0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (4)
  • R250 - R500 (35)
  • R500+ (889)
  • -
Status
Format
Author / Contributor
Publisher

Books > Computing & IT > Applications of computing > Artificial intelligence > Neural networks

AI Self-Driving Cars Evolvement - Practical Advances in Artificial Intelligence and Machine Learning (Paperback): Lance Eliot AI Self-Driving Cars Evolvement - Practical Advances in Artificial Intelligence and Machine Learning (Paperback)
Lance Eliot
R729 Discovery Miles 7 290 Ships in 10 - 15 working days
Computational Intelligence Friction Stir Welding Process (Paperback): Jonathan Ve Vance, A Razal Rose Computational Intelligence Friction Stir Welding Process (Paperback)
Jonathan Ve Vance, A Razal Rose; Akshansh Mishra
R1,222 Discovery Miles 12 220 Ships in 10 - 15 working days
Deep Learning with Python - A Hands-On Guide for Beginners (Paperback): Travis Booth Deep Learning with Python - A Hands-On Guide for Beginners (Paperback)
Travis Booth
R546 Discovery Miles 5 460 Ships in 10 - 15 working days
Deep Learning for Beginners - A beginner's guide to getting up and running with deep learning from scratch using Python... Deep Learning for Beginners - A beginner's guide to getting up and running with deep learning from scratch using Python (Paperback)
Dr. Pablo Rivas; Foreword by Laura Montoya
R1,201 Discovery Miles 12 010 Ships in 10 - 15 working days

Implement supervised, unsupervised, and generative deep learning (DL) models using Keras and Dopamine with TensorFlow Key Features Understand the fundamental machine learning concepts useful in deep learning Learn the underlying mathematical concepts as you implement deep learning models from scratch Explore easy-to-understand examples and use cases that will help you build a solid foundation in DL Book DescriptionWith information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks. What you will learn Implement recurrent neural networks (RNNs) and long short-term memory (LSTM) for image classification and natural language processing tasks Explore the role of convolutional neural networks (CNNs) in computer vision and signal processing Discover the ethical implications of deep learning modeling Understand the mathematical terminology associated with deep learning Code a generative adversarial network (GAN) and a variational autoencoder (VAE) to generate images from a learned latent space Implement visualization techniques to compare AEs and VAEs Who this book is forThis book is for aspiring data scientists and deep learning engineers who want to get started with the fundamentals of deep learning and neural networks. Although no prior knowledge of deep learning or machine learning is required, familiarity with linear algebra and Python programming is necessary to get started.

Build A Career in Data Science (Paperback): Emily Robinson, Jacqueline Nolis Build A Career in Data Science (Paperback)
Emily Robinson, Jacqueline Nolis
R1,139 Discovery Miles 11 390 Ships in 10 - 15 working days

Build a Career in Data Science is the top guide to help readers get their first data science job, then quickly becoming a senior employee. Industry experts Jacqueline Nolis and Emily Robinson lay out the soft skills readers need alongside their technical know-how in order to succeed in the field. Key Features * Creating a portfolio to show off your data science projects * Picking the role that's right for you * Assessing and negotiating an offer * Leaving gracefully and moving up the ladder * Interviews with professional data scientists about their experiences This book is for readers who possess the foundational technical skills of data science, and want to leverage them into a new or better job in the field. About the technology From analyzing drug trials to helping sports teams pick new draftees, data scientists utilize data to tackle the big questions of a business. But despite demand, high competition and big expectations make data science a challenging field for the unprepared to break into and navigate. Alongside their technical skills, the successful data scientist needs to be a master of understanding data projects, adapting to company needs, and managing stakeholders. Jacqueline Nolis is a data science consultant and co-founder of Nolis, LLC, with a PhD in Industrial Engineering. Jacqueline has spent years mentoring junior data scientists on how to work within organizations and grow their careers. Emily Robinson is a senior data scientist at Warby Parker, and holds a Master's in Management. Emily's academic background includes the study of leadership, negotiation, and experiences of underrepresented groups in STEM.

