![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
Our present and our past are manifestly intertwined. Memories
are not identical simulations of the past, but are stories shaped
by our current perspectives of others, the world, and ourselves. As
a result, the gathering of early recollections can be used as a
projective technique that indicates our strengths, goals, lines of
movement, fears, and a host of other relevant psychological data.
Early Recollections are a quick, accurate, and cost-effective
personality assessment demonstrated to have similar reliability and
validity to other personality measures. Both a comprehensive and accessible text, Early Recollections: Interpretative Method and Application presents a constructivist approach and systematic development of early recollection theory. Mosak and Di Pietro invite students to think and actively engage in problem solving rather than merely read for content. Supported by step-by-step examples, this book also offers a perspective suitable for application by Adlerian practitioners, non-Adlerian clinicians, and all other mental health professionals and students seeking a new framework for evaluating personality.
Value-Driven Data explains how data and business leaders can co-create and deploy data-driven solutions for their organizations. Value-Driven Data explores how organizations can understand their problems and come up with better solutions, aligning data storytelling with business needs. The book reviews the main challenges that plague most data-to-business interactions and offers actionable strategies for effective data value implementation, including methods for tackling obstacles and incentivizing change. Value-Driven Data is supported by tried-and-tested frameworks that can be applied to different contexts and organizations. It features cutting-edge examples relating to digital transformation, data strategy, resolving conflicts of interests, building a data P&L and AI value prediction methodology. Recognizing different types of data value, this book presents tangible methodologies for identifying, capturing, communicating, measuring and deploying data-enabled opportunities. This is essential reading for data specialists, business stakeholders and leaders involved in capturing and executing data value opportunities for organizations and for informing data value strategies.
Multivariate data analysis is a central tool whenever several variables need to be considered at the same time. The present book explains a powerful and versatile way to analyse data tables, suitable also for researchers without formal training in statistics. This method for extracting useful information from data is demonstrated for various types of quality assessment, ranging from human quality perception via industrial quality monitoring to health quality and its molecular basis. Key features include:
The book is written with ISO certified businesses and laboratories in mind, to enhance Total Quality Management (TQM). As yet there are no clear guidelines for realistic data analysis of quality in complex systems - this volume bridges the gap.
A large international conference on Advances in Machine Learning and Data Analysis was held in UC Berkeley, California, USA, October 22-24, 2008, under the auspices of the World Congress on Engineering and Computer Science (WCECS 2008). This volume contains sixteen revised and extended research articles written by prominent researchers participating in the conference. Topics covered include Expert system, Intelligent decision making, Knowledge-based systems, Knowledge extraction, Data analysis tools, Computational biology, Optimization algorithms, Experiment designs, Complex system identification, Computational modeling, and industrial applications. Advances in Machine Learning and Data Analysis offers the state of the art of tremendous advances in machine learning and data analysis and also serves as an excellent reference text for researchers and graduate students, working on machine learning and data analysis.
There is a lack of an exposition on interdisciplinary and innovative methods of data mining and visualization for biodata. This book fills the gap by introducing an interdisciplinary set of the most recent methods and references on novel techniques from artificial intelligence, data mining, engineering, pattern recognition, and ontological data mining fields that are applicable to bioinformatics. The latest novel approaches are explained in detail, their advantages and disadvantages are summarized, and pointers to the future development of new applications are given. By widening the pool from which biologists and bioinformaticians can adopt methods for biodata mining and visualization, computational data mining experts in nonbiological fields are also encouraged to utilize their expertise in order to contribute to the progress of computational biology, thus enhancing the collaboration between these two disciplines.
A practical, skill-based introduction to data analysis and literacy We are swimming in a world of data, and this handy guide will keep you afloat while you learn to make sense of it all. In Data Literacy: A User's Guide, David Herzog, a journalist with a decade of experience using data analysis to transform information into captivating storytelling, introduces students and professionals to the fundamentals of data literacy, a key skill in today's world. Assuming the reader has no advanced knowledge of data analysis or statistics, this book shows how to create insight from publicly-available data through exercises using simple Excel functions. Extensively illustrated, step-by-step instructions within a concise, yet comprehensive, reference will help readers identify, obtain, evaluate, clean, analyze and visualize data. A concluding chapter introduces more sophisticated data analysis methods and tools including database managers such as Microsoft Access and MySQL and standalone statistical programs such as SPSS, SAS and R.
