![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
Comprehensive Coverage of the Entire Area of ClassificationResearch on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlying algorithms of classification as well as applications of classification in a variety of problem domains, including text, multimedia, social network, and biological data. This comprehensive book focuses on three primary aspects of data classification: Methods: The book first describes common techniques used for classification, including probabilistic methods, decision trees, rule-based methods, instance-based methods, support vector machine methods, and neural networks. Domains: The book then examines specific methods used for data domains such as multimedia, text, time-series, network, discrete sequence, and uncertain data. It also covers large data sets and data streams due to the recent importance of the big data paradigm. Variations: The book concludes with insight on variations of the classification process. It discusses ensembles, rare-class learning, distance function learning, active learning, visual learning, transfer learning, and semi-supervised learning as well as evaluation aspects of classifiers.
A large international conference on Advances in Machine Learning and Data Analysis was held in UC Berkeley, California, USA, October 22-24, 2008, under the auspices of the World Congress on Engineering and Computer Science (WCECS 2008). This volume contains sixteen revised and extended research articles written by prominent researchers participating in the conference. Topics covered include Expert system, Intelligent decision making, Knowledge-based systems, Knowledge extraction, Data analysis tools, Computational biology, Optimization algorithms, Experiment designs, Complex system identification, Computational modeling, and industrial applications. Advances in Machine Learning and Data Analysis offers the state of the art of tremendous advances in machine learning and data analysis and also serves as an excellent reference text for researchers and graduate students, working on machine learning and data analysis.
Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks.
The book discusses some key scientific and technological developments in high performance computing, identifies significant trends, and defines desirable research objectives. It covers general concepts and emerging systems, software technology, algorithms and applications. Coverage includes hardware, software tools, networks and numerical methods, new computer architectures, and a discussion of future trends. Beyond purely scientific/engineering computing, the book extends to coverage of enterprise-wide, commercial applications, including papers on performance and scalability of database servers and Oracle DBM systems. Audience: Most papers are research level, but some are suitable for computer literate managers and technicians, making the book useful to users of commercial parallel computers.
Corpus Annotation gives an up-to-date picture of this fascinating new area of research, and will provide essential reading for newcomers to the field as well as those already involved in corpus annotation. Early chapters introduce the different levels and techniques of corpus annotation. Later chapters deal with software developments, applications, and the development of standards for the evaluation of corpus annotation. While the book takes detailed account of research world-wide, its focus is particularly on the work of the UCREL (University Centre for Computer Corpus Research on Language) team at Lancaster University, which has been at the forefront of developments in the field of corpus annotation since its beginnings in the 1970s.
A practical guide for multivariate statistical techniques-- now
updated and revised This Second Edition is invaluable for graduate students, applied statisticians, engineers, and scientists wishing to use multivariate techniques in a variety of disciplines.
"Covers all areas of computer-based data acquisition--from basic concepts to the most recent technical developments--without the burden of long theoretical derivations and proofs. Offers practical, solution-oriented design examples and real-life case studies in each chapter and furnishes valuable selection guides for specific types of hardware."
This is the first comprehensive overview of the 'science of science,' an emerging interdisciplinary field that relies on big data to unveil the reproducible patterns that govern individual scientific careers and the workings of science. It explores the roots of scientific impact, the role of productivity and creativity, when and what kind of collaborations are effective, the impact of failure and success in a scientific career, and what metrics can tell us about the fundamental workings of science. The book relies on data to draw actionable insights, which can be applied by individuals to further their career or decision makers to enhance the role of science in society. With anecdotes and detailed, easy-to-follow explanations of the research, this book is accessible to all scientists and graduate students, policymakers, and administrators with an interest in the wider scientific enterprise.
In the age of data-driven problem-solving, applying sophisticated computational tools for explaining substantive phenomena is a valuable skill. Yet, application of methods assumes an understanding of the data, structure, and patterns that influence the broader research program. This Element offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered in this Element, in addition to R code and real data to facilitate interaction with the concepts. Upon setting the stage for clustering, the following algorithms are detailed: agglomerative hierarchical clustering, k-means clustering, Gaussian mixture models, and at a higher-level, fuzzy C-means clustering, DBSCAN, and partitioning around medoids (k-medoids) clustering.
In engineering work and other practical situations, methods of a non-stop character are often needed. The computer intensive methods outlined in this book should show how to pass many obstacles that could not previously be overcome. Much emphasis in this book is placed on applications in science, economics, reliability, meteorology, medicine and transportation. In principle every area where data deserve statistical analyses there is a relevant application of these new methods. This book is aimed at classically educated statisticians as well as the younger generation.