Transformers for Natural Language Processing - Build innovative deep neural network architectures for NLP with Python, PyTorch,... Transformers for Natural Language Processing - Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more (Paperback)
Denis Rothman
R2,406 Discovery Miles 24 060 Ships in 10 - 15 working days

Publisher's Note: A new edition of this book is out now that includes working with GPT-3 and comparing the results with other models. It includes even more use cases, such as casual language analysis and computer vision tasks, as well as an introduction to OpenAI's Codex. Key Features Build and implement state-of-the-art language models, such as the original Transformer, BERT, T5, and GPT-2, using concepts that outperform classical deep learning models Go through hands-on applications in Python using Google Colaboratory Notebooks with nothing to install on a local machine Test transformer models on advanced use cases Book DescriptionThe transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets. What you will learn Use the latest pretrained transformer models Grasp the workings of the original Transformer, GPT-2, BERT, T5, and other transformer models Create language understanding Python programs using concepts that outperform classical deep learning models Use a variety of NLP platforms, including Hugging Face, Trax, and AllenNLP Apply Python, TensorFlow, and Keras programs to sentiment analysis, text summarization, speech recognition, machine translations, and more Measure the productivity of key transformers to define their scope, potential, and limits in production Who this book is forSince the book does not teach basic programming, you must be familiar with neural networks, Python, PyTorch, and TensorFlow in order to learn their implementation with Transformers. Readers who can benefit the most from this book include experienced deep learning & NLP practitioners and data analysts & data scientists who want to process the increasing amounts of language-driven data.

Machine Learning Brick by Brick, Epoch 1 - Using LEGO(R) to Teach Concepts, Algorithms, and Data Structures (Paperback): Dmitry... Machine Learning Brick by Brick, Epoch 1 - Using LEGO(R) to Teach Concepts, Algorithms, and Data Structures (Paperback)
Dmitry Vostokov
R326 Discovery Miles 3 260 Ships in 10 - 15 working days
Interpretable Machine Learning with Python - Learn to build interpretable high-performance models with hands-on real-world... Interpretable Machine Learning with Python - Learn to build interpretable high-performance models with hands-on real-world examples (Paperback)
Serg Masis
R1,544 Discovery Miles 15 440 Ships in 10 - 15 working days

Understand the key aspects and challenges of machine learning interpretability, learn how to overcome them with interpretation methods, and leverage them to build fairer, safer, and more reliable models Key Features Learn how to extract easy-to-understand insights from any machine learning model Become well-versed with interpretability techniques to build fairer, safer, and more reliable models Mitigate risks in AI systems before they have broader implications by learning how to debug black-box models Book DescriptionDo you want to understand your models and mitigate risks associated with poor predictions using machine learning (ML) interpretation? Interpretable Machine Learning with Python can help you work effectively with ML models. The first section of the book is a beginner's guide to interpretability, covering its relevance in business and exploring its key aspects and challenges. You'll focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. The second section will get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, the book also helps the reader to interpret model outcomes using examples. In the third section, you'll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you'll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning. What you will learn Recognize the importance of interpretability in business Study models that are intrinsically interpretable such as linear models, decision trees, and Naive Bayes Become well-versed in interpreting models with model-agnostic methods Visualize how an image classifier works and what it learns Understand how to mitigate the influence of bias in datasets Discover how to make models more reliable with adversarial robustness Use monotonic constraints to make fairer and safer models Who this book is forThis book is for data scientists, machine learning developers, and data stewards who have an increasingly critical responsibility to explain how the AI systems they develop work, their impact on decision making, and how they identify and manage bias. Working knowledge of machine learning and the Python programming language is expected.

Deep Learning Crash Course for Beginners with Python - Theory and Applications of Artificial Neural Networks, CNN, RNN, LSTM... Deep Learning Crash Course for Beginners with Python - Theory and Applications of Artificial Neural Networks, CNN, RNN, LSTM and Autoencoders using TensorFlow 2.0- Contains Exercises with Solutions and Hands-On Projects (Paperback)
Ai Publishing
R672 Discovery Miles 6 720 Ships in 10 - 15 working days
AI Self-Driving Cars Inventiveness - Practical Advances in Artificial Intelligence and Machine Learning (Paperback): Lance Eliot AI Self-Driving Cars Inventiveness - Practical Advances in Artificial Intelligence and Machine Learning (Paperback)
Lance Eliot
R727 Discovery Miles 7 270 Ships in 10 - 15 working days
Algorithmic Short Selling with Python - Refine your algorithmic trading edge, consistently generate investment ideas, and build... Algorithmic Short Selling with Python - Refine your algorithmic trading edge, consistently generate investment ideas, and build a robust long/short product (Paperback)
Laurent Bernut; Foreword by Michael Covel
R1,419 Discovery Miles 14 190 Ships in 10 - 15 working days

