![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
1. When I was asked by the editors of this book to write a foreword, I was seized by panic. Obviously, neither I am an expert in Knowledge Representation in Fuzzy Databases nor I could have been beforehand unaware that the book's contributors would be some of the most outstanding researchers in the field. However, Amparo Vila's gentle insistence gradually broke down my initial resistance, and panic then gave way to worry. Which paving stones did I have at my disposal for making an entrance to the book? After thinking about it for some time, I concluded that it would be pretentious on my part to focus on the subjects which are dealt with directly in the contributions presented, and that it would instead be better to confine myself to making some general reflections on knowledge representation given by imprecise information using fuzzy sets; reflections which have been suggested to me by some words in the following articles such as: graded notions, fuzzy objects, uncertainty, fuzzy implications, fuzzy inference, empty intersection, etc.
This book and sofwtare package provide a complement to the traditional data analysis tools already widely available. It presents an introduction to the analysis of data using neural networks. Neural network functions discussed include multilayer feed-forward networks using error back propagation, genetic algorithm-neural network hybrids, generalized regression neural networks, learning quantizer networks, and self-organizing feature maps. In an easy-to-use, Windows-based environment it offers a wide range of data analytic tools which are not usually found together: these include genetic algorithms, probabilistic networks, as well as a number of related techniques that support these - notably, fractal dimension analysis, coherence analysis, and mutual information analysis. The text presents a number of worked examples and case studies using Simulnet, the software package which comes with the book. Readers are assumed to have a basic understanding of computers and elementary mathematics. With this background, a reader will find themselves quickly conducting sophisticated hands-on analyses of data sets.
Data engineering has grown rapidly in the past decade, leaving many software engineers, data scientists, and analysts looking for a comprehensive view of this practice. With this practical book, you will learn how to plan and build systems to serve the needs of your organization and customers by evaluating the best technologies available in the framework of the data engineering lifecycle. Authors Joe Reis and Matt Housley walk you through the data engineering lifecycle and show you how to stitch together a variety of cloud technologies to serve the needs of downstream data consumers. You will understand how to apply the concepts of data generation, ingestion, orchestration, transformation, storage, governance, and deployment that are critical in any data environment regardless of the underlying technology. This book will help you: Assess data engineering problems using an end-to-end data framework of best practices Cut through marketing hype when choosing data technologies, architecture, and processes Use the data engineering lifecycle to design and build a robust architecture Incorporate data governance and security across the data engineering lifecycle
Enterprise Resource Planning (ERP), Supply Chain Management (SCM), Customer Relationship Management (CRM), Business Intelligence (BI) and Big Data analytics (BDA) are business related tasks and processes, which are supported by standardized software solutions. The book explains that this requires business-oriented thinking and acting from IT specialists and data scientists. It is a good idea to let students experience this directly from the business perspective, for example as executives of a virtual company in a role-playing game. The second edition of the book has been completely revised, restructured and supplemented with actual topics such as blockchains in supply chains and the correlation between Big Data analytics, artificial intelligence and machine learning. The structure of the book is based on the gradual implementation and integration of the respective information systems from the business and management perspectives. Part I contains chapters with detailed descriptions of the topics supplemented by online tests and exercises. Part II introduces role play and the online gaming and simulation environment. Supplementary teaching material, presentations, templates, and video clips are available online in the gaming area. The gaming and business simulation Kdibisglobal.com, newly created for this book, now includes a beer division, a bottled water division, a soft drink division and a manufacturing division for barcode cash register scanner with their specific business processes and supply chains.
Understanding sequence data, and the ability to utilize this hidden knowledge, creates a significant impact on many aspects of our society. Examples of sequence data include DNA, protein, customer purchase history, web surfing history, and more. Sequence Data Mining provides balanced coverage of the existing results on sequence data mining, as well as pattern types and associated pattern mining methods. While there are several books on data mining and sequence data analysis, currently there are no books that balance both of these topics. This professional volume fills in the gap, allowing readers to access state-of-the-art results in one place. Sequence Data Mining is designed for professionals working in bioinformatics, genomics, web services, and financial data analysis. This book is also suitable for advanced-level students in computer science and bioengineering. Forward by Professor Jiawei Han, University of Illinois at Urbana-Champaign.