Sentiment analysis is the computational study of people's opinions, sentiments, emotions, moods, and attitudes. This fascinating problem offers numerous research challenges, but promises insight useful to anyone interested in opinion analysis and social media analysis. This comprehensive introduction to the topic takes a natural-language-processing point of view to help readers understand the underlying structure of the problem and the language constructs commonly used to express opinions, sentiments, and emotions. The book covers core areas of sentiment analysis and also includes related topics such as debate analysis, intention mining, and fake-opinion detection. It will be a valuable resource for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences. In addition to traditional computational methods, this second edition includes recent deep learning methods to analyze and summarize sentiments and opinions, and also new material on emotion and mood analysis techniques, emotion-enhanced dialogues, and multimodal emotion analysis.
Statistical data and evidence-based claims are increasingly central to our everyday lives. Critically examining 'Big Data', this book charts the recent explosion in sources of data, including those precipitated by global developments and technological change. It sets out changes and controversies related to data harvesting and construction, dissemination and data analytics by a range of private, governmental and social organisations in multiple settings. Analysing the power of data to shape political debate, the presentation of ideas to us by the media, and issues surrounding data ownership and access, the authors suggest how data can be used to uncover injustices and to advance social progress.
GENSTAT is a general purpose statistical computing system with a
flexible command language operating on a variety of data
structures. It may be used on a number of computer ranges, either
interactively for exploratory data analysis, or in batch mode for
standard data analysis.
Big data, analytics, and artificial intelligence are revolutionizing work, management, and lifestyles and are becoming disruptive technologies for healthcare, e-commerce, and web services. However, many fundamental, technological, and managerial issues for developing and applying intelligent big data analytics in these fields have yet to be addressed. Managerial Perspectives on Intelligent Big Data Analytics is a collection of innovative research that discusses the integration and application of artificial intelligence, business intelligence, digital transformation, and intelligent big data analytics from a perspective of computing, service, and management. While highlighting topics including e-commerce, machine learning, and fuzzy logic, this book is ideally designed for students, government officials, data scientists, managers, consultants, analysts, IT specialists, academicians, researchers, and industry professionals in fields that include big data, artificial intelligence, computing, and commerce.
Astronomical photographs contain an enormous amount of information. This presents extremely interesting problems when one wishes to produce digitized sky atlases, to archive the digitized material, to develop sophisticated devices to do the digitizing, and to create software to process the vast amounts of data. All these activities are necessary to be able to carry out astronomy work. One such activity is the important, large-scale optical identification of objects which also emit radiation at other wavelengths. Other activities of the past decade include a multiplicity of surveys that have been made on galaxies and clusters of galaxies. This book treats, in five sections, the existing and future surveys, their digitization and their impact on astronomy. It is designed to serve as a reference for people in the field and for those who wish to engage in using or producing sky surveys.
"A Computer Science Reader" covers the entire field of computing, from its technological status through its social, economic and political significance. The book's clearly written selections represent the best of what has been published in the first three-and-a-half years of "ABACUS," Springer-Verlag's internatioanl quarterly journal for computing professionals. Among the articles included are: - U.S. versus IBM: An Exercise in Futility? by Robert P. Bigelow - Programmers: The Amateur vs. the Professional by Henry Ledgard - The Composer and the Computer by Lejaren Hiller - SDI: A Violation of Professional Responsibility by David L. Parnas - Who Invented the First Electronic Digital Computer? by Nancy Stern - Foretelling the Future by Adaptive Modeling by Ian H. Witten and John G. Cleary - The Fifth Generation: Banzai or Pie-in-the-Sky? by Eric A. Weiss This volume contains more than 30 contributions by outstanding and authoritative authors grouped into the magazine's regular categories: Editorials, Articles, Departments, Reports from Correspondents, and Features. "A" "Computer Science Reader" will be interesting and important to any computing professional or student who wants to know about the status, trends, and controversies in computer science today.
Building Big Data Applications helps data managers and their organizations make the most of unstructured data with an existing data warehouse. It provides readers with what they need to know to make sense of how Big Data fits into the world of Data Warehousing. Readers will learn about infrastructure options and integration and come away with a solid understanding on how to leverage various architectures for integration. The book includes a wide range of use cases that will help data managers visualize reference architectures in the context of specific industries (healthcare, big oil, transportation, software, etc.).