Leverage Python source code to revolutionize your short selling strategy and to consistently make profits in bull, bear, and sideways markets Key Features Understand techniques such as trend following, mean reversion, position sizing, and risk management in a short-selling context Implement Python source code to explore and develop your own investment strategy Test your trading strategies to limit risk and increase profits Book DescriptionIf you are in the long/short business, learning how to sell short is not a choice. Short selling is the key to raising assets under management. This book will help you demystify and hone the short selling craft, providing Python source code to construct a robust long/short portfolio. It discusses fundamental and advanced trading concepts from the perspective of a veteran short seller. This book will take you on a journey from an idea ("buy bullish stocks, sell bearish ones") to becoming part of the elite club of long/short hedge fund algorithmic traders. You'll explore key concepts such as trading psychology, trading edge, regime definition, signal processing, position sizing, risk management, and asset allocation, one obstacle at a time. Along the way, you'll will discover simple methods to consistently generate investment ideas, and consider variables that impact returns, volatility, and overall attractiveness of returns. By the end of this book, you'll not only become familiar with some of the most sophisticated concepts in capital markets, but also have Python source code to construct a long/short product that investors are bound to find attractive. What you will learn Develop the mindset required to win the infinite, complex, random game called the stock market Demystify short selling in order to generate alpa in bull, bear, and sideways markets Generate ideas consistently on both sides of the portfolio Implement Python source code to engineer a statistically robust trading edge Develop superior risk management habits Build a long/short product that investors will find appealing Who this book is forThis is a book by a practitioner for practitioners. It is designed to benefit a wide range of people, including long/short market participants, quantitative participants, proprietary traders, commodity trading advisors, retail investors (pro retailers, students, and retail quants), and long-only investors. At least 2 years of active trading experience, intermediate-level experience of the Python programming language, and basic mathematical literacy (basic statistics and algebra) are expected.

Applied Deep Learning and Computer Vision for Self-Driving Cars - Build autonomous vehicles using deep neural networks and... Applied Deep Learning and Computer Vision for Self-Driving Cars - Build autonomous vehicles using deep neural networks and behavior-cloning techniques (Paperback)
Sumit Ranjan, Dr. S. Senthamilarasu
R1,274 Discovery Miles 12 740 Ships in 10 - 15 working days

Explore self-driving car technology using deep learning and artificial intelligence techniques and libraries such as TensorFlow, Keras, and OpenCV Key Features Build and train powerful neural network models to build an autonomous car Implement computer vision, deep learning, and AI techniques to create automotive algorithms Overcome the challenges faced while automating different aspects of driving using modern Python libraries and architectures Book DescriptionThanks to a number of recent breakthroughs, self-driving car technology is now an emerging subject in the field of artificial intelligence and has shifted data scientists' focus to building autonomous cars that will transform the automotive industry. This book is a comprehensive guide to use deep learning and computer vision techniques to develop autonomous cars. Starting with the basics of self-driving cars (SDCs), this book will take you through the deep neural network techniques required to get up and running with building your autonomous vehicle. Once you are comfortable with the basics, you'll delve into advanced computer vision techniques and learn how to use deep learning methods to perform a variety of computer vision tasks such as finding lane lines, improving image classification, and so on. You will explore the basic structure and working of a semantic segmentation model and get to grips with detecting cars using semantic segmentation. The book also covers advanced applications such as behavior-cloning and vehicle detection using OpenCV, transfer learning, and deep learning methodologies to train SDCs to mimic human driving. By the end of this book, you'll have learned how to implement a variety of neural networks to develop your own autonomous vehicle using modern Python libraries. What you will learn Implement deep neural network from scratch using the Keras library Understand the importance of deep learning in self-driving cars Get to grips with feature extraction techniques in image processing using the OpenCV library Design a software pipeline that detects lane lines in videos Implement a convolutional neural network (CNN) image classifier for traffic signal signs Train and test neural networks for behavioral-cloning by driving a car in a virtual simulator Discover various state-of-the-art semantic segmentation and object detection architectures Who this book is forIf you are a deep learning engineer, AI researcher, or anyone looking to implement deep learning and computer vision techniques to build self-driving blueprint solutions, this book is for you. Anyone who wants to learn how various automotive-related algorithms are built, will also find this book useful. Python programming experience, along with a basic understanding of deep learning, is necessary to get the most of this book.

