![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
Research and development surrounding the use of data queries is receiving increased attention from computer scientists and data specialists alike. Through the use of query technology, large volumes of data in databases can be retrieved, and information systems built based on databases can support problem solving and decision making across industries. The Handbook of Research on Innovative Database Query Processing Techniques focuses on the growing topic of database query processing methods, technologies, and applications. Aimed at providing an all-inclusive reference source of technologies and practices in advanced database query systems, this book investigates various techniques, including database and XML queries, spatiotemporal data queries, big data queries, metadata queries, and applications of database query systems. This comprehensive handbook is a necessary resource for students, IT professionals, data analysts, and academicians interested in uncovering the latest methods for using queries as a means to extract information from databases. This all-inclusive handbook includes the latest research on topics pertaining to information retrieval, data extraction, data management, design and development of database queries, and database and XM queries.
Even though many data analytics tools have been developed in the past years, their usage in the field of cyber twin warrants new approaches that consider various aspects including unified data representation, zero-day attack detection, data sharing across threat detection systems, real-time analysis, sampling, dimensionality reduction, resource-constrained data processing, and time series analysis for anomaly detection. Further study is required to fully understand the opportunities, benefits, and difficulties of data analytics and the internet of things in today's modern world. New Approaches to Data Analytics and Internet of Things Through Digital Twin considers how data analytics and the internet of things can be used successfully within the field of digital twin as well as the potential future directions of these technologies. Covering key topics such as edge networks, deep learning, intelligent data analytics, and knowledge discovery, this reference work is ideal for computer scientists, industry professionals, researchers, scholars, practitioners, academicians, instructors, and students.
Addresses different scenarios when finding complex relationships in spatiotemporal data by modeling them as graphs, giving readers a comprehensive synopsis on two successful partition-based algorithms designed by the authors.
Pattern Recognition has a long history of applications to data analysis in business, military and social economic activities. While the aim of pattern recognition is to discover the pattern of a data set, the size of the data set is closely related to the methodology one adopts for analysis. Intelligent Data Analysis: Developing New Methodologies Through Pattern Discovery and Recovery tackles those data sets and covers a variety of issues in relation to intelligent data analysis so that patterns from frequent or rare events in spatial or temporal spaces can be revealed. This book brings together current research, results, problems, and applications from both theoretical and practical approaches.
Recent research reveals that socioeconomic factors of the neighborhoods where road users live and where pedestrian-vehicle crashes occur are important in determining the severity of the crashes, with the former having a greater influence. Hence, road safety countermeasures, especially those focusing on the road users, should be targeted at these high risk neighborhoods. Big Data Analytics in Traffic and Transportation Engineering: Emerging Research and Opportunities is an essential reference source that discusses access to transportation and examines vehicle-pedestrian crashes, specifically in relation to socioeconomic factors that influence them, main predictors, factors that contribute to crash severity, and the enhancement of pedestrian safety measures. Featuring research on topics such as public transport, accessibility, and spatial distribution, this book is ideally designed for policymakers, transportation engineers, road safety designers, transport planners and managers, professionals, academicians, researchers, and public administrators.
This volume provides a comprehensive introduction to mHealth technology and is accessible to technology-oriented researchers and practitioners with backgrounds in computer science, engineering, statistics, and applied mathematics. The contributing authors include leading researchers and practitioners in the mHealth field. The book offers an in-depth exploration of the three key elements of mHealth technology: the development of on-body sensors that can identify key health-related behaviors (sensors to markers), the use of analytic methods to predict current and future states of health and disease (markers to predictors), and the development of mobile interventions which can improve health outcomes (predictors to interventions). Chapters are organized into sections, with the first section devoted to mHealth applications, followed by three sections devoted to the above three key technology areas. Each chapter can be read independently, but the organization of the entire book provides a logical flow from the design of on-body sensing technology, through the analysis of time-varying sensor data, to interactions with a user which create opportunities to improve health outcomes. This volume is a valuable resource to spur the development of this growing field, and ideally suited for use as a textbook in an mHealth course.
'Emerging Technologies of Text Mining' provides the most recent technical information related to the computational models of the TM process.
Activities in data warehousing and mining are constantly emerging. Data mining methods, algorithms, online analytical processes, data mart and practical issues consistently evolve, providing a challenge for professionals in the field. ""Research and Trends in Data Mining Technologies and Applications"" focuses on the integration between the fields of data warehousing and data mining, with emphasis on the applicability to real-world problems. This book provides an international perspective, highlighting solutions to some of researchers' toughest challenges. Developments in the knowledge discovery process, data models, structures, and design serve as answers and solutions to these emerging challenges.
Information systems belong to the most complex artifacts built in today's society. Developing, maintaining, and using an information system raises a large number of difficult problems, ranging from purely technical to organizational and social. ""Information Systems Engineering"" presents the most current research on existing and emergent trends on conceptual modeling and information systems engineering, bridging the gap between research and practice by providing a much-needed reference point on the design of software systems that evolve seamlessly to adapt to rapidly changing business and organizational practices.