Handbook of Big Data provides a state-of-the-art overview of the analysis of large-scale datasets. Featuring contributions from well-known experts in statistics and computer science, this handbook presents a carefully curated collection of techniques from both industry and academia. Thus, the text instills a working understanding of key statistical and computing ideas that can be readily applied in research and practice. Offering balanced coverage of methodology, theory, and applications, this handbook: Describes modern, scalable approaches for analyzing increasingly large datasets Defines the underlying concepts of the available analytical tools and techniques Details intercommunity advances in computational statistics and machine learning Handbook of Big Data also identifies areas in need of further development, encouraging greater communication and collaboration between researchers in big data sub-specialties such as genomics, computational biology, and finance.
This book examines how cloud-based services challenge the current application of antitrust and privacy laws in the EU and the US. The author looks at the elements of data centers, the way information is organized, and how antitrust, competition and privacy laws in the US and the EU regulate cloud-based services and their market practices. She discusses how platform interoperability can be a driver of incremental innovation and the consequences of not promoting radical innovation. She evaluates applications of predictive analysis based on big data as well as deriving privacy-invasive conduct. She looks at the way antitrust and privacy laws approach consumer protection and how lawmakers can reach more balanced outcomes by understanding the technical background of cloud-based services.
The Critical Infrastructure Protection Survey recently released by Symantec found that 53% of interviewed IT security experts from international companies experienced at least ten cyber attacks in the last five years, and financial institutions were often subject to some of the most sophisticated and large-scale cyber attacks and frauds. The book by Baldoni and Chockler analyzes the structure of software infrastructures found in the financial domain, their vulnerabilities to cyber attacks and the existing protection mechanisms. It then shows the advantages of sharing information among financial players in order to detect and quickly react to cyber attacks. Various aspects associated with information sharing are investigated from the organizational, cultural and legislative perspectives. The presentation is organized in two parts: Part I explores general issues associated with information sharing in the financial sector and is intended to set the stage for the vertical IT middleware solution proposed in Part II. Nonetheless, it is self-contained and details a survey of various types of critical infrastructure along with their vulnerability analysis, which has not yet appeared in a textbook-style publication elsewhere. Part II then presents the CoMiFin middleware for collaborative protection of the financial infrastructure. The material is presented in an accessible style and does not require specific prerequisites. It appeals to both researchers in the areas of security, distributed systems, and event processing working on new protection mechanisms, and practitioners looking for a state-of-the-art middleware technology to enhance the security of their critical infrastructures in e.g. banking, military, and other highly sensitive applications. The latter group will especially appreciate the concrete usage scenarios included.
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. You'll explore the basic operations and common functions of Spark's structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Spark's scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasets-Spark's core APIs-through worked examples Dive into Spark's low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Spark's stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
This book is designed to enable and encourage health professionals and family support workers to include fathers in the process of their work. It focuses on the enormous potential value of accessing men at a time they are known to be particularly receptive - before and after the birth - within the context of providing solutions in the debate about problematic aspects of masculinity and fatherhood. It looks at how important the father's role is within the family environment and how fathers should be encouraged to take part in the upbringing of their children.
This compact course is written for the mathematically literate reader who wants to learn to analyze data in a principled fashion. The language of mathematics enables clear exposition that can go quite deep, quite quickly, and naturally supports an axiomatic and inductive approach to data analysis. Starting with a good grounding in probability, the reader moves to statistical inference via topics of great practical importance - simulation and sampling, as well as experimental design and data collection - that are typically displaced from introductory accounts. The core of the book then covers both standard methods and such advanced topics as multiple testing, meta-analysis, and causal inference.
This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts.
|
You may like...
Mathematical Methods in Data Science
Jingli Ren, Haiyan Wang
Paperback
R3,925
Discovery Miles 39 250
Big Data Analytics for Sustainable…
Anandakumar Haldorai, Arulmurugan Ramu
Hardcover
R6,696
Discovery Miles 66 960
Data Analytics for Social Microblogging…
Soumi Dutta, Asit Kumar Das, …
Paperback
R3,335
Discovery Miles 33 350
Machine Learning and Data Analytics for…
Manikant Roy, Lovi Raj Gupta
Hardcover
R10,591
Discovery Miles 105 910
Demystifying Graph Data Science - Graph…
Pethuru Raj, Abhishek Kumar, …
Hardcover
Cross-Cultural Analysis of Image-Based…
Lisa Keller, Robert Keller, …
Hardcover
R3,285
Discovery Miles 32 850
Cognitive and Soft Computing Techniques…
Akash Kumar Bhoi, Victor Hugo Costa de Albuquerque, …
Paperback
R2,583
Discovery Miles 25 830
|