Nonlinear Assignment Problems (NAPs) are natural extensions of the classic Linear Assignment Problem, and despite the efforts of many researchers over the past three decades, they still remain some of the hardest combinatorial optimization problems to solve exactly. The purpose of this book is to provide in a single volume, major algorithmic aspects and applications of NAPs as contributed by leading international experts. The chapters included in this book are concerned with major applications and the latest algorithmic solution approaches for NAPs. Approximation algorithms, polyhedral methods, semidefinite programming approaches and heuristic procedures for NAPs are included, while applications of this problem class in the areas of multiple-target tracking in the context of military surveillance systems, of experimental high energy physics, and of parallel processing are presented. Audience: Researchers and graduate students in the areas of combinatorial optimization, mathematical programming, operations research, physics, and computer science.
Automatic transformation of a sequential program into a parallel form is a subject that presents a great intellectual challenge and promises a great practical award. There is a tremendous investment in existing sequential programs, and scientists and engineers continue to write their application programs in sequential languages (primarily in Fortran). The demand for higher speedups increases. The job of a restructuring compiler is to discover the dependence structure and the characteristics of the given machine. Much attention has been focused on the Fortran do loop. This is where one expects to find major chunks of computation that need to be performed repeatedly for different values of the index variable. Many loop transformations have been designed over the years, and several of them can be found in any parallelizing compiler currently in use in industry or at a university research facility. The book series on KappaLoop Transformations for Restructuring Compilerskappa provides a rigorous theory of loop transformations and dependence analysis. We want to develop the transformations in a consistent mathematical framework using objects like directed graphs, matrices, and linear equations. Then, the algorithms that implement the transformations can be precisely described in terms of certain abstract mathematical algorithms. The first volume, Loop Transformations for Restructuring Compilers: The Foundations, provided the general mathematical background needed for loop transformations (including those basic mathematical algorithms), discussed data dependence, and introduced the major transformations. The current volume, Loop Parallelization, builds a detailed theory of iteration-level loop transformations based on the material developed in the previous book.
This volume provides an overview of multimedia data mining and knowledge discovery and discusses the variety of hot topics in multimedia data mining research. It describes the objectives and current tendencies in multimedia data mining research and their applications. Each part contains an overview of its chapters and leads the reader with a structured approach through the diverse subjects in the field.
Data clustering is a highly interdisciplinary field, the goal of which is to divide a set of objects into homogeneous groups such that objects in the same group are similar and objects in different groups are quite distinct. Thousands of theoretical papers and a number of books on data clustering have been published over the past 50 years. However, few books exist to teach people how to implement data clustering algorithms. This book was written for anyone who wants to implement or improve their data clustering algorithms. Using object-oriented design and programming techniques, Data Clustering in C++ exploits the commonalities of all data clustering algorithms to create a flexible set of reusable classes that simplifies the implementation of any data clustering algorithm. Readers can follow the development of the base data clustering classes and several popular data clustering algorithms. Additional topics such as data pre-processing, data visualization, cluster visualization, and cluster interpretation are briefly covered. This book is divided into three parts-- * Data Clustering and C++ Preliminaries: A review of basic concepts of data clustering, the unified modeling language, object-oriented programming in C++, and design patterns * A C++ Data Clustering Framework: The development of data clustering base classes * Data Clustering Algorithms: The implementation of several popular data clustering algorithms A key to learning a clustering algorithm is to implement and experiment the clustering algorithm. Complete listings of classes, examples, unit test cases, and GNU configuration files are included in the appendices of this book as well as in the CD-ROM of the book. The only requirements to compile the code are a modern C++ compiler and the Boost C++ libraries.
This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.
The healthcare industry produces a constant flow of data, creating a need for deep analysis of databases through data mining tools and techniques resulting in expanded medical research, diagnosis, and treatment. ""Data Mining and Medical Knowledge Management: Cases and Applications"" presents case studies on applications of various modern data mining methods in several important areas of medicine, covering classical data mining methods, elaborated approaches related to mining in electroencephalogram and electrocardiogram data, and methods related to mining in genetic data. A premier resource for those involved in data mining and medical knowledge management, this book tackles ethical issues related to cost-sensitive learning in medicine and produces theoretical contributions concerning general problems of data, information, knowledge, and ontologies.