This is the first textbook on attribute exploration, its theory, its algorithms forapplications, and some of its many possible generalizations. Attribute explorationis useful for acquiring structured knowledge through an interactive process, byasking queries to an expert. Generalizations that handle incomplete, faulty, orimprecise data are discussed, but the focus lies on knowledge extraction from areliable information source.The method is based on Formal Concept Analysis, a mathematical theory ofconcepts and concept hierarchies, and uses its expressive diagrams. The presentationis self-contained. It provides an introduction to Formal Concept Analysiswith emphasis on its ability to derive algebraic structures from qualitative data,which can be represented in meaningful and precise graphics.
This book offers an original and broad exploration of the fundamental methods in Clustering and Combinatorial Data Analysis, presenting new formulations and ideas within this very active field. With extensive introductions, formal and mathematical developments and real case studies, this book provides readers with a deeper understanding of the mutual relationships between these methods, which are clearly expressed with respect to three facets: logical, combinatorial and statistical. Using relational mathematical representation, all types of data structures can be handled in precise and unified ways which the author highlights in three stages: Clustering a set of descriptive attributes Clustering a set of objects or a set of object categories Establishing correspondence between these two dual clusterings Tools for interpreting the reasons of a given cluster or clustering are also included. Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering will be a valuable resource for students and researchers who are interested in the areas of Data Analysis, Clustering, Data Mining and Knowledge Discovery.
The book provides a thorough treatment of set functions, games and capacities as well as integrals with respect to capacities and games, in a mathematical rigorous presentation and in view of application to decision making. After a short chapter introducing some required basic knowledge (linear programming, polyhedra, ordered sets) and notation, the first part of the book consists of three long chapters developing the mathematical aspects. This part is not related to a particular application field and, by its neutral mathematical style, is useful to the widest audience. It gathers many results and notions which are scattered in the literature of various domains (game theory, decision, combinatorial optimization and operations research). The second part consists of three chapters, applying the previous notions in decision making and modelling: decision under uncertainty, decision with multiple criteria, possibility theory and Dempster-Shafer theory.
The work presented in this book is a combination of theoretical advancements of big data analysis, cloud computing, and their potential applications in scientific computing. The theoretical advancements are supported with illustrative examples and its applications in handling real life problems. The applications are mostly undertaken from real life situations. The book discusses major issues pertaining to big data analysis using computational intelligence techniques and some issues of cloud computing. An elaborate bibliography is provided at the end of each chapter. The material in this book includes concepts, figures, graphs, and tables to guide researchers in the area of big data analysis and cloud computing.
This book highlights some of the unique aspects of spatio-temporal graph data from the perspectives of modeling and developing scalable algorithms. The authors discuss in the first part of this book, the semantic aspects of spatio-temporal graph data in two application domains, viz., urban transportation and social networks. Then the authors present representational models and data structures, which can effectively capture these semantics, while ensuring support for computationally scalable algorithms. In the first part of the book, the authors describe algorithmic development issues in spatio-temporal graph data. These algorithms internally use the semantically rich data structures developed in the earlier part of this book. Finally, the authors introduce some upcoming spatio-temporal graph datasets, such as engine measurement data, and discuss some open research problems in the area. This book will be useful as a secondary text for advanced-level students entering into relevant fields of computer science, such as transportation and urban planning. It may also be useful for researchers and practitioners in the field of navigational algorithms.
'Data Mining Patterns' gives an overall view of the recent solutions for mining and covers mining new kinds of patterns, mining patterns under constraints, new kinds of complex data and real-world applications of these concepts.
As information technology continues to advance in massive increments, the bank of information available from personal, financial, and business electronic transactions and all other electronic documentation and data storage is growing at an exponential rate. With this wealth of information comes the opportunity and necessity to utilize this information to maintain competitive advantage and process information effectively in real-world situations. Data Mining and Knowledge Discovery Technologies presents researchers and practitioners in fields such as knowledge management, information science, Web engineering, and medical informatics, with comprehensive, innovative research on data mining methods, structures, tools, and methods, the knowledge discovery process, and data marts, among many other cutting-edge topics.
This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essential new developments in the field. The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data. The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for future research in the theory of regularization methods, in algorithmic development, and in methodologies for different application areas; and 3) facilitate collaboration between theoretical and subject-specific researchers.
Data Mining techniques are gradually becoming essential components of corporate intelligence systems and progressively evolving into a pervasive technology within activities that range from the utilization of historical data to predicting the success of an awareness campaign. In reality, data mining is becoming an interdisciplinary field driven by various multi-dimensional applications. Data Mining Applications for Empowering Knowledge Societies presents an overview on the main issues of data mining, including its classification, regression, clustering, and ethical issues. This comprehensive book also provides readers with knowledge enhancing processes as well as a wide spectrum of data mining applications.