What if you could peer into the minds of an entire population? What if you could target the weakest with rumours that only they saw? In 2016, an obscure British military contractor turned the world upside down. Funded by a billionaire on a crusade to start his own far-right insurgency, Cambridge Analytica combined psychological research with private Facebook data to make an invisible weapon with the power to change what voters perceived as real. The firm was created to launch the then unknown Steve Bannon's ideological assault on America. But as it honed its dark arts in elections from Trinidad to Nigeria, 24-year-old research director Christopher Wylie began to see what he and his colleagues were unleashing. He had heard the disturbing visions of the investors. He saw what CEO Alexander Nix did behind closed doors. When Britain shocked the world by voting to leave the EU, Wylie realised it was time to expose his old associates. The political crime of the century had just taken place - the weapon had been tested - and nobody knew.
Data assimilation is a hugely important mathematical technique, relevant in fields as diverse as geophysics, data science, and neuroscience. This modern book provides an authoritative treatment of the field as it relates to several scientific disciplines, with a particular emphasis on recent developments from machine learning and its role in the optimisation of data assimilation. Underlying theory from statistical physics, such as path integrals and Monte Carlo methods, are developed in the text as a basis for data assimilation, and the author then explores examples from current multidisciplinary research such as the modelling of shallow water systems, ocean dynamics, and neuronal dynamics in the avian brain. The theory of data assimilation and machine learning is introduced in an accessible and unified manner, and the book is suitable for undergraduate and graduate students from science and engineering without specialized experience of statistical physics.
"The first magnetic recording device was demonstrated and patented
by the Danish inventor Valdemar Poulsen in 1898. Poulsen made a
magnetic recording of his voice on a length of piano wire. MAGNETIC
RECORDING traces the development of the watershed products and the
technical breakthroughs in magnetic recording that took place
during the century from Paulsen's experiment to today's ubiquitous
audio, video, and data recording technologies including tape
recorders, video cassette recorders, and computer hard drives.
Data and its technologies now play a large and growing role in humanities research and teaching. This book addresses the needs of humanities scholars who seek deeper expertise in the area of data modeling and representation. The authors, all experts in digital humanities, offer a clear explanation of key technical principles, a grounded discussion of case studies, and an exploration of important theoretical concerns. The book opens with an orientation, giving the reader a history of data modeling in the humanities and a grounding in the technical concepts necessary to understand and engage with the second part of the book. The second part of the book is a wide-ranging exploration of topics central for a deeper understanding of data modeling in digital humanities. Chapters cover data modeling standards and the role they play in shaping digital humanities practice, traditional forms of modeling in the humanities and how they have been transformed by digital approaches, ontologies which seek to anchor meaning in digital humanities resources, and how data models inhabit the other analytical tools used in digital humanities research. It concludes with a glossary chapter that explains specific terms and concepts for data modeling in the digital humanities context. This book is a unique and invaluable resource for teaching and practising data modeling in a digital humanities context.
Corpus Annotation gives an up-to-date picture of this fascinating new area of research, and will provide essential reading for newcomers to the field as well as those already involved in corpus annotation. Early chapters introduce the different levels and techniques of corpus annotation. Later chapters deal with software developments, applications, and the development of standards for the evaluation of corpus annotation. While the book takes detailed account of research world-wide, its focus is particularly on the work of the UCREL (University Centre for Computer Corpus Research on Language) team at Lancaster University, which has been at the forefront of developments in the field of corpus annotation since its beginnings in the 1970s.