Hands-On Image Generation with TensorFlow - A practical guide to generating images and videos using deep learning (Paperback):... Hands-On Image Generation with TensorFlow - A practical guide to generating images and videos using deep learning (Paperback)
Soon Yau Cheong
R1,321 Discovery Miles 13 210 Ships in 10 - 15 working days

Implement various state-of-the-art architectures, such as GANs and autoencoders, for image generation using TensorFlow 2.x from scratch Key Features Understand the different architectures for image generation, including autoencoders and GANs Build models that can edit an image of your face, turn photos into paintings, and generate photorealistic images Discover how you can build deep neural networks with advanced TensorFlow 2.x features Book DescriptionThe emerging field of Generative Adversarial Networks (GANs) has made it possible to generate indistinguishable images from existing datasets. With this hands-on book, you'll not only develop image generation skills but also gain a solid understanding of the underlying principles. Starting with an introduction to the fundamentals of image generation using TensorFlow, this book covers Variational Autoencoders (VAEs) and GANs. You'll discover how to build models for different applications as you get to grips with performing face swaps using deepfakes, neural style transfer, image-to-image translation, turning simple images into photorealistic images, and much more. You'll also understand how and why to construct state-of-the-art deep neural networks using advanced techniques such as spectral normalization and self-attention layer before working with advanced models for face generation and editing. You'll also be introduced to photo restoration, text-to-image synthesis, video retargeting, and neural rendering. Throughout the book, you'll learn to implement models from scratch in TensorFlow 2.x, including PixelCNN, VAE, DCGAN, WGAN, pix2pix, CycleGAN, StyleGAN, GauGAN, and BigGAN. By the end of this book, you'll be well versed in TensorFlow and be able to implement image generative technologies confidently. What you will learn Train on face datasets and use them to explore latent spaces for editing new faces Get to grips with swapping faces with deepfakes Perform style transfer to convert a photo into a painting Build and train pix2pix, CycleGAN, and BicycleGAN for image-to-image translation Use iGAN to understand manifold interpolation and GauGAN to turn simple images into photorealistic images Become well versed in attention generative models such as SAGAN and BigGAN Generate high-resolution photos with Progressive GAN and StyleGAN Who this book is forThe Hands-On Image Generation with TensorFlow book is for deep learning engineers, practitioners, and researchers who have basic knowledge of convolutional neural networks and want to learn various image generation techniques using TensorFlow 2.x. You'll also find this book useful if you are an image processing professional or computer vision engineer looking to explore state-of-the-art architectures to improve and enhance images and videos. Knowledge of Python and TensorFlow will help you to get the best out of this book.

Data Driven Dealings Development - Analysing, Predicting, and Recommending sales items per customer using Machine Learning... Data Driven Dealings Development - Analysing, Predicting, and Recommending sales items per customer using Machine Learning Models with Python. (Paperback)
Jesko Rehberg
R371 Discovery Miles 3 710 Ships in 10 - 15 working days
AI Self-Driving Cars Breakthroughs - Practical Advances in Artificial Intelligence and Machine Learning (Paperback): Lance Eliot AI Self-Driving Cars Breakthroughs - Practical Advances in Artificial Intelligence and Machine Learning (Paperback)
Lance Eliot
R726 Discovery Miles 7 260 Ships in 10 - 15 working days
The The Supervised Learning Workshop - A New, Interactive Approach to Understanding Supervised Learning Algorithms, 2nd Edition... The The Supervised Learning Workshop - A New, Interactive Approach to Understanding Supervised Learning Algorithms, 2nd Edition (Paperback, 2nd Revised edition)
Blaine Bateman, Ashish Ranjan Jha, Benjamin Johnston, Ishita Mathur
R972 Discovery Miles 9 720 Ships in 10 - 15 working days