The field of enterprise systems integration is constantly evolving, as every new technology that is introduced appears to make all previous ones obsolete. Despite this continuous evolution, there is a set of underlying concepts and technologies that have been gaining an increasing importance in this field. Examples are asynchronous messaging through message queues, data and application adapters based on XML and Web services, the principles associated with the service-oriented architecture (SOA), service composition, orchestrations, and advanced mechanisms such as correlations and long-running transactions. Today, these concepts have reached a significant level of maturity and they represent the foundation over which most integration platforms have been built. This book addresses integration with a view towards supporting business processes. From messaging systems to data and application adapters, and then to services, orchestrations, and choreographies, the focus is placed on the connection between systems and business processes, and particularly on how it is possible to develop an integrated application infrastructure in order to implement the desired business processes. For this purpose, the text follows a layered, bottom-up approach, with application-oriented integration at the lowest level, followed by service-oriented integration and finally completed by process-oriented integration at the topmost level. The presentation of concepts is accompanied by a set of instructive examples using state-of-the-art technologies such as Java Message Service (JMS), Microsoft Message Queuing (MSMQ), Web Services, Microsoft BizTalk Server, and the Business Process Execution Language (BPEL). The book is intended as a textbook for advance undergraduate or beginning graduate students in computer science, especially for those in an information systems curriculum. IT professionals with a background in programming, databases and XML will also benefit from the step-by-step description of the various integration levels and the related implementation examples.
The general theme of this book is to present innovative psychometric modeling and methods. In particular, this book includes research and successful examples of modeling techniques for new data sources from digital assessments, such as eye-tracking data, hint uses, and process data from game-based assessments. In addition, innovative psychometric modeling approaches, such as graphical models, item tree models, network analysis, and cognitive diagnostic models, are included. Chapters 1, 2, 4 and 6 are about psychometric models and methods for learning analytics. The first two chapters focus on advanced cognitive diagnostic models for tracking learning and the improvement of attribute classification accuracy. Chapter 4 demonstrates the use of network analysis for learning analytics. Chapter 6 introduces the conjunctive root causes model for the understanding of prerequisite skills in learning. Chapters 3, 5, 8, 9 are about innovative psychometric techniques to model process data. Specifically, Chapters 3 and 5 illustrate the usage of generalized linear mixed effect models and item tree models to analyze eye-tracking data. Chapter 8 discusses the modeling approach of hint uses and response accuracy in learning environment. Chapter 9 demonstrates the identification of observable outcomes in the game-based assessments. Chapters 7 and 10 introduce innovative latent variable modeling approaches, including the graphical and generalized linear model approach and the dynamic modeling approach. In summary, the book includes theoretical, methodological, and applied research and practices that serve as the foundation for future development. These chapters provide illustrations of efforts to model and analyze multiple data sources from digital assessments. When computer-based assessments are emerging and evolving, it is important that researchers can expand and improve the methods for modeling and analyzing new data sources. This book provides a useful resource to researchers who are interested in the development of psychometric methods to solve issues in this digital assessment age.
The need for collecting relevant data sources, mining useful knowledge from different forms of data sources and promptly reacting to situation change is ever increasing. Active mining is a collection of activities each solving a part of this need, but collectively achieving the mining objective through the spiral effect of these interleaving three steps. This book is a joint effort from leading and active researchers in Japan with a theme about active mining and a timely report on the forefront of data collection, user-centered mining and user interaction/reaction. It offers a contemporary overview of modern solutions with real-world applications, shares hard-learned experiences, and sheds light on future development of active mining.
Fuzzy Cluster Analysis presents advanced and powerful fuzzy clustering techniques. This thorough and self-contained introduction to fuzzy clustering methods and applications covers classification, image recognition, data analysis and rule generation. Combining theoretical and practical perspectives, each method is analysed in detail and fully illustrated with examples. Features include:
|
![]() ![]() You may like...
Objective Measurement - Theory Into…
Mark R Wilson, George Engelhard
Hardcover
R2,853
Discovery Miles 28 530
Big Data at Work - The Data Science…
Scott Tonidandel, Eden B King, …
Hardcover
R4,081
Discovery Miles 40 810
Network Psychometrics with R - A Guide…
Adela-Maria Isvoranu, Sacha Epskamp, …
Paperback
R1,579
Discovery Miles 15 790
Numerical Modeling of Ocean Dynamics
Zygmunt Kowalik, T.S. Murty
Paperback
R1,759
Discovery Miles 17 590
Chemical Processes in Marine…
Antonio Gianguzza, Ezio Pelizzetti, …
Hardcover
R8,606
Discovery Miles 86 060
Human Assessment and Cultural Factors
John W Berry, S.H. Irvine
Hardcover
R6,293
Discovery Miles 62 930
Designing and Implementing Effective…
Kenneth J. Linfield, Steven Kniffley
Paperback
R1,056
Discovery Miles 10 560
Ecology of Marine Ports of the Black and…
A. K. Vinogradov, Yu. I. Bogatova, …
Hardcover
|