Everywhere you look people are talking about data. Buzzwords abound - 'data science', 'machine learning', 'artificial intelligence'. But what does any of it really mean, and most importantly what does it mean for your business? Long-established businesses in many industries find themselves competing with new entrants built entirely on data and analytics. This ground-breaking new book levels the playing field in dramatic fashion. The Average is Always Wrong is a completely pragmatic and hands-on guide to harnessing data to transform your business for the better. Experienced CEO and CMO Ian Shepherd takes you behind the jargon and puts together a powerful change programme anyone can enact in their business right now, to reap the rewards of simple but sophisticated uses of data. Filled with practical examples and case studies, readers will come away with a powerful understanding of the real value of data and the analytical techniques that can drive profit growth.
A practical guide for multivariate statistical techniques-- now
updated and revised This Second Edition is invaluable for graduate students, applied statisticians, engineers, and scientists wishing to use multivariate techniques in a variety of disciplines.
"Covers all areas of computer-based data acquisition--from basic concepts to the most recent technical developments--without the burden of long theoretical derivations and proofs. Offers practical, solution-oriented design examples and real-life case studies in each chapter and furnishes valuable selection guides for specific types of hardware."
In engineering work and other practical situations, methods of a non-stop character are often needed. The computer intensive methods outlined in this book should show how to pass many obstacles that could not previously be overcome. Much emphasis in this book is placed on applications in science, economics, reliability, meteorology, medicine and transportation. In principle every area where data deserve statistical analyses there is a relevant application of these new methods. This book is aimed at classically educated statisticians as well as the younger generation.
Big data, analytics, and artificial intelligence are revolutionizing work, management, and lifestyles and are becoming disruptive technologies for healthcare, e-commerce, and web services. However, many fundamental, technological, and managerial issues for developing and applying intelligent big data analytics in these fields have yet to be addressed. Managerial Perspectives on Intelligent Big Data Analytics is a collection of innovative research that discusses the integration and application of artificial intelligence, business intelligence, digital transformation, and intelligent big data analytics from a perspective of computing, service, and management. While highlighting topics including e-commerce, machine learning, and fuzzy logic, this book is ideally designed for students, government officials, data scientists, managers, consultants, analysts, IT specialists, academicians, researchers, and industry professionals in fields that include big data, artificial intelligence, computing, and commerce.
GENSTAT is a general purpose statistical computing system with a
flexible command language operating on a variety of data
structures. It may be used on a number of computer ranges, either
interactively for exploratory data analysis, or in batch mode for
standard data analysis.
Leverage the power of Talent Intelligence (TI) to make evidence-informed decisions that drive business performance by using data about people, skills, jobs, business functions and geographies. Improved access to people and business data has created huge opportunities for the HR function. However, simply having access to this data is not enough. HR professionals need to know how to analyse the data, know what questions to ask of it and where and how the insights from the data can add the most value. Talent Intelligence is a practical guide that explains everything HR professionals need to know to achieve this. It outlines what Talent Intelligence (TI) is why it's important, how to use it to improve business results and includes guidance on how HR professionals can build the business case for it. This book also explains how and why talent intelligence is different from workforce planning, sourcing research and standard predictive HR analytics and shows how to assess where in the organization talent intelligence can have the biggest impact and how to demonstrate the results to all stakeholders. Most importantly, this book covers KPIs and metrics for success, short-term and long-term TI goals, an outline of what success looks like and the skills needed for effective Talent Intelligence. It also features case studies from organizations including Philips, Barclays and Kimberly-Clark.
Artificial intelligence is changing the world of work. How can HR professionals understand the variety of opportunities AI has created for the HR function and how best to implement these in their organization? This book provides the answers. From using natural language processing to ensure job adverts are free from bias and gendered language to implementing chatbots to enhance the employee experience, artificial intelligence can add value throughout the work of HR professionals. Artificial Intelligence for HR demonstrates how to leverage this potential and use AI to improve efficiency and develop a talented and productive workforce. Outlining the current technology landscape as well as the latest AI developments, this book ensures that HR professionals fully understand what AI is and what it means for HR in practice. Alongside coverage of employee engagement and recruitment, this second edition features new material on applications of AI for virtual work, reskilling and data integrity. Packed with practical advice, research and new and updated case studies from global organizations including Uber, IBM and Unilever, the second edition of Artificial Intelligence for HR will equip HR professionals with the knowledge they need to improve people operational efficiencies, and allow AI solutions to become enhancements for driving business success.