Cut through the noise and get real results with a step-by-step approach to understanding supervised learning algorithms Key Features Ideal for those getting started with machine learning for the first time A step-by-step machine learning tutorial with exercises and activities that help build key skills Structured to let you progress at your own pace, on your own terms Use your physical print copy to redeem free access to the online interactive edition Book DescriptionYou already know you want to understand supervised learning, and a smarter way to do that is to learn by doing. The Supervised Learning Workshop focuses on building up your practical skills so that you can deploy and build solutions that leverage key supervised learning algorithms. You'll learn from real examples that lead to real results. Throughout The Supervised Learning Workshop, you'll take an engaging step-by-step approach to understand supervised learning. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend learning how to predict future values with auto regressors. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Supervised Learning Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your book. Fast-paced and direct, The Supervised Learning Workshop is the ideal companion for those with some Python background who are getting started with machine learning. You'll learn how to apply key algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead. What you will learn Get to grips with the fundamental of supervised learning algorithms Discover how to use Python libraries for supervised learning Learn how to load a dataset in pandas for testing Use different types of plots to visually represent the data Distinguish between regression and classification problems Learn how to perform classification using K-NN and decision trees Who this book is forOur goal at Packt is to help you be successful, in whatever it is you choose to do. The Supervised Learning Workshop is ideal for those with a Python background, who are just starting out with machine learning. Pick up a Workshop today, and let Packt help you develop skills that stick with you for life.

Machine Learning Applications in Non-Conventional Machining Processes (Paperback): Goutam Kumar Bose, Pritam Pain Machine Learning Applications in Non-Conventional Machining Processes (Paperback)
Goutam Kumar Bose, Pritam Pain
R4,479 Discovery Miles 44 790 Ships in 10 - 15 working days

Traditional machining has many limitations in today's technology-driven world, which has caused industrial professionals to begin implementing various optimization techniques within their machining processes. The application of methods including machine learning and genetic algorithms has recently transformed the manufacturing industry and created countless opportunities in non-traditional machining methods. Significant research in this area, however, is still considerably lacking. Machine Learning Applications in Non-Conventional Machining Processes is a collection of innovative research on the advancement of intelligent technology in industrial environments and its applications within the manufacturing field. While highlighting topics including evolutionary algorithms, micro-machining, and artificial neural networks, this book is ideally designed for researchers, academicians, engineers, managers, developers, practitioners, industrialists, and students seeking current research on intelligence-based machining processes in today's technology-driven market.

The Practical Guides On Deep Learning Using SCIKIT-LEARN, KERAS, and TENSORFLOW with Python GUI (Paperback): Rismon Hasiholan... The Practical Guides On Deep Learning Using SCIKIT-LEARN, KERAS, and TENSORFLOW with Python GUI (Paperback)
Rismon Hasiholan Sianipar, Vivian Siahaan
R1,001 Discovery Miles 10 010 Ships in 10 - 15 working days
Deep Learning with Python - The Ultimate Beginners Guide for Deep Learning with Python (Paperback): Alex Root Deep Learning with Python - The Ultimate Beginners Guide for Deep Learning with Python (Paperback)
Alex Root
R533 Discovery Miles 5 330 Ships in 10 - 15 working days
Advancements in Instrumentation and Control in Applied System Applications (Paperback): Srijan Bhattacharya Advancements in Instrumentation and Control in Applied System Applications (Paperback)
Srijan Bhattacharya
R5,136 Discovery Miles 51 360 Ships in 10 - 15 working days

As technology continues to advance in today's global market, practitioners are targeting systems with significant levels of applicability and variance. Instrumentation is a multidisciplinary subject that provides a wide range of usage in several professional fields, specifically engineering. Instrumentation plays a key role in numerous daily processes and has seen substantial advancement in recent years. It is of utmost importance for engineering professionals to understand the modern developments of instruments and how they affect everyday life. Advancements in Instrumentation and Control in Applied System Applications is a collection of innovative research on the methods and implementations of instrumentation in real-world practices including communication, transportation, and biomedical systems. While highlighting topics including smart sensor design, medical image processing, and atrial fibrillation, this book is ideally designed for researchers, software engineers, technologists, developers, scientists, designers, IT professionals, academicians, and post-graduate students seeking current research on recent developments within instrumentation systems and their applicability in daily life.

