Pandas for analyzing survey data.
Model Management and Analytics for Large Scale Systems covers the use of models and related artefacts (such as metamodels and model transformations) as central elements for tackling the complexity of building systems and managing data. With their increased use across diverse settings, the complexity, size, multiplicity and variety of those artefacts has increased. Originally developed for software engineering, these approaches can now be used to simplify the analytics of large-scale models and automate complex data analysis processes. Those in the field of data science will gain novel insights on the topic of model analytics that go beyond both model-based development and data analytics. This book is aimed at both researchers and practitioners who are interested in model-based development and the analytics of large-scale models, ranging from big data management and analytics, to enterprise domains. The book could also be used in graduate courses on model development, data analytics and data management.
Developing and implementing a systematic analytics strategy can result in a sustainable competitive advantage within the sport business industry. This timely and relevant book provides practical strategies to collect data and then convert that data into meaningful, value-added information and actionable insights. Its primary objective is to help sport business organizations utilize data-driven decision-making to generate optimal revenue from such areas as ticket sales and corporate partnerships. To that end, the book includes in-depth case studies from such leading sports organizations as the Orlando Magic, Tampa Bay Buccaneers, Duke University, and the Aspire Group. The core purpose of sport business analytics is to convert raw data into information that enables sport business professionals to make strategic business decisions that result in improved company financial performance and a measurable and sustainable competitive advantage. Readers will learn about the role of big data and analytics in: Ticket pricing Season ticket member retention Fan engagement Sponsorship valuation Customer relationship management Digital marketing Market research Data visualization. This book examines changes in the ticketing marketplace and spotlights innovative ticketing strategies used in various sport organizations. It shows how to engage fans with social media and digital analytics, presents techniques to analyze engagement and marketing strategies, and explains how to utilize analytics to leverage fan engagement to enhance revenue for sport organizations. Filled with insightful case studies, this book benefits both sports business professionals and students. The concluding chapter on teaching sport analytics further enhances its value to academics.
Educational Data Analytics (EDA) have been attributed with significant benefits for enhancing on-demand personalized educational support of individual learners as well as reflective course (re)design for achieving more authentic teaching, learning and assessment experiences integrated into real work-oriented tasks. This open access textbook is a tutorial for developing, practicing and self-assessing core competences on educational data analytics for digital teaching and learning. It combines theoretical knowledge on core issues related to collecting, analyzing, interpreting and using educational data, including ethics and privacy concerns. The textbook provides questions and teaching materials/ learning activities as quiz tests of multiple types of questions, added after each section, related to the topic studied or the video(s) referenced. These activities reproduce real-life contexts by using a suitable use case scenario (storytelling), encouraging learners to link theory with practice; self-assessed assignments enabling learners to apply their attained knowledge and acquired competences on EDL. By studying this book, you will know where to locate useful educational data in different sources and understand their limitations; know the basics for managing educational data to make them useful; understand relevant methods; and be able to use relevant tools; know the basics for organising, analysing, interpreting and presenting learner-generated data within their learning context, understand relevant learning analytics methods and be able to use relevant learning analytics tools; know the basics for analysing and interpreting educational data to facilitate educational decision making, including course and curricula design, understand relevant teaching analytics methods and be able to use relevant teaching analytics tools; understand issues related with educational data ethics and privacy. This book is intended for school leaders and teachers engaged in blended (using the flipped classroom model) and online (during COVID-19 crisis and beyond) teaching and learning; e-learning professionals (such as, instructional designers and e-tutors) of online and blended courses; instructional technologists; researchers as well as undergraduate and postgraduate university students studying education, educational technology and relevant fields.
Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage. Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics. Topics Covered: The many academic areas covered in this publication include, but are not limited to: Data visualization Distributed Computing Systems Opinion Mining Privacy and security Risk analysis Social Network Analysis Text Data Analytics Web Data Analytics
This book presents recent advances in quality measures in data mining.
This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: * Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. * Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. * Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. * Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation.
This book presents intelligent data analysis as a tool to fight against COVID-19 pandemic. The intelligent data analysis includes machine learning, natural language processing, and computer vision applications to teach computers to use big data-based models for pattern recognition, explanation, and prediction. These functions are discussed in detail in the book to recognize (diagnose), predict, and explain (treat) COVID-19 infections, and help manage socio-economic impacts. It also discusses primary warnings and alerts; tracking and prediction; data dashboards; diagnosis and prognosis; treatments and cures; and social control by the use of intelligent data analysis. It provides analysis reports, solutions using real-time data, and solution through web applications details. |
You may like...
Intelligent Data Analysis for e-Learning…
Jorge Miguel, Santi Caballe, …
Paperback
Cognitive and Soft Computing Techniques…
Akash Kumar Bhoi, Victor Hugo Costa de Albuquerque, …
Paperback
R2,583
Discovery Miles 25 830
AIoT Technologies and Applications for…
Mamoun Alazab, Meenu Gupta, …
Hardcover
Demystifying Graph Data Science - Graph…
Pethuru Raj, Abhishek Kumar, …
Hardcover
Data Analytics for Social Microblogging…
Soumi Dutta, Asit Kumar Das, …
Paperback
R3,335
Discovery Miles 33 350
Mathematical Methods in Data Science
Jingli Ren, Haiyan Wang
Paperback
R3,925
Discovery Miles 39 250
Machine Learning for Biometrics…
Partha Pratim Sarangi, Madhumita Panda, …
Paperback
R2,570
Discovery Miles 25 700
|