Modern computer-based control systems are able to collect a large amount of information, display it to operators and store it in databases but the interpretation of the data and the subsequent decision making relies mainly on operators with little computer support. This book introduces developments in automatic analysis and interpretation of process-operational data both in real-time and over the operational history, and describes new concepts and methodologies for developing intelligent, state space-based systems for process monitoring, control and diagnosis. The book brings together new methods and algorithms from process monitoring and control, data mining and knowledge discovery, artificial intelligence, pattern recognition, and causal relationship discovery, as well as signal processing. It also provides a framework for integrating plant operators and supervisors into the design of process monitoring and control systems.
Data stewards in any organization are the backbone of a successful data governance implementation because they do the work to make data trusted, dependable, and high quality. Since the publication of the first edition, there have been critical new developments in the field, such as integrating Data Stewardship into project management, handling Data Stewardship in large international companies, handling "big data" and Data Lakes, and a pivot in the overall thinking around the best way to align data stewardship to the data-moving from business/organizational function to data domain. Furthermore, the role of process in data stewardship is now recognized as key and needed to be covered. Data Stewardship, Second Edition provides clear and concise practical advice on implementing and running data stewardship, including guidelines on how to organize based on organizational/company structure, business functions, and data ownership. The book shows data managers how to gain support for a stewardship effort, maintain that support over the long-term, and measure the success of the data stewardship effort. It includes detailed lists of responsibilities for each type of data steward and strategies to help the Data Governance Program Office work effectively with the data stewards.
'Data Mining with Ontologies' examines methodologies and research for the development of ontological foundations for data mining.
Loop tiling, as one of the most important compiler optimizations, is beneficial for both parallel machines and uniprocessors with a memory hierarchy. This book explores the use of loop tiling for reducing communication cost and improving parallelism for distributed memory machines. The author provides mathematical foundations, investigates loop permutability in the framework of nonsingular loop transformations, discusses the necessary machineries required, and presents state-of-the-art results for finding communication- and time-minimal tiling choices. Throughout the book, theorems and algorithms are illustrated with numerous examples and diagrams. The techniques presented in Loop Tiling for Parallelism can be adapted to work for a cluster of workstations, and are also directly applicable to shared-memory machines once the machines are modeled as BSP (Bulk Synchronous Parallel) machines. Features and key topics: Detailed review of the mathematical foundations, including convex polyhedra and cones; Self-contained treatment of nonsingular loop transformations, code generation, and full loop permutability; Tiling loop nests by rectangles and parallelepipeds, including their mathematical definition, dependence analysis, legality test, and code generation; A complete suite of techniques for generating SPMD code for a tiled loop nest; Up-to-date results on tile size and shape selection for reducing communication and improving parallelism; End-of-chapter references for further reading. Researchers and practitioners involved in optimizing compilers and students in advanced computer architecture studies will find this a lucid and well-presented reference work with numerous citations to original sources.
This book illustrates the current work of leading multilevel
modeling (MLM) researchers from around the world. The book's goal is to critically examine the real problems that
occur when trying to use MLMs in applied research, such as power,
experimental design, and model violations. This presentation of
cutting-edge work and statistical innovations in multilevel
modeling includes topics such as growth modeling, repeated measures
analysis, nonlinear modeling, outlier detection, and meta
analysis. This volume will be beneficial for researchers with advanced statistical training and extensive experience in applying multilevel models, especially in the areas of education; clinical intervention; social, developmental and health psychology, and other behavioral sciences; or as a supplement for an introductory graduate-level course.
First book to examine game analysis, modern didactic reflections on learning, and big data in a key topic in science and society today. Provides understanding on how to use game analysis when applied to different sports and how to use the approach for video, event and positional data. Presents translational work that has implications for academics, programmers and applied practitioners.
This book illustrates the current work of leading multilevel modeling (MLM) researchers from around the world. The book's goal is to critically examine the real problems that occur when trying to use MLMs in applied research, such as power, experimental design, and model violations. This presentation of cutting-edge work and statistical innovations in multilevel modeling includes topics such as growth modeling, repeated measures analysis, nonlinear modeling, outlier detection, and meta analysis. This volume will be beneficial for researchers with advanced statistical training and extensive experience in applying multilevel models, especially in the areas of education; clinical intervention; social, developmental and health psychology, and other behavioral sciences; or as a supplement for an introductory graduate-level course.