Generative AI with Python and TensorFlow 2 - Create images, text, and music with VAEs, GANs, LSTMs, Transformer models... Generative AI with Python and TensorFlow 2 - Create images, text, and music with VAEs, GANs, LSTMs, Transformer models (Paperback)
Joseph Babcock, Raghav Bali
R1,562 Discovery Miles 15 620 Ships in 10 - 15 working days

Fun and exciting projects to learn what artificial minds can create Key Features Code examples are in TensorFlow 2, which make it easy for PyTorch users to follow along Look inside the most famous deep generative models, from GPT to MuseGAN Learn to build and adapt your own models in TensorFlow 2.x Explore exciting, cutting-edge use cases for deep generative AI Book DescriptionMachines are excelling at creative human skills such as painting, writing, and composing music. Could you be more creative than generative AI? In this book, you'll explore the evolution of generative models, from restricted Boltzmann machines and deep belief networks to VAEs and GANs. You'll learn how to implement models yourself in TensorFlow and get to grips with the latest research on deep neural networks. There's been an explosion in potential use cases for generative models. You'll look at Open AI's news generator, deepfakes, and training deep learning agents to navigate a simulated environment. Recreate the code that's under the hood and uncover surprising links between text, image, and music generation. What you will learn Export the code from GitHub into Google Colab to see how everything works for yourself Compose music using LSTM models, simple GANs, and MuseGAN Create deepfakes using facial landmarks, autoencoders, and pix2pix GAN Learn how attention and transformers have changed NLP Build several text generation pipelines based on LSTMs, BERT, and GPT-2 Implement paired and unpaired style transfer with networks like StyleGAN Discover emerging applications of generative AI like folding proteins and creating videos from images Who this book is forThis is a book for Python programmers who are keen to create and have some fun using generative models. To make the most out of this book, you should have a basic familiarity with math and statistics for machine learning.

Disruptive Artificial Intelligence (AI) and Driverless Self-Driving Cars - Practical Advances in Machine Learning and AI... Disruptive Artificial Intelligence (AI) and Driverless Self-Driving Cars - Practical Advances in Machine Learning and AI (Paperback)
Lance Eliot
R732 Discovery Miles 7 320 Ships in 10 - 15 working days
Advanced Deep Learning with Python - Design and implement advanced next-generation AI solutions using TensorFlow and PyTorch... Advanced Deep Learning with Python - Design and implement advanced next-generation AI solutions using TensorFlow and PyTorch (Paperback)
Ivan Vasilev
R1,320 Discovery Miles 13 200 Ships in 10 - 15 working days

Gain expertise in advanced deep learning domains such as neural networks, meta-learning, graph neural networks, and memory augmented neural networks using the Python ecosystem Key Features Get to grips with building faster and more robust deep learning architectures Investigate and train convolutional neural network (CNN) models with GPU-accelerated libraries such as TensorFlow and PyTorch Apply deep neural networks (DNNs) to computer vision problems, NLP, and GANs Book DescriptionIn order to build robust deep learning systems, you'll need to understand everything from how neural networks work to training CNN models. In this book, you'll discover newly developed deep learning models, methodologies used in the domain, and their implementation based on areas of application. You'll start by understanding the building blocks and the math behind neural networks, and then move on to CNNs and their advanced applications in computer vision. You'll also learn to apply the most popular CNN architectures in object detection and image segmentation. Further on, you'll focus on variational autoencoders and GANs. You'll then use neural networks to extract sophisticated vector representations of words, before going on to cover various types of recurrent networks, such as LSTM and GRU. You'll even explore the attention mechanism to process sequential data without the help of recurrent neural networks (RNNs). Later, you'll use graph neural networks for processing structured data, along with covering meta-learning, which allows you to train neural networks with fewer training samples. Finally, you'll understand how to apply deep learning to autonomous vehicles. By the end of this book, you'll have mastered key deep learning concepts and the different applications of deep learning models in the real world. What you will learn Cover advanced and state-of-the-art neural network architectures Understand the theory and math behind neural networks Train DNNs and apply them to modern deep learning problems Use CNNs for object detection and image segmentation Implement generative adversarial networks (GANs) and variational autoencoders to generate new images Solve natural language processing (NLP) tasks, such as machine translation, using sequence-to-sequence models Understand DL techniques, such as meta-learning and graph neural networks Who this book is forThis book is for data scientists, deep learning engineers and researchers, and AI developers who want to further their knowledge of deep learning and build innovative and unique deep learning projects. Anyone looking to get to grips with advanced use cases and methodologies adopted in the deep learning domain using real-world examples will also find this book useful. Basic understanding of deep learning concepts and working knowledge of the Python programming language is assumed.