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. You'll explore the basic operations and common functions of Spark's structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Spark's scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasets-Spark's core APIs-through worked examples Dive into Spark's low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Spark's stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
This volume deals with two complementary topics. On one hand the book deals with the problem of determining the the probability distribution of a positive compound random variable, a problem which appears in the banking and insurance industries, in many areas of operational research and in reliability problems in the engineering sciences. On the other hand, the methodology proposed to solve such problems, which is based on an application of the maximum entropy method to invert the Laplace transform of the distributions, can be applied to many other problems. The book contains applications to a large variety of problems, including the problem of dependence of the sample data used to estimate empirically the Laplace transform of the random variable. Contents Introduction Frequency models Individual severity models Some detailed examples Some traditional approaches to the aggregation problem Laplace transforms and fractional moment problems The standard maximum entropy method Extensions of the method of maximum entropy Superresolution in maxentropic Laplace transform inversion Sample data dependence Disentangling frequencies and decompounding losses Computations using the maxentropic density Review of statistical procedures
Artificial intelligence is changing the world of work. How can HR professionals understand the variety of opportunities AI has created for the HR function and how best to implement these in their organization? This book provides the answers. From using natural language processing to ensure job adverts are free from bias and gendered language to implementing chatbots to enhance the employee experience, artificial intelligence can add value throughout the work of HR professionals. Artificial Intelligence for HR demonstrates how to leverage this potential and use AI to improve efficiency and develop a talented and productive workforce. Outlining the current technology landscape as well as the latest AI developments, this book ensures that HR professionals fully understand what AI is and what it means for HR in practice. Alongside coverage of employee engagement and recruitment, this second edition features new material on applications of AI for virtual work, reskilling and data integrity. Packed with practical advice, research and new and updated case studies from global organizations including Uber, IBM and Unilever, the second edition of Artificial Intelligence for HR will equip HR professionals with the knowledge they need to improve people operational efficiencies, and allow AI solutions to become enhancements for driving business success.
Data analysis is changing fast. Driven by a vast range of application domains and affordable tools, machine learning has become mainstream. Unsupervised data analysis, including cluster analysis, factor analysis, and low dimensionality mapping methods continually being updated, have reached new heights of achievement in the incredibly rich data world that we inhabit. Statistical Learning and Data Science is a work of reference in the rapidly evolving context of converging methodologies. It gathers contributions from some of the foundational thinkers in the different fields of data analysis to the major theoretical results in the domain. On the methodological front, the volume includes conformal prediction and frameworks for assessing confidence in outputs, together with attendant risk. It illustrates a wide range of applications, including semantics, credit risk, energy production, genomics, and ecology. The book also addresses issues of origin and evolutions in the unsupervised data analysis arena, and presents some approaches for time series, symbolic data, and functional data. Over the history of multidimensional data analysis, more and more complex data have become available for processing. Supervised machine learning, semi-supervised analysis approaches, and unsupervised data analysis, provide great capability for addressing the digital data deluge. Exploring the foundations and recent breakthroughs in the field, Statistical Learning and Data Science demonstrates how data analysis can improve personal and collective health and the well-being of our social, business, and physical environments. |
![]() ![]() You may like...
Social Aging in a Delhi Neighborhood
Narender K. Chadha, John van Willigen
Hardcover
R2,896
Discovery Miles 28 960
Aging and the Digital Life Course
david prendergast, Chiara Garattini
Hardcover
R3,083
Discovery Miles 30 830
Handbook of Minority Aging
Keith E. Whitfield, Tamara A. Baker
Paperback
R2,390
Discovery Miles 23 900
Aging Well - A Selected, Annotated…
W.Edward Folts, Bette A. Ide, …
Hardcover
R1,431
Discovery Miles 14 310
Mass Media, An Aging Population, and the…
Michael L Hilt, Jeremy H. Lipschultz
Hardcover
R3,951
Discovery Miles 39 510
|