Language, Compilers and Run-time Systems for Scalable Computers contains 20 articles based on presentations given at the third workshop of the same title, and 13 extended abstracts from the poster session. Starting with new developments in classical problems of parallel compiler design, such as dependence analysis and an exploration of loop parallelism, the book goes on to address the issues of compiler strategy for specific architectures and programming environments. Several chapters investigate support for multi-threading, object orientation, irregular computation, locality enhancement, and communication optimization. Issues of the interface between language and operating system support are also discussed. Finally, the load balance issues are discussed in different contexts, including sparse matrix computation and iteratively balanced adaptive solvers for partial differential equations. Some additional topics are also discussed in the extended abstracts. Each chapter provides a bibliography of relevant papers and the book can thus be used as a reference to the most up-to-date research in parallel software engineering.
Thisbookpresentsmaterialwhichismorealgorithmicallyorientedthanmost alternatives.Italsodealswithtopicsthatareatorbeyondthestateoftheart. Examples include practical and applicable wavelet and other multiresolution transform analysis. New areas are broached like the ridgelet and curvelet transforms. The reader will ?nd in this book an engineering approach to the interpretation of scienti?c data. Compared to the 1st Edition, various additions have been made throu- out, and the topics covered have been updated. The background or en- ronment of this book's topics include continuing interest in e-science and the virtual observatory, which are based on web based and increasingly web service based science and engineering. Additional colleagues whom we would like to acknowledge in this 2nd edition include: Bedros Afeyan, Nabila Aghanim, Emmanuel Cand' es, David Donoho, Jalal Fadili, and Sandrine Pires, We would like to particularly - knowledge Olivier Forni who contributed to the discussion on compression of hyperspectral data, Yassir Moudden on multiwavelength data analysis and Vicent Mart' ?nez on the genus function. The cover image to this 2nd edition is from the Deep Impact project. It was taken approximately 8 minutes after impact on 4 July 2005 with the CLEAR6 ?lter and deconvolved using the Richardson-Lucy method. We thank Don Lindler, Ivo Busko, Mike A'Hearn and the Deep Impact team for the processing of this image and for providing it to us.
Volume I is the first of two volumes that document the three
components of the CHILDES Project. It is divided into two parts
which provide an introduction to the use of computational tools for
studying language learning. The first part is the CHAT manual,
which describes the conventions and principles of CHAT
transcription and recommends specific methods for data collection
and digitization. The second part is the CLAN manual, which
describes the uses of the editor, sonic CHAT, and the various
analytic commands. The book will be useful for both novice and
experienced users of the CHILDES tools, as well as instructors and
students working with transcripts of child language.
This volume explores the diverse applications of advanced tools and technologies of the emerging field of big data and their evidential value in business. It examines the role of analytics tools and methods of using big data in strengthening businesses to meet today's information challenges and shows how businesses can adapt big data for effective businesses practices. This volume shows how big data and the use of data analytics is being effectively adopted more frequently, especially in companies that are looking for new methods to develop smarter capabilities and tackle challenges in dynamic processes. Many illustrative case studies are presented that highlight how companies in every sector are now focusing on harnessing data to create a new way of doing business. |
![]() ![]() You may like...
Proceedings of International Conference…
Prasant Kumar Pattnaik, Mangal Sain, …
Hardcover
R8,340
Discovery Miles 83 400
Fundamentals of Quantum Programming in…
Weng-Long Chang, Athanasios V Vasilakos
Hardcover
R2,879
Discovery Miles 28 790
Provenance in Data Science - From Data…
Leslie F Sikos, Oshani W. Seneviratne, …
Hardcover
R3,890
Discovery Miles 38 900
Strategic Management, Decision Theory…
Bikas Kumar Sinha, Srijib Bhusan Bagchi
Hardcover
R4,588
Discovery Miles 45 880
Proceedings of International Scientific…
Nikita Voinov, Tobias Schreck, …
Hardcover
R7,650
Discovery Miles 76 500
Handbook of Research on Modeling…
Sujata Dash, B. K. Tripathy, …
Hardcover
R7,069
Discovery Miles 70 690
Responsible AI - Implementing Ethical…
Sray Agarwal, Shashin Mishra
Hardcover
R2,631
Discovery Miles 26 310
|