Hands-On Generative Adversarial Networks with PyTorch 1.x - Implement next-generation neural networks to build powerful GAN... Hands-On Generative Adversarial Networks with PyTorch 1.x - Implement next-generation neural networks to build powerful GAN models using Python (Paperback)
John Hany, Greg Walters
R1,157 Discovery Miles 11 570 Ships in 10 - 15 working days

Apply deep learning techniques and neural network methodologies to build, train, and optimize generative network models Key Features Implement GAN architectures to generate images, text, audio, 3D models, and more Understand how GANs work and become an active contributor in the open source community Learn how to generate photo-realistic images based on text descriptions Book DescriptionWith continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs over generative models and guides in making the best out of GANs with the help of hands-on examples. This book starts by taking you through the core concepts necessary to understand how each component of a GAN model works. You'll build your first GAN model to understand how generator and discriminator networks function. As you advance, you'll delve into a range of examples and datasets to build a variety of GAN networks using PyTorch functionalities and services, and become well-versed with architectures, training strategies, and evaluation methods for image generation, translation, and restoration. You'll even learn how to apply GAN models to solve problems in areas such as computer vision, multimedia, 3D models, and natural language processing (NLP). The book covers how to overcome the challenges faced while building generative models from scratch. Finally, you'll also discover how to train your GAN models to generate adversarial examples to attack other CNN and GAN models. By the end of this book, you will have learned how to build, train, and optimize next-generation GAN models and use them to solve a variety of real-world problems. What you will learn Implement PyTorch's latest features to ensure efficient model designing Get to grips with the working mechanisms of GAN models Perform style transfer between unpaired image collections with CycleGAN Build and train 3D-GANs to generate a point cloud of 3D objects Create a range of GAN models to perform various image synthesis operations Use SEGAN to suppress noise and improve the quality of speech audio Who this book is forThis GAN book is for machine learning practitioners and deep learning researchers looking to get hands-on guidance in implementing GAN models using PyTorch. You'll become familiar with state-of-the-art GAN architectures with the help of real-world examples. Working knowledge of Python programming language is necessary to grasp the concepts covered in this book.

Up and Running Google AutoML and AI Platform - Building Machine Learning and NLP Models Using AutoML and AI Platform for... Up and Running Google AutoML and AI Platform - Building Machine Learning and NLP Models Using AutoML and AI Platform for Production Environment (Paperback)
Amit Agrawal, Navin Sabharwal
R538 Discovery Miles 5 380 Ships in 10 - 15 working days
Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Research Anthology on Artificial Neural…
Information R Management Association Hardcover R14,050 Discovery Miles 140 500
Deep Neural Networks for Multimodal…
Annamalai Suresh, R. Udendhran, … Hardcover R8,195 Discovery Miles 81 950
State of the Art in Neural Networks and…
Ayman S. El-Baz, Jasjit S. Suri Paperback R3,615 Discovery Miles 36 150
Machine Learning with SAS Viya
SAS Institute Inc Hardcover R1,278 Discovery Miles 12 780
SpiNNaker - A Spiking Neural Network…
Steve Furber, Petrut Bogdan Hardcover R2,180 Discovery Miles 21 800
Research Anthology on Artificial Neural…
Information R Management Association Hardcover R14,040 Discovery Miles 140 400
Neural Networks - An Essential Beginners…
Herbert Jones Hardcover R710 R626 Discovery Miles 6 260
Hardware Architectures for Deep Learning
Masoud Daneshtalab, Mehdi Modarressi Hardcover R3,489 R3,146 Discovery Miles 31 460
Intelligent Analysis Of Fundus Images…
Yuanyuan Chen, Yi Zhang, … Hardcover R2,321 Discovery Miles 23 210
Research Advancements in Smart…
Pandian Vasant, Gerhard Weber, … Hardcover R6,736 Discovery Miles 67 360

